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Abstract. There has been some confusion concerning the number of (1, 1)-forms in
orbifold compactifications of the heterotic string in numerous publications. In this
note we point out the relevance of the underlying torus lattice on this number. We
answer the question when different lattices mimic the same physics and when this
is not the case. As a byproduct we classify all symmetric Z-orbifolds with (2,2)
world sheet supersymmetry obtaining also some new ones.

1. Introduction

String compactifications on toroidal Z-orbifolds [1] are among the most intensively
studied ones. They provide us with the simplest string models which have semi-
realistic features. Because the one loop partition function and the couplings can be
calculated explicitly in dependence of the untwisted moduli, many generic properties
concerning the string moduli space and the effective low energy theory can be
investigated here in detail !. Including all background parameters in the framework
of heterotic compactifications and allowing for the most general twists, a rich class of
models, with partly phenomenological very attractive features, emerges. The question
is still open, whether some standard string model, which can be related in a painless
manner to the known phenomenology, is contained in this class.

Toroidal orbifolds have also attracted the attention of the mathematicians, because
the partition functions of (2,2) models contain information, which can be interpreted
as topological data of a Calabi-Yau manifold. The latter can indeed be constructed by
a certain resolving process of the orbifold singularities, which establishes an exciting
relation between singularity theory and the theory of modular functions.

* Supported by Deutsche Forschungsgemeinschaft

! The situation for more general compactification schemes has improved, as P. Candelas, X. De
la Ossa, P. Green, and L. Parkes worked out the modulus dependence explicitly [2] for the quintic
threefold in P*. Other Calabi-Yau manifolds were investigated in [3]
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In this situation it comes as a surprise that some of the most fundamental properties
from the physical as well as from the mathematical point of view, namely the
individual numbers of generations and antigenerations, i.e. (1, 1)-forms and (2, 1)-
forms respectively, on the orbifold have been reported incorrectly in the literature.

Z nr-orbifolds [1] are unambiguously defined through a twist acting as an automor-
phism in some torus lattice. Clearly, a given twist matrix determines both the spectrum
of twist eigenvalues and the lattices possessing the automorphism. Some properties
like the number of chiral generations, the number of space time supersymmetries or
the number of untwisted moduli fields only depend on these eigenvalues. On the other
hand, however, the role of the underlying lattice has been underestimated in the past.
For instance, it determines the modular symmetry group [4-8], which has attracted
much attention due to its importance for discussions of low energy effective actions
[9].

In this communication we will point out that the lattice has even impact on the
number of (1, 1)-forms (k, ;) and thus on the massless spectrum. Since this fact has
been overlooked up to now, the true total number of 27’s and 27’s depart from
those stated in the literature. Especially the Lie-algebra lattices assigned to a stated
h, , differ from the results of this publication. Neglecting the dependence of orbifold
properties on the lattice, has also led to an incomplete classification of symmetric Z -
orbifolds with (2,2) world sheet supersymmetry and vanishing discrete background
field. We have found 18 inequivalent orbifolds in this class 2.

One should stress that the correct treatment does not lead to any changes for the
two prime orbifolds Z; and Z;, where no fixed tori occur. In the case of non-prime
orbifolds we have typically the situation that there exits a lattice to which apply parts
of the reasoning that appear in the literature. This lattice is, however, usually not the
one the authors refer to.

There is a variety of methods to obtain information about the spectra of Z -
orbifolds. One is to study the possible resolutions of orbifolds singularities [11-13].
In three (complex) dimensions these are either related to fixed points or to fixed
curves. The cases of fixed points are completely understood. In the presence of fixed
curves, however, more care is needed and different torus lattices give rise to different
resolutions.

Another possibility is to construct the one loop partition function as done in
[14]. This is equivalent to knowing all massless and massive states 3, We will show
that those parts of the partition function which are related to sectors, where the
corresponding twist matrix leaves fixed tori, have a somewhat different structure.

Finally, one can construct twist invariant vertex operators by using the mode
expansions of the untwisted and twisted coordinates [16]. Again we will argue that in
sectors with fixed directions different solutions arise whenever the underlying lattice
is changed.

Since the main purpose of this note is to emphasize the importance of the
compactification lattice, we will construct the complete list of symmetric Z y,-orbifolds
of (2,2)-type with vanishing discrete background fields B;w‘ As shown in [7] non-
vanishing discrete background fields very much mimic asymmetric orbifolds. It was
also shown there that they can sometimes be transformed to orbifolds without such

2 There exists a more natural and much more efficient way of constructing (2,2) string compactifi-
cations using the Landau-Ginzburg approach. A classification of these string vacua was performed
in [10]

3 In more general constructions like Z x Z,; or non-abelian orbifolds one-loop modular invariance
might be insufficient for all loop modular invariance and also for defining the model completely [15]
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backgrounds. If this is the case the defining torus lattice in the transformed model
typically differs from the original one. Thus we are also led to discuss these class of
models.

The organization of the paper is as follows: In Sect. 2 we construct in a systematic
way all models of the above mentioned type. This includes all Coxeter-twists but
also more general ones. Using methods developed in [7], we will also recognize
equivalences of models considered as different before [16]. Section 3 is devoted to
the proof that h; ; depends on the chosen lattice. It uses the one loop partition function
as described above and discusses also some aspects of the mode expansion approach.
In Sect. 4 we confirm our results by a completely different method utilizing results of
singularity theory. We give an easy prescription how to calculate h; ; and h; , from
the fixed sets. '

2. Classification of the Zx-Orbifolds

In this section we classify (2.2) string theories on orbifolds, which can be obtained
by dividing out a Z, group in a symmetric way from a six dimensional torus T°
with vanishing discrete B-field.

To be more precise we will classify equivalence classes defined up to modular
deformations. We start the discussion with a short extraction of the necessary concepts
for toroidal orbifolds, mainly from the physics literature.

2.1. Concepts in Toroidal- and Orbifold Compactifications

6 .

Let A = { Yo nleln; € Z} be a lattice embedded in Euclidean space R®. Due to
1=1

the canonical isomorphism we denote the basis of the tangent space also by e; and

define the induced metric as g;; = (e;, ej), where (, ) is the Euclidean scalar product.

We denote the dual lattice w.r.t. (,) by A*. The six torus is defined as the quotient

of R® w.r.t. A,

T°: =R%/A. (€]
One may also introduce an antisymmetric background field B = b,.e' A e/ as a
geometrical data of the torus. The allowed momenta for the left and right movers of
strings compactified on the torus with this background field are given by [17]

P =3m+gn—bn, Pp=;3m—gn—bn, 2)

where n and m are integer six vectors describing the winding and momentum quantum
numbers of the string state. They label the elements of A and its dual A* respectively.
The geometry of the underlying torus, i.e. the so-called modular parameters* 9y
and b,,, enters string theory only via bilinear forms of (m, n) describing the scaling
dimension,

H, y(m,n;m,n) = Prg='P, + Phg™' P,

Im 4 2nTgn

—mTg7'on 4+ nTbg™'m +2nTb 7 gn 3)

4 In the heterotic theory other modular parameters appear in form of Wilson lines Al
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and the spin,
S(m,n:m,n)= Plg7'P, — PLg~'Pr=2m"n, 4)

of the physical vertex operators, up to geometry independent oscillator contributions.
A linear relabelin(g of (n, m) leaving invariant the bilinear form (4) can be accom-
panied by a relabeling of the modular parameters g and b such that also the scaling
dimensions (3) of the vertex operators are invariant. That is, string theory is the same
for geometrically different tori and this leads us to following definition:

Definition 1. The bijective linear integer transformations of (n,m) — gl(n,m),
which leave (4) invariant, generate an invariance group G for string theory on the
torus.

