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Abstract. We consider the class of quasi-periodic self-adjoint operators H{x) =
D(x) + V(x), x e Sι = Rι/Z\ on a multi-dimensional lattice Zu, with the matrix
elements

Ann 0*0 = δmnD(X + nω) » Knn 0*0 = V(m ~ n> X

where D(x + 1) = D(x), V(n,x + 1) = V(n,x), ω G W, and \V(n,x)\ < εe~ rH,
r > 0. We prove that, if ε is small enough, V(n, •) and D( ) satisfy some conditions
of smoothness, and D{ ) is non-degenerate, then for a.e. ω and for a.e. x £ Sι the
operator H(x) has pure point spectrum. All its eigenfunctions belong to lι(Έu).

1. Introduction

In the spectral theory of almost periodic media, two important classes of quantum
Hamiltonians have been investigated particularly well: nearest-neighbor Hamiltonians
like the "almost-Mathieu" operator on Z 1,

(Hε(x)φ) (n) = ε(φ(n - 1) + ψ(n + 1)) + cos(x + nω)ψ(ri),

which describes a quasi-periodic medium with infinite number of resonances (Sinai
[1], Frohlich, Spencer, and Wittwer [2]), and long-range Hamiltonians like

(Hε(x)ψ) (n) = ε Ύ^ α ( n ~ ^i)^(^i) + tan(x + nω)ψ(n),

with |α(n)| < e~ r 'n ' , r > 0, which describe media with no resonances (see Bellissard,
Lima, and Scoppola [3]). The main purpose of the present paper is to extend the
perturbation-theoretic analysis of resonances, originally proposed by Sinai [1] and
going back to the KAM (Kolmogorov-Arnold-Moser) theory. Many authors mentioned
that the methods of the KAM theory appear naturally in localization problems (see
in particular [4]). We refer also to a related work by Bellissard [6].
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There are two crucial points in our analysis which allow us to apply successfully
the KAM-approach to the investigation of multiple resonances:
- sparseness of resonances on the lattice, or, in our terms, sparseness of the moments
in our inductive procedure when a given eigenvalue (EV) undergoes a resonant
splitting. This phenomenon has been already discovered and used in the papers by
Sinai [1], by Frόhlich, Spencer, and Wittwer [2], and by Surace [5].
- uniform boundedness of the multiplicity of "elementary" resonances which we
cannot treat separately. An accurate formulation of this property can be given in
terms of the smoothness of the EV's considered as functions on the phase space 5 1

of the underlying dynamical system. Roughly speaking, an "elementary" resonance
is related to an intersection of the graphs of the EV's on the phase space, so the
multiplicity of an "elementary" resonance cannot be higher than dim Sι + 1 = 2.

One of our goals in this paper has been to divide the problem of localization for
long-range operators on the lattice ΊLυ related to a finite-dimensional, smooth, ergodic
dynamical system into two separate problems:
- a perturbation theoretic analysis, in the spirit of the KAM theory, of resonant
phenomena in disordered media;
- a geometrical analysis, following essentially the approach by Sinai [1], of the
regularity properties of eigenvalues of self-adjoint operators in question considered
as functions on the phase space of the underlying dynamical system.

We have to mention also that, as it follows from our proof (see Sect. 5), the
localization holds for a set of frequencies of Lebesgue measure 1.

2. Formulation of the Result

Definition 1. Let φ be a complex-valued function on the lattice Z". For any ρ > 0
we define a norm \\φ\\ρ as follows:

The Banach space of all functions φ with | | ^ | | ρ < oo is denoted by

We shall also call the norm || \\ρ a £-norm. The ρ-norms and the corresponding

Banach spaces 3$Q have the following convenient property: for any ρf > ρ" the

^/-norrn dominates ^/'-norm and, therefore, 3$Q D β$ρ .
Fix an arbitrary vector ω e W and define on the unit circle Sι an action T — Tω

of the additive group W as follows:

(n, x) ι-» x + nιω1 + ... + nuωu .

Fix a number ρ > 0 and consider the Banach space L°°(Sι,β&ρ) of functions
φ\Zv x 5 ^ C for which

= V^ ess sup \φ(n, x)\eρ^ < oo.

We can define in this linear space the structure of C* -algebra with the multiplication

(φψ) (n, x) = Σ P(n ~ m> T^^Ψim *χ) >
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with the natural -conjugation φ (n, x) = φ(—n1 T™x), (where z means the complex
conjugate of z G C) and with the norm || ||~. We shall denote this C*-algebra as
or, in order to emphasize the dependence of J&ρ upon the vector ω G M?, as
Sometimes we shall omit the indication to ω in ^ρ{ω) and in Tω writing simple J&ρ

andΓ.
Now we introduce an important C*-representation of ,/&ρ in the algebra of

operator-valued functions on Sι. Namely, for any ψ G <s£ρ we define a family of
operators φ(x) in 3%Q with the following matrix elements:

For any φ G Λ>ρ introduce its decomposition into the sum of its "diagonal" and "off-
diagonal" components [related to the decomposition of the corresponding operators
Φ(x)ϊ
φ(n, x) = Dφ(x)δn0 + Vφ(n, x), Dφ{x) = φ(0, x), Vφ(n, x) = (1 - δn0)φ(n, x).

It follows from our definitions that the matrix of the operator φ(x) in the standard
basis is given by

φnm(x) = Dφ(Tnx)δnm + (1 - δnm)Vψ(n - m, Tmx).

It is not difficult to see that for any ρ > 0 and any φ e ^4ρ the operators φ(x),
defined on a dense subset β&ρ C 12{Ί/), are bounded and, therefore, we can continue
them to bounded operators on 12(Z"). This follows from the exponential decay of the
matrix coefficients φnrn(x) as \n — m\ —> oo. It will be always clear from the context
whether an operator φ(x) is considered in 3%ρ or in 12(I/).