The requirement that H stays invariant H ,(n,m;n,m) = H ,n(gl(n, m);
gl(n,m)) induces a representation of G as transformations of the moduli o(gl):
(g,b) — (¢’,b’), which is not? faithful. The group generated by this transformation
is called modular symmetry group %.

Setting the B-field to zero and restricting to a subgroup of G, which do not mix
windings and momenta [4] we have the following

Lemma 1. Let M € GL(6,7). The string theory on T® remains invariant under the
. ) -1 -
simultaneous transformations n — Mn, m — MT mand g — MT  gM~'.

An orbifold is defined by a finite group 1" generated by elements @, of G, all of
which leave H(go,bo)((go7b0) # () invariant. The latter requirement defines (g,,b,)
the untwisted moduli space of the orbifold, which is a subspace of the moduli space
(g,b) of the torus. (g,,b,) might be a point in moduli space, but in general the O,
specify the orbifold only up to modular deformations.

The symmetric Z,, orbifold with vanishing discrete B-field, which we want to
classify, amount to the simplest possible choice for ©. Namely we pick an element

0 € GL(6,Z) with 8~ = 1 and transform simultaneously ® n — n and m — o7 ' m.
The spin S is invariant by construction and requiring invariance of H, we get

6Tg.0=gq,. 5)

Condition (5) ensures that the lattice automorphism acts crystallographically.
The basis transformation on (n, m) of Lemma 1 accompanied with a transformation

of g — MT ™' gM~" does not change the string theory on the torus and if we transform
a given twist covariantly we also define the same orbifold thereof. We have therefore
the following equivalence relation for the twist matrices [7]:

Definition 2. Two twist matrices 6 and ' are equivalent in the sense that they define
the same orbifold string theory, if and only if 3M € GL(6,Z) such that @ = M¢' M~
The modular group of the orbifold can be described as follows [4, 8]:

Corollary 1. The M € GL(6,Z) which fulfill 0" = MOM™' (n € Z,) generate
a symmetry group of the orbifold, which induces a non’-faithful representation

5 Obviously gl(n, m) = (—n, —m) is in the kernel of g

6 Note that these symmetries are directly realised as discrete automorphism on the target-space
torus, whereas symmetries which mix momenta and windings are specific for string theory. It might
be interesting for geometers to consider also the latter ones, as orbifoldizing w.r.t. some of them
also give rise to Calabi-Yau manifolds. Moreover the symmetries which lead to the mirrors of the
Z n-orbifolds are also in this class

7 By (5) all powers of @ are in the kernel of o
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on the orbifold moduli o(M):g, — g, by the requirement H go(Mym:n,m) =
Hy, (Mn, M™""m; Mn, MT'm),

2.2. Description of the Classification. We start the classification of the symmetric Z
twists by analysing their possible eigenvalues. Let 6 be a Z, twist, i.e. a lattice
automorphism with #V = 1, in a d-dimensional lattice. By a transformation matrix
B € GIL(d,C) we can pass from the lattice basis where the twist 4 is integer valued
to a basis where it is diagonal

6, = B~'0B = diag(¢™, ..., £%). (6)

27
Here ¢ = e N is the N'™ order root of unity and a; € Ny, a; < N. Since we wish
@ to act as an integer matrix in some lattice we get as a necessary condition on the
exponents A, = a;/N of 6, that they define a characteristic polynomial P(x) over
the integers. Especially the Lefschetz Fixed Point Theorem which gives the number
of fixed points ® X of a lattice automorphism 6 as

Xp = det(1 —0), @)

implies P(1) € Z.

First we search for 6, which fulfill the necessary condition above. Let us denote
by (a,b) the greatest common divisor of a and b. We call 8, proper, if (a;, N) = 1
for all 7. Obviously all 6, can be constructed from proper subblocks 6/,. The Euler
function is defined ¢(IV) as the number of integers 0 < [ < N with ([, N) = 1. The
characteristic polynomial for a proper twist is a so-called cyclotomic polynomial of
degree ¢(IV) [21]

Py@ = ][] @-¢, ®)
0<a<N
(a,N)=1
which enjoys the following properties:
1. Py (x) is the polynom ring over the integers: Py (x) € Z[z].
2. Py(2) is irreducible in Z[x].
p if N =p™ with p prime,
3- Py = { 1 otherwise.
1. ensures our necessary condition for 8’ to act as a lattice automorphism. Due to
2. the minimal dimension in which a Z,; twist can be realised crystallographically
and proper is given by ¢(IN). Finally, 3. provides us with an effective method for

computing the number of fixed points. The dimensions of the proper blocks are given
by

HN)=N H pi—p—l, where p, are the distinct prime factors of N, ©)
which reduces to N — 1 for prime NN. From that we see that for d = 1 only Z, with 2
fixed points is allowed and furthermore that no other block can be defined properly in
odd dimensions. We can easily construct a table of exponents up to d = 6. Because
all €% appear together with £%:, we only list half of them. Using (9) it is easy to see
that no higher orders are possible.

8 det(1 — @) = 0 in (7) signals the occurrence of fixed sublattices
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Table 1. Exponents a, of proper Z,, twists

d=2 d=4 d=6

Twist  xp Twist XF Twist XF

i 3 1,2y 5 11,2,3 7

i 2 g(1,3) 2 5(1,2,4) 3

ty 1 H@,3) 1 1,35 1
L@,5 1 1,57 1

The allowed sets of exponents in dimensions less than 6 can now be obtained by
building all possible combinations of the proper ones. From the table we see e.g. that
crystallographic automorphisms in d = 6 can only exist for N =2,3,4,5,6,7, 8,9,
10, 12, 14, 15, 18, 20, 24, 30. Indeed this list agrees with the one given e.g. in [1].

All eigenvalues appear with their complex conjugate so that we can define a
complex coordinate system

1
4= ﬁ (x; +ixyy), 1=1,2,3 (10)

on which 6 acts holomorphically. The condition for obtaining a supersymmetric
orbifold can be formulated in different ways. We follow the geometric approach
[11] and require invariance of the holomorphic (3, 0) form of the complex torus ([18]
11.6)

w=dz Ndz, Ndz;,

which implies a; + a, + a; = Omod N. If we furthermore restrict our attention to
models which have exactly (N = 1)-supersymmetry, i.e. no fixtorus w.r.t. the lattice
automorphism 6 in the first twisted sector), we get the following 9 sets of allowed
exponents:

Table 2. Exponents a; of Z, twists leaving N = 1 supersymmetry

Twist XF Twist XF Twist XF
Zy:3(,1,-2) 27 z{:11,2,-3) 12 Z{: 3(1,3-4) 8
Z3:5(L1,=2) 16 Z;:5(1,2,-3) 7 Zypih(,-5,4) 3
26:%(1,17—2) 3 Zgzﬁ(l,—3,2) 4 Z{221—12(1,5,—6) 4

One approach to find Z; orbifolds, which was carried out in [11], is to start with
a lattice and consider the compatible Z,, automorphisms. In contrast we will start
with the twist matrix and then specify the lattice metric as solution to (5). In virtue
of the equivalence relation Definition 2 the action of an irreducible ° block of a Z

° In the following irreducibility is to be understood over Z
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twist can be brought into the canonical form

0 . 0y
10 .0 v
0 1 v,

where v, = =1 such that |det(§)| = 1. Note that the form of (11) alone does not
imply that the block is not further reducible. We calculate the N power of (11)
according to our list of possible orders in the given dimension and search for integer
¥ such that this is the unit matrix. The corresponding twist matrices can easily be
found by means of a computer program. It turns out that |v,| < 3. In the following
table we list only the vectors ¥, which specify irreducible twist matrices relevant for
the N = 1 supersymmetric Z y-orbifolds !!:

Table 3. Irreducible building blocks for Z, twists relevant for N = 1 supersym-
metry

d=1 d=2 d=3 d=4

Z":(=1) Z9:(=1,-1) ZP:(~1,-1,-1) Z":(~1,0,-1,0)
2 3 4 3
7P :(~1,0) Z&:(~1,0,0) z{":(~1,0,0,0)
Z2:(-1,1) Z$):(~1,0,1,0)

Z9:(~1,-1,-1,-1,-1)  Z®:(-1,-1,~-1,—1,-1,-1)
78 :(~1,-1,0,0,~1) Z®:(~1,0,-1,0,—1,0)
Z9:(~1,-1,0,1,0,—1)

Now we combine these irreducible blocks to (6 x 6) twist matrices giving rise to
(N = 1) supersymmetric orbifolds.

To make contact with the classification of Coxeter orbifolds in [11, 14], we use the
equivalence relation in Definition 2 to rewrite our twists as Coxeter automorphisms,
if possible. A Weyl reflection !2 is a reflection on the hyperplane perpendicular to a
simple root

(z,e,)
SE)=z—-2—""%e,.
T e
A Coxeter automorphism c in a Lie algebra lattice is defined by successive Weyl
reflections w.r.t. all simple roots ¢ = S| - ... - S, Automorphisms are called
outer if they cannot be generated by Weyl reflections. They are generated by

transpositions of roots which are symmetries of the Dynkin diagram. Generalised

10 In this form x  is simply given by 1 — 3" v,

3
11t also turned out that the cases with v; = +1 exactly correspond to fixed tori
12 For the following definitions concerning Lie algebras [23] is the standard reference
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Coxeter automorphisms can be obtained by combining Weyl reflections with outer
automorphisms. We denote a transposition which exchange the roots ¢ < j by P; .
In [11] generalised Coxeter automorphisms were only considered if they act in one
semisimple factor, e.g. in the lattice A, x D, the automorphism S,.5,5; P Ps5 [cyclic
permutation of the roots (3,5, 6)].

There is no reason for this restriction and in fact the full classification involves
transpositions between the semisimple factors, e.g. in A; x A, the automorphism
519,83 P, Pys Pyy. As the result 13 of our classification we have the following

Theorem 1. There exist 18 inequivalent (M = 1) supersymmetric string theories on
symmetric Zy; orbifolds of (2,2)-type without discrete background all having at least
one representative in the class of generalised Coxeter orbifolds. More precisely we
have 15 ordinary Coxeter orbifolds realized on the lattices

Ay, x Ay X Ay, A x A x B, x By, A X A3 X By, A x Aj,
A, x Gy X Gy, A x A X Ay X Gy, A, X Dy, A x Ag,
Ag, B, X By, A X A| X By, A, x Ds,
A, x Fy, Eg, D, x Fy.

and 3 involving outer automorphsims, namely A, x A, x A, x A, with S;5,535, P3¢ Pys,
G, x Ay x A, with §,5,555, P34 P,s and finally A5 x A; with S,5,5;PcPysPs,.

This result is to be compared with the result of [11], which was the basis for further
investigations [14, 16, 22]. Here the authors give in Table 1 of their classification
theorem 13 examples. They suggest that only 9 are inequivalent, namely the one
which have different twist eigenvalues (cf. Table 2 above). Three pairs of orbifolds
which are identified in [11], are inequivalent in the sense of Definition 2. In fact they
have different hodge numbers, as we will explain below. We agree on the other hand
with the identification of the models A, x DE I (with automorphism S,S,S; Ps¢P;s)
and A, x F, (with Coxeter automorphism) in Table 1 of [11]. Finally we have found
six new examples which are inequivalent to the ones appearing in [11], three of them
as mentioned involve outer automorphisms between semi-simple factors.

3. Partition Functions

In this section we discuss the construction of one loop partition functions, which
allows for a survey of all string states. For the Eg x E; heterotic string before

13 The relevant combinations of the twist matrices specified in Table 3 and the Hodge numbers for
the 18 models can be found in Table 5
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compactification it is given by [19]

27 = 1(@2rIm 7‘1)6”4 [03(T) + 0%27) + 8 (m)I?
8 In(n)| n°°(7)
. [03) — 04T) — 037)]
n*(7) ’
where the first factor refers to ten dimensional Minkowski space in light cone gauge,
the part holomorphic in the complex world sheet parameter 7 describes the gauge

part of the left handed bosonic string and the antiholomorphic part account for the
right handed superfermions. We introduced Dedekind’s n-function

(12)

nr) =g [0 - (13)
n=1
and Jacobi’s O-functions
9 l:a:| (r) = Z q% (n+a)2627ri(n+a)ﬁ (14)
ﬂ neEZ

with ¢ = 2™, In the context of toroidal orbifolds each part can be realized as
free world sheet bosons. Thus the #-functions will be regarded as the instanton part
whereas the n-functions describe quantum oscillations. Factors like (27 Im7) arise
after integrating out continuous momentum states. After compactifying on 7 this
integration transmutes to a sum over discrete momenta p* characterized by elements of
the dual torus lattice A*. Modular invariance requires the appearance of an additional
sum over elements of A itself interpreted as winding states w*. These two lattices can
be combined to define an even self-dual lattice A, with Lorentzian signature [17]

(+7 +’ +a +) +7 +a T Ty Ty T s T _7)

and elements P = (P}, Pp), defined in (2).
Again we used the freedom of turning on an antisymmetric background field b,,

which corresponds to considering all even, self-dual lattices in 6 + 6 dimensions 4.
The partition function now reads

Py 5 Py _Pr 35 P
827 Im 7) |n(7)|16
v [63(T) + 03(7) + 03 (1)]* [03(7) — 64(7) — 63(7)]
n'e(7) n*(7) '

The orbifold projection can be performed yielding the untwisted partition function

4(1,7) =

5)

N-1 —1
> Zygm(r =5 3 Tronghogho, (16)
n=0 n=0

14 Similarly, it is possible to add the Eg x Fy gauge lattice as well and to allow for the most general
lattice in 22+ 6 dimensions of even and self-dual type, what in turn corresponds to turning on Wilson
lines
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where the trace is to be taken over all states of the torus theory '3 with conformal
dimensions L, and L,. The projection is such that oscillator states in the quantum
part are multiplied by phases oo = €2™/N and powers thereof, whereas instantons are
organized in orbit sums with definite twist eigenvalues. In other words, orbit sums
are linear combinations of states of toroidal Hilbert space diagonalizing the twist. We
conclude that Z, ; is simply given by 1/N times the torus function and thus clearly
contains the full instanton part. If the defining twist matrix 6 fixes the orgigin of the
lattice only, as is the case for all our models, Z(l’g) will not contain any instantons
from the six dimensional part, since the phases of the orbits add up to zero. Clearly,
the same is true for all Z; ,n), where n is not a divisor of N. In all other cases
the appearance of an instanton sum precisely depends on the question whether the
corresponding power of § leaves fixed tori or not. Namely, if it does give rise to
fixed directions the corresponding instantons are (like the origin) not organized in
orbit sums. It is this fact where our disagreement with the literature stems from. For
instance, in formulae (3.3a) and (3.3c¢) of reference [14] there is no such sum. In these
formulae there appear correctly the instanton sums coming from the gauge part. The
remark to make is simply that instanton sums can appear in parts of Z 4n, even if
the lattice is not invariant under 6 itself.

The twisted sectors of the orbifold can be obtained by successive S and T
transformations '°, which then ensure one loop modular invariance by construction
{20]. For symmetric Z,-orbifolds these transformations close after having created
N(N — 1) new terms labeled by Z(em,on)’ with 1 <m < N and 0 < n < N. For
these world sheet modular transformations we will need the identities

9 [g] (—1/7) = 2B/ “izrp [_ﬂa] ), (17)
«Q __ ima(l—a) Q
e[ﬁ]('r+1)—e e{a—{—ﬂ—%](ﬁ' (18)

The question arises whether the invariant lattice we had argued for in the last
paragraph has implications on the spectrum of twisted states and in particular on the
generalized GSO-projection established in [6]. Concerning massive states the answer
is certainly yes, since the lattice dual to the invariant lattice contributes. Massless
states are never built up by states of this dual lattice, so how can the number of
massless matter multiplets depend on it? The important point is that the invariant
lattice lowers the degeneracy factors of Zgm gn) iff its volume differs from one.
As a corollary of our classification in the proceeding section we can state that for
any configuration of twist eigenvalues there exist a model where the volume of the
invariant lattice is one. In the remaining 9 cases h, , is reduced.

We don’t need to worry whether we really obtain a sensible string theory after
dividing the degeneracy factors by the volume of the invariant sublattice, i.e. whether
we get an integer number of states. As shown in [24,25] this is guaranteed due to
the fact that A, appearing in (15) is even and self-dual.

In order to illustrate all this, we now discuss as an example the Z, case in more
detail. In particular, we compare models 2 and 4 in our list. These are also the most
explicit ones of reference [22], where for the first time such a comparative study of
different lattices in a somewhat different context was undertaken.

15 not just the ones subject to physical conditions
OSir — —1/r:T:ir—71+1
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First we give the partition functions. In order to keep the formulae readable we will
now restrict ourselves to the twisted bosons of internal space. IL.e., the holomorphic
gauge and antiholomorphic superfermionic parts as well as uncompactified space time
dimensions are disregarded and can be found in [14].

S qPi /2 qP};: /2

i PeAn i In(m)|®
Zm — nt — 16
(1,1 12 ’ 1,0) 2
()] 2 [12],]172
3/4 0
> i g2
. PeAL 6
(2 = 16 = 7 Z(“f[e3 16 il 2
L [1/2 o 1/2 0 1/2
0 1/4 0
_ 6 6
Egtl) — 16 . ITI(T)I —s (lgle) 16 _ ln(?—)l 5
h1/2 1/2_ _3/4_ 0
6 6
Zm[gz) 16 . 177(7')| —, th03) — 16 - '77(7—)' 5
2 |34 ] O o [3/4] 4]0
L O 1/2] L[1/4]7 |0
P} /25P%/2
> g L] )
. 1yk .
7 1 =162 . zm = 16— 110
’ 0 ©¢%.0) 0 1727 |7
vol Ay |62 02 0
N 1/2 1/4 0
Z m(Pi—P}%)ng/zq-Pﬁ/z
) Pe(Ap)* . 6
g2y =16 . Lz =16 1) ;
(62,62) (62,63)
vol AL (62 [0} 92 0 P 1/2
NI Lo 13/4 0
6 6
2y =16 7 =16 s
9?2 0 6?2
172 _1/2] [3/4] 9[0_
. 6 . 6
Z(‘gg’g?.) — 16 - ln_(T)l- 5, (1;[3793) — 16 - ‘77(7_')‘ — .
L 0| [1/2 11/4]" | 0]

We denoted the invariant part of the self-dual lattice by Ak,. The numerical factors in
the untwisted sector arise when expressing infinite products in terms of §-functions.
They carry over to the twisted parts, but they are implicitly lowered whenever a

1/2

function ¢ [ 3 } appears. In our case the actual degeneracy factor in Z4 4, and

Z g2 g3y are thus reduced to 4. Recalling that the whole partition function is multiplied
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by the inverse twist order this yields projectors for massless twisted states of the form
(compare [14])

% (16 + 164, + 1642 + 16 A}), (19)
10 yn, 1% a2 an (20)
4\ vol Ay %7 Vol AL T 0 )

1

7 16+ 1645 + 16A%; + 164), 21

where A = +1 for generations and antignerations, respectively. As mentioned earlier
the only difference to the corresponding projector in [14] is the appearance of the
volume factors. It differs from one exactly in the cases where Ay does not factorize
trivially. For model 2 it is just given by a two-dimensional torus lattice and its
dual. Being self-dual such a lattice transforms into itself under the Poisson resumma-
tion I connected with the S transformation and we conclude vol A% = 1. Expressed
in more formal terms for the torus lattice we have the relation

(AN = @ahH*. (22)

The same is true for the first model of each Z,(Z);) in Table (5), respectively. The

corresponding values h, ;) and h ,, are the ones stated in the literature. In contrast,

the other cases no longer satisfy (22) as will now be illustrated with help of model 4.
The Z,-twist matrix and its dual in an SU(4)-lattice are

0 0 -1 -1 -1 -1
6=11 0 —-1|, 6= 1 0 o0]. (23)
0 1 -1 0 1 0

In solving the equations

_12
#Pn=n, 67 lm=m, (24)
we find the fixed directions
(nl)oanl)y (mh—ml;ml)' (25)

To find the volume factor of Ay in this case, we consider one of the two scalar
products in (3) or (4). It is convenient to take the latter one, since it does not depend
on the background parameters. We just compute the quantity 2m7”n for the sublattices
defined in (25) and normalize the result w.r.t. to a (self-dual) circle theory,

vol A% = 4mfnl

) 26

2mT'n, (26)
Since model 4 is a product of two SU(4)-lattices, we finally find a volume factor
of four and we can read off from the projector in (20), that four generations and no

17 The Poisson resummation formula reads
3 expl-n(u’ + )T A(w + e) + 2migT (w + €)]
wEA
1

- _ TA—I ) . T
ol AV pezAj*exp[ m(p + ¢) (p+ ¢) — 2miel'p],

where e and ¢ are constant vectors and A is an invertible matrix
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antigeneration survive in the double twisted sector of this model. Comparing with
model 2, where ten generations and six antigenerations survive the projection, we
make two observations which in fact turn out to be general rules. First, the number of
chiral generations is unchanged when considering different lattices but the same twist
eigenvalues. This one indeed expects, since this number can be computed by a formula
conjectured by Dixon, Harvey, Vafa, and Witten [1] and proved by Markushevich,
Olshanetsky, and Perelomov [11], which only uses twist eigenvalues. Second, the
total number of generations is lowered when one considers cases where formula (22)

is no longer fulfilled. For the projector of massive states the phase factor e2™PL—Pk
in Z(i‘g“z‘ 02) has to be taken into account in case of non-trivial instanton contributions.

The list of the basic degeneracy factors for all twist eigenvalue configurations can
be found in [16]. Here, we give the volume factors V for all our models, where the

subscript denotes the sector in which the fixed torus appears.

Table 4. Volume factors V; for twist
sectors with fixed tori

Model Volume factors
1 _

2 V,=1

3 V,=2

4 V,=4

5 ;=1

6 ;=4

7 V=1, V; =
8 V=1 V;=4
9 V,=3 V=1
10 V,=3, V3=
11 -

12 V,=1

13 V,=4

14 V,=1V,=1
15 V,=2,V,=
16 V=1, Vg=
17 V=4, V=4
18 V,=1,V,=1, V=1

For the resulting generation numbers we refer to Table 5.

4. Geometrical Resolution of the Orbifold Singularities

In this section we will calculate the Hodge numbers for the Calabi-Yau manifold
which is constructed by resolving the orbifold singularities. As it was conjectured

in [1] there exists a resolution 7'/G of the toroidal orbifold T'/G to a Calabi-Yau
manifold, if the group action leave the holomorphic three form of the torus invariant.
The prediction for the Euler number was extracted from the partition function [1] and
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stated in form of the famous orbifold formula

— 1

XT/C) = & > Xgns @7)
[g,h]=0

Table 5. Hodge numbers of the 18 symmetric Z, -orbifolds with (2,2) world sheet supersymmetry

and vanishing discrete b, -field. The corresponding twist eigenvalues are given in Table 2. The

twist matrix is specified by the irreducible blocks which appear in Table 3. We also specify the

Lie-algebra lattice where an equivalent twist can be realised as generalised Coxeter automorphism.
If no automorphism is explicitly specified the twist is realized as ordinary Coxeter twist [19]

Case Twist Lattice R h1:2 X
1 2z 29,29, z9) Ay x Ay x Ay 36 9 ()} 72
2z, (280,280, 2P, Zy A} X A; X By X B, 31 (5) 7 ) 48
3z 2,2z, z9) A X Ay X B, 27 (5) 3 ) 48
4 z, z9, 29 Ay X A, 25 (5) 1 Q) 48
5 Z 22,22, z2) Ay, X Gy X G, 29 (5 5 (0) 48
6 Z Z%, 7 Gy x Ay X Ay 25 (5) 1 © 48

51555354 P36 Pys
7 Z (2P, zN, 2P, Z2) A X Ay X Ay X G 35 (3) 1 Q) 48
8 Zzt 2z, 29,z Ay, x D, 29 (3) 5 () 48
9z Z0, 20, 7 A XA X x4 g () 7 1) 48
515,535, P36 Pys

10 7§ 2P,z A, x As 25 () 1 48

1z (2 Ag 24 (3) 0 (0 48

12 Z 22,z B, X B, 27 (3) 3 (0) 48

13z, (29 Az x A 24 3 0 © 48

518,83 P35 P Fys

14z @, Zz2, Z) B, x D, 31 (3) 7 () 48

15 7 (280,29 A; x Ds 27 (3 3 () 48

16 2z, 22, 2%) A, x F, 29 (3) 5 (0) 48

17 27y, Z9) B 25 (3) 1 (0) 48

18z, 2P, 2z, Z3) D, x F, 31 (3) 7 () 48

where the sum is taken over all commuting elements of the group and x,, =
x(Fix(g) N Fix(h)) is the Euler number of the intersection of the fixed sets under
g and h, respectively. For the special case of Z, actions the corresponding Calabi-
Yau spaces were constructed explicitly [11, 12] confirming (27).

4.1. The Fixed Sets

In our examples we have only fixed points P (x(P) = 1) and fixed tori T’ (x(1") = 0).
Obviously x,, = Xp,- The application of (27) is simplified by the fact that
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x(Fix(g)) C x(Fix(h)) if 3n € Z with g™ = h. Because (1) = O the precise
number of fixed tori in the higher twisted sectors does not affect the Euler number.
Using the numbers of fixed points which depend only on the eigenvalues of the twist
matrix (cf. Sect. 2, Table 2) we see that Y = 72 in the Z; case and x = 48 in all
other cases. .

In contrast to the Euler number the numbers of independent (1, 1)-forms and
(1,2)-forms in Hodge cohomology depend on the fixed tori and their intersection
pattern and hence on the lattice. Let us illustrate this point with help of a series

of examples, namely three Z{ models with twist exponents é(1,2, 3). As the first
model we consider case 7 of Table 5 which is equivalent to the Coxeter twist in the
lattice A; x A, x A, x G,. An explicit twist matrix can be obtained by combining the

irreducible blocks (Zél), Zél), Zéz) , Zgz)) specified by the vectors in Table 3. This matrix
has the following fixed sets in the first, second and third twist sector respectively:
6: 12 fixed points: (v;,0,0,w;), 1 =1,2,3,4; j =1,2,3
1 1 11
’U‘ = (070)5 ’02 = (E)O)’ 1)3 = (O) 5)7 V4 = (53 E);
12 2 1
wy =(0,0), w, = (§> 5)’ w3 = (§> 3)
62: 9 fixed tori: invariant subspace: n; = (1,0,0,0,0,0), n, = (0,1,0,0,0,0);
[ml =, 07 0) 0,0,0), my, = (07 1,0,0,0, 0]
base points: (0,0, v w;), 4,5 =1,2,3
11 2 2
v =(0,0), v, = (3,3). v3= (5, 5):
12 21
wl = (0,0), w2 = (3, g), ’l,U3 = (3-, 5)
63: 16 fixed tori:  invariant subspace: n, =(0,0,1,0,0,0), n, = (0,0,0,1,0,0);
[ml = (07 07 17 0’ 07 0)9 my, = (07 07 O, 17 07 0)]
base points: (v;,0,0, V), 4,] = 1,2,3,4
1 1 1
vl = (070)a 'U2 = (5,0): /U3 = (0; E)y 'U4 = (Ea

)

The vectors n,; span an invariant subspace of the matrix §° from the given base
points. These data define the corresponding fixerd tori. The vectors m, span the

N -

invariant subspace of (87 ')*: their significance is explained below. Note that all
base points given, lie in fact on different tori, as their only non-vanishing entries are
perpendicular to the n,. The schematic view of the intersection pattern can be found
in Fig. 1. Let us compare this situation with the orbifold in case 8, which may be
defined by the Coxeter twist in the lattice 4, x D,,

0 -1 00 0 0
1 =1 00 0 O
0 00 1 -1 -1
b= 0 011 -1 -1 (28)
0 001 -1 0
0 001 0 -1

and has the following fixed sets:
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¢: 12 fixed points: (v;,w,), t=1,2,3; j=1,2,3,4

12 21
v, =(0,0), v, = (3,3), 13 = (5,3)
=(0,0,0,0), w, = (0,0, 3,3),
’U.)3=(§,0,0,§), w4=( 0,2,0)
62: 3 fixed tori: invariant subspace: n, = (0,0,1,0,0,1), n, = (0,0, 1,0, 1,0);

[ml = (OaOv 1’ —170, 1)’ my = (070’ la _la 1a0)]
base points: (v,,0,0,0,0),7=1,2,3

v = 0,0, v, = (3,3), v3= (5, 3)-
63: 16 fixed tori:  invariant subspace: n, = (1,0,0,0,0,0), n, = (0,1,0,0,0,0);
[m, =(1,0,0,0,0,0), (0,1,0,0,0,0)]
base points: (0,0,v;,v;), ¢,j =1,2,3,4

0= 00,5 = (3,0), 5= (0,1), v = (1,1).

This model was investigated in detail in [13], however here the author claims that
there are 9 instead of 3 fixed tori in the second twisted sector and the conclusion about
the massless spectrum is therefore not completely correct. The reason for the difference
seems to be due to an improper use of the Lefschetz Fixed Point Theorem. In the second
twist sector the exponents of 03 are %(1, 2,0), so that the coordinate plane I spanned by
23 (comp. eq. 10), is fixed. In order to calculate the multiplicity of the corresponding
fixed tori, the authors of [11, 13] apply now the Lefschetz Fixed Point Theorem (7) to
the action of 62 on the subspace .J, spanned by the first and second coordinate plane.
The result is np = det(1 — %)]; = (1 — exp[27rz/3])2 1 — exp[4mi/3])* = 9. This is
inadequate, because the splitting of R® in I and J does not correspond to a splitting of
the lattice A into sublattices on which 67 acts as an automorphism. Let us pass to the
lattice basis and denote the sublattice fixed w.r.t. to the lattice automorphism 62 by
I. The Lefschetz Point Theorem could be utilized in the above sense, if there would
be a sublattice J invariant under 62, which is complementary to I, i.e. A =1 @ J.
This is not the case because 62 has no block structure w.r.t. I.

In the third twisted sector #° has block structure w.r.t. its invariant sublattice I so
the reasoning of the authors [11, 13] yields the correct result. Similarly it applies to
the second and third twisted sector of Example 7.

Instead of calculating the fixed sets explicitly the Fixed Point Theorem can be
modified by taking into account volume factors in the Poisson resummation formula
which reduces the multiplicity of the twisted states as it was explained in the previous
section. Let @ be the action of the twist in the Narain lattice labeled by (n,m) and
I the invariance subspace in this lattice. The number of connected fixed sets is then

given by [25]
_ [det’d—0)
"E = Vol T (29)

where the evaluation of det’ is defined by taking the product over the nonzero
eigenvalues only. The volume of the invariant lattice is defined as the volume of
its fundamental parallelepiped w.r.t. the Narain scalar product (4). In order to cover
also the case of fixed points we define Vol of any number of discrete points to be
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1. In the cases at hand we have

6 0
o-]0 0]

Let m; be the vectors which span the sublattice invariant under 67", The formula
(29) simplifies to
_det(1—-6)

_ detd -0 30
det'(n{'m;) (30)

g

e.g. for the #? sector of the case above we get indeed the reduction factor
det’(n;fpmj) = 3. For the other volume factors see Table 4.

As the last example in our series we consider the case 10 which can be realised as
the Coxeter twist in A, x As. Our canonical twist (23", Z&) has the following fixed
sets (cf. Fig. 1):

0. 12 fixed points: W w;), e=1,2j= 1,2,3,4,5,6

v =(0), v, = (%)
w; = (0,0,0,0,0), w, = ¢ (1,2,3,4,5), wy = £ (2,4,0,2,4),
w, = 1(3,0,3,0,3), ws = 1 (4,2,0,4,2), ws = 1 (5,4,3,2,1).
6% 3 fixed tori: invariant subspace: n, = (0,1,0,1,0,1), n, = (1,0,0,0,0,0,);
[m, = (0,1,~1,1,—1,1), m, = (1,0,0,0,0,0)]
base points: (0,0,v,), ¢,7 =1,2,3

0= 00005~ (b330, = (1 132),
63: 4 fixed tori: invariant subspace: n; = (0,1,0,0,1,0), n, = (0,0,1,0,0, 1);
[m; =(0,1,0,-1,1,0), my = (0,0,1,—-1,0, 1)]
base points: (v;,w,), ¢,j = 1,2

vy =(0), v, = (%)’ w; = (0,0,0,0,0),

Wy = (%a%a%a%a%))

The fixed sets were e.g. calculated in the appendix of [22], however here the
conclusion was again that there are 9 tori in the second twisted sector and 16 fixed
tori in the third twisted sector. The authors have correctly calculated the vectors n;
of the invariant lattice, but as one can check, from the 9(16) base points they give,
groups of 3(4) lie on the same torus, respectively.

4.2. Description of the Desingularisations

Let us now count the numbers of (1, 1)-form introduced by the resolutions of the fixed
points and the fixed tori singularities. By Poincaré duality it is equivalent to count
the irreducible components of the exceptional divisors, which are introduced by the
resolution process ¥, Below we review the necessary facts about the resolutions for
the kind of singularities we encounter.

18 See e.g. [18] as a general reference for these concepts of algebraic geometry
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Fig. 1. Schematic configuration of the orbifold singularities. Fixed point singularities are depicted
by dots, fixed torus singularities by lines. We indicate the maximal order of the group element under
which the sets stay fix in parentheses. The numbers on the sets indicates their multiplicity on the

torus
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In the case of fixed tori we have singularities due to the action of a discrete Z,
subgroup of G on the C? fibres of the bundle normal to the fixed tori ' T2. This
action can locally always be recasted in the form

(21, 2y) = (expz—z—qz,,expz—zzzz). 31D

The singularity of C>/Z, at the origin can be described by the constraint
y* = a2k (32)

in C3, where in our cases we have always ¢ = k — 1. The resolution of this
type of singularity, known as the rational double point of type A,_,, is given
[27] by a Hirzebruch-Jung sphere tree. The number of spheres and their self
intersection numbers —b, in the resolved manifold can be obtained by an
Euclidean algorithm?® [27]. In the cases at hand?' one gets a sequence of
k — 1 projective spaces P, V...V IP,_, joined in one point with self intersection
numbers P; NP, = —2. The resolution replaces the fibers in the normal bundle
over a generic point on the fixed torus with a sphere tree. It introduces an excep-
tional divisor of the form T' x (P; V...V P,_,). The new h;; forms correspond
to the number of irreducible components of these exceptional divisors, which is
k—1.

In the case of fixed points the singularities are locally of the form C?/G. If G
is abelian as in our examples foric geometry is a suitable framework to describe
C" /@ singularities and their resolutions. In this sense it allows for a generalisation of
the above treatment of the A, _; singularities to higher dimensions. In order to avoid
lengthy repetitions we refer to the book of Oda [29] and the appendix of Markushevich
in [11] for the precise definitions and proofs of the properties of convex rational
polyhedral cones, fans and toric varieties.

Let N ~ Z" be a lattice in an R vector space V/, which is the completion of N
over R,ie. V=N @ R, and n,,...,n, elements of N. A strongly convex rational

Z

polyhedral cone with apex at the origin O is defined as
i =Rin +...+Rin, = {an, +... + a,n o, e R}, (33)

where 7 N (=7) = O. Let nV, ..., n®) be a set of generators of the semi group
S, = (t NN), i.e. every lattice site in (7N V) can be reached by a linear combination

19 The resolution of singularities along rational fixed curves was discussed in the context of global
actions of finite automorphism on Calabi-Yau spaces defined as complete intersections in (weighted)
projective spaces in [26]

20 The b, correspond to a representation of k/q as a continued fraction of the following form:

k 1

1
a by—...— —
bS
21 The finite subgroups G of SU(2) fall into an ADFE classification. For this group the intersection
patterns of the spheres in the resolutions of the singularities C2/G correspond to the Dynkin diagrams,

where points represent P’s and links represent intersections, i.e. the intersection matrix equals the
negative Cartan matrix [28]
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of the n with positive integer coefficients and let

ayn®+...+ayn™ =0,
...... (34)
agn + ... +ayn™ =0

be a maximal set of linear relations among the n("), ..., n™ over Z. We can define
from the above data an affine toric variety XV"N>7) as follows:

XVND s =Ly, zn) €CNE(z), .. 2y) =0,i=1,...,t}, (35

where the Fi(z,...,2y) = 0 are monomial equations of the form
zf“m..-z}l\;N:l. (36)
Example 1. N ~ 7" is a lattice in R” spanned by n,, i = 1,...,r, 7 =

Riny + ... + R{n, = (RY)". Then we have no relation of the type (34) for the
generators of the semi-group so X®" N7 = C.

Example 2. Let N ~ Z? be a lattice and 7 = Ri(kn, — ny) + Rin,. We
have n¥ = n;, n® = n,, and n® = (kn; — n,) (compare Fig. 2a)), so that
X® N1 = {(z,y,2) € C}|z* = yz} is the rational double point of type A,_|,
encountered above. More generally [11,29]).

Example 3. Let G be a finite abelian group acting on C". Elements ¢ € G of

27 27
order £ map (2;,...,2,) — (exp K—?)al]zl,...,exp [(—Z—z)ar]zr).Wehave

C"/G = X®" N1 with 7 = RT)" and the lattice is defined as N = () N, ,» Where
geG
the lattice N, is spanned by the minimal set of vectors n = (ny, ... ,n,) With

Ny + ...+ ngya, =0modk.

The constructive power of toric geometry lies in the fact that one can glue together
affine toric varieties in a natural way. For this it is convenient to pass first to the dual
cone. Denote by W = V'V the dual of V and by M the dual lattice to N w.r.t. the
bilinear form

(V:MxN—1Z. 37)
The dual cone o = 7V is defined by
o{zx e Wl|{z,y) >0,Yy € 7}. (38)
Defining
Xo=Xwmey = xND 39)

has the advantage that X ., = X_ N X_,. This property, which does not hold for
X7 = XVN7) allows to visualize the gluing of toric varieties by the gluing of
cones. Faces ¢ of a cone o are subsets which defined via an element of the dual cone
no,

¢: = {y € ol(y,ny) = 0}. (40)

Face of strongly convex rational cones are strongly convex rational cones. Fans A
are made by sticking together cones o such that
1. Every face of any o is in A.



Generation Number in Orbifold Compactifications 599

2. Every intersection o N ¢’ is a face of o and o’.

Let now X, = XM and X/ = XV:¥7) be affine varieties associated to
cones 0,0’ € Aand nV ... n@M) O n/™) generators of the semi-groups .7
and .7, respectively. The transition functions between affine coordinates z; and z; are
defined by the maximal set of linear relations j = 1, ..., s between these generators

O+ Ly ™+ 0D 1 ™ =0,

over Z, as

1 l 10 Wy
lej'...'ZnN]ZIU'...'ZNJ=1. 41)

Using this transition functions one can associate to a fan A a general toric variety
XA = U X,.

oc€EA
Example 4. Let M ~ 72 be a lattice spanned by R2. The fan A made by sticking
together o, = Rfm,; + Rim,, 0, = Rf(=m;,my) + Rfm,, and o5 = Rf (—m, —
my) + Rim, defines X, = P? The affine planes ({z; # 0} in homogeneous
coordinates) correspond to the X .

Note that the fan above covers the whole two plane. As shown e.g. in Theorem
1.11 of [29] we have in general that X , is compact if and only if A covers W.
Crucial for the resolution of singularities is the following

Theorem 1. The toric variety X , associated to a fan A in M ~ Z" is nonsingular
if and only if each 0 € A is nonsingular in the following sense: 3 a 7 basis
{my,...,m,} of M such that ¢ = R{m, + ... + R{m,. Such cones are called
basic cones.

A proof can be found in [29]. If we consider the lattice M = Z? and the cone
o = Rim; + Ri(km, +m,) with N = MY = M and 7 = 0" as in Example 2,
one sees that one has to subdivide o into a fan of k basic cones in order to meet
the requirement of Theorem 1. The k£ — 1 inner faces spanned by «; by which this is
achieved correpond to the k — 1 exceptional P curves necessary to resolve the 4, _;
singularity, see Fig. 2b) below.

We are interested in the resolutions of singularities of type C*/Z,, which have
trivial canonical bundle. From this requirement we get the following restriction [11].

[} < o
o o o
o
o o o °
ny = II(")
ny = nt
< ~ o o °
\ mo
ntd
a The cone 7 b Subdivision of o

Fig. 2. Resolution of the A,_, rational double point (k = 3)
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Theorem 2. Let Xy, , be a toric variety. Let o, i = 1,...,7 a subdivision of o in
the sense of Theorem' 1. The canonical bundle of X A= X wor, is trivial if and

2=1

only if the generators of 5/;2 lie on a hyperplane Hy in W.

Moreover the additional lattice vectors «,, which are needed to define the
subdivision, can be associated in a one to one way to the compact divisors on X 4.
Now consider the Z, actions whose exponents, see Table 2, are of the form

1
% (1,a,,a3) with
14+a,+a; =0modk. (42)

In accordance with Example 3 we define the lattices N, M by

o o 1/,

1
- 00
k
M= <m1,m2,m3>Z= <?Jk% 1 O> . (43)
%3
% 01 z
The cone o = (ey, e,, e3>]R6r is spanned by orthonormal vectors as:
€ ’
Hy
my
€ =Ty

Due to (42) the lattice vector m; =  lies indeed on the hyperplane H ;. The
other lattice vectors o (ozg1 ), a,(f), a(3)) which define the resolution according to

Theorem 1 can be easﬂy obtained as set of three tuples:

{k(a?), (2) la(3)l)

3
= (jmodk, jaymodk, jaymodk) | Y af) =k, j=1,....k - 1} . (44)
i=1

We have drawn in Fig. 3 the trace of a resolving fan X , in the hyperplane Hp
for the 9 different types of fixed point singularities. To obtain a Kéhlerian manifold
we have also to make sure that the corresponding resolutions are projective algebraic.
Indeed the necessary conditions given in Sect. I1.2.3 of [29] are fulfilled.

The dots on the edges and in the interior of the triangles (e, e,, e;) correspond
to o; and hence to exceptional divisors of X 4. In the case of non-prime k the fixed
points of the Z,, actions lie always on a fixed torus. Note that the exceptional divisors

associated to the points on the edges of the triangle coincide with the exceptional
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SN

Zy: 1 (1,1,1) Z,:1(1,1,2) Zg:1(1,1,4)
Z;:1(1,2,3) Z7:3(1,2,4) Zg:3(1,5,8)
Z§:4(1,3,4) Zy:15(1,7,4) Z{,:5(1,5,6)

Fig. 3. Desingularisation of the nine types of Z,; singular points

divisors present over the generic points of the fixed torus. From Fig. 1 and 3 we
can easily count the exceptional divisors. E.g. consider the Z{, case 18.), here we
have two tori fixed under a group action of order three, each gives rise to a divisor
T x (PVP),ie. we get 4 (1, 1)-forms from that resolution. The resolutions of three
fixed tori of order two and one of order six add 3 and 5 (1, 1)-forms, respectively.
The four fixed points of order four on the Z, fixed torus are of type %(l, 1,2) and
hence introduce 4 new exceptional divisors (cf. Fig. 3). Likewise the resolution of the
four Z}, fixed points on the Z torus give rise to 12 exceptional divisors according
to the inner points in the trace of the last fan in Fig. 3.

A basis for the 9 (1, 1)-forms of the complex torus is given by dzj NdZ, 4,5 =1,2,3
([18], 11.6). From this we see that three (1, 1)-forms are invariant if all twist exponents
are different. If two (three) twist exponents are equal we have five (nine) invariant
(1, 1)-forms. Adding in the above example the three invariant (1, 1)-forms from the
torus we arrive h; | = 31 the number given in Table 5. Similarly the reader might use
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Fig. 2 and 3 to count all (1, 1)-forms of all other Coxeter orbifolds. As x = 2(x;—X»;)
for Calabi-Yau manifolds h,, follows. Alternatively the additional (1,2)-forms can
be obtained using the formulas for the relations between the topological invariants

for the singular space T'/G, the singular locus and the resolved manifold T'/G stated
in [30]. Note that in the case of non-prime & these formulas have to be applied in a
successive resolution process with one step for each factor subgroup. Concerning the
Hodge numbers we disagree in eight of the twelve cases given in Table 1 of [11]. We
agree with the Hodge numbers given in [12] for the prime cases Z; and Z,.

While the location of the o, is fixed by the requirements of Theorem 1 and 2,
there is some freedom in the triangulation which lead to the actual choice of the
o, and hence the resolving space. Namely, whenever there is a quadruple of points
Q- .-, in general position, the diagonal of the quadrangle can be flipped by an
elementary transformation.

Given a triangulation the triple intersection numbers of the irreducible hypersur-
faces can be calculated [11]. Especially the intersection of three exceptional divisors
can be obtained by a simple algebraic prescription [31]. Note that these numbers
correspond to the Yukawa couplings in the large radius limit. They can be used to
check the conformal field theory results for these couplings. The ambiguity in the
triangulation process leads to different couplings. This ambiguity seems to be hard
in the sense that it cannot be removed by a field redefinition [13]. From the point
of view of conformal field theory it might correspond to an ambiguity in taking the
large radius limit in the orbifold moduli space.

5. Conclusions

We have investigated in a systematic way orbifolds with (2,2) world sheet super-
symmetry, which can be constructed, by modding out symmetric Z,, actions from
the six dimensional torus with vanishing discrete B-field. As a result we give a clas-
sification of these types of models. Preceding investigations [11, 14, 16, 22] in this
direction have the drawback of being incomplete and more seriously of stating or
using incorrect spectra.

The source for the deviations is that properties of the twist, which are not directly
related to the twist eigenvalues, were not taken into account properly. In the case of
the Z,, Zy, Zg, Zy, Zg, and Z,, actions there exist, for the same twist eigenvalues,
inequivalent automorphisms which are realised in different lattices. The complete
reducibility of the twist over C, which is used to define the complex planes in the
space-time basis, is often confused with the reducibility of the twist over Z, such that
the authors erroneously imply that the twist can be made block diagonal in the lattice
basis. Consequently their conclusions are only correct if this holds indeed, which is
usually only for one of the above mentioned inequivalent automorphisms the case.
Statements concerning the factorisation properties of the modular group, which have
been made in the same spirit, are also wrong in the general cases.

As the impact of the different lattices even on the spectrum was not fully
understood, almost all conclusions about these non-prime Z,; orbifolds should be
reconsidered. E.g. the couplings stated in [22] should be adapted to the correct
spectrum, etc.

Furthermore one should investigate how other phenomenological relevant prop-
erties such as the non-perturbative potential for the moduli fields or the threshold
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corrections to the gauge couplings will change, when the different automorphisms
with the same twist eigenvalues are considered.
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