It is easy to see that the condition of self-adjointness of the image φ of an element
φ G Λ?ρ, i.e. self-adjointness of the operators φ{x) acting in 12(ZU), reads as

φ(n, x) = φ(—n, Tnx) .

Note that the algebra ,ΛQ contains the element

Δ(n,x)= Σ δ^

which corresponds to the discrete nearest-neighbor Laplacian in the above mentioned
representation. However, it contains also elements related to long-range self-adjoint
operators on the lattice, e.g. the element

A SΓ
Ψ = e = 7 —r

n=0

or elements φ with \φ(n, x)\ < exp(—r\n\) for r > 0. In other words, in the framework
of the algebra ^/3ρ we can consider operators A(x) with |i4nm(a;)| < exp(—r\n — m\)
for r > 0.

Now, we can formulate the main result of the present paper.

Theorem. Let d(x) be a C2-function on Sι with exactly two critical points, the
maximum and the minimum, both of which are non-degenerate, and let D e ^ ρ

be the "diagonal" element of the form D(n,x) — δnOd(x). Then for any ρ > 0 and
for any δ > 0 there exist a set Ωρ δ C Ω = [0, X)v, mes Ωρ δ > 1 — δ, and a positive
number ε(D, ρ, δ) such that if the off-diagonal component V of the operator belongs
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and \\V\\β < ε(D,g,δ), \\dV/dx\\g < ε(D,ρ,δ), \\<fiV/dx2\\β = ε(D,ρ,δ),
then for a.e. x G Sι the operators φ(x) in 12(ZU) corresponding to the element
ψ = D + V G J&Q have pure point spectrum. All the corresponding eigenfunctions
belong to J^° = lx(Έu). The multiplicity of any eigenvalue does not exceed 2.

Remark. There is a visible difference between the regularity conditions we impose
on elements φ G ̂ ρ and the conditions on d(x), V(n,x) in the formulation of the
above theorem. The reason why we require only boundedness (and measurability) of
functions φ(n,x), φ G ̂ 4ρ, is that in the proof of this theorem we shall introduce
a sequence of functions d^s\x), V^s\n,x) which are only piecewise-smooth in the
variable x G 5 \ and the number of points of discontinuity of those functions will
grow as s —• oo. In order to be able to treat those functions as elements of the same
C* -algebra, we have to relax conditions on their regularity.

3. Proof of the Theorem

During the proof we shall use some general standard notions from the ergodic theory.
However, we define all the necessary objects only in the case where the space
of the dynamical system is the unit circle S1 and the system is generated by v
incommensurate irrational rotations of the circle.

Definition 2. An equipped partition of order s G N o f the unit circle S1 is a sequence

of triples (ξ ( t\ C(t\ τ ( ί ) ) , 0 < t < 5, where ξ(t) and C(t) are finite partitions of S1,

ξ(*> = {Cfvi = 1,...,m(^*>)}, C(t) = { C $ , i= 1,. ,m(C(t))}, and τ<*>:Sι -> Z +

which is constant on any C?\, such that

(i) ξW > ζV\ i.e. any element of C(ί) is a union of elements of ξ ( t ); moreover, each

element C}\ is a union of at most two elements of ξ^:

3 = 1

(ii) For any t < t" ^ < ξ«'\ ζ^ < ζ«"\ τ^\x) < τ&\x); τ^(x) < s.

(iii) Consider a point x G Sι with τ(s)(x) = t. Let C^\x) be the element C ^ of the

partition ζ^ containing x, and let

If k(x) = 2, then there exists a vector r(i) G ΊLV such that

(iv) The interior of any element of ξ ( s ) is an interval in 5 1 .

Definition 3. An equipped partition {(ξ(t\ C(ί\ r ( ί ) X I < t < s'} of order s' is an

ζextension of an equipped partition {ξ(ί), ζ^\ f ( ί )), 1 < t < s"} of order s/f < s' if for

any t < s" ξ^ = ξ?\ C(t) =
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Let ε < ρι/σ. We shall use in the sequel three sequences of positive numbers
defined recursively by the following formulas:

ε s + i — ε s , it — |_εs i m ε s j , o — ε s + 1 , ε 0 — ε, ρs+ι — ε s + 1 ,

where we can put

« = l / 4 , μ > 2(σ(B + v + 1))1 / 2
> 2 , Γ - 100 , (1)

and μ and σ are small enough; in particular, μ -f σ(B + v+\)<\/2. The notation
[•] is used here for the integer part. We set V{0)(n, x) = V(n, x), dφ\x) = d(x),
£>(0)(n, x) = 6npd(0)(x), and # ( 0 ) ( n , x) = £>(0)(n, x) +V ( 0 ) (n, x). Define the following
equipped partition {£ °̂\ Ĉ °\ r ^ ) } °f order s = 0: τ^\x) = 0, and the partitions
ξ(0) _ ζ-(θ) for a n y ^ ^ ^ consist of two εμ/2-neighborhoods of critical points of the
function d(x) and of two complimentary intervals.

For simplicity of the notations, we shall write || \\s instead of || || where it
cannot lead to a confusion.

Let be given
\ s t

(l s) a Borel set Ω(s) = Ω \ \J Ωt such that mes Ωt < ε

a{l+κ) , a > 0;

(2S) for any ω e i? ( s ) a equipped partition

<t<s} = < t < s}

and two functions D ( s ) (n,x) = δn0S
s\x), V(s\n, x) such that for any n e Έv

restrictions of D{s\-) and V ( s )(n, •) to the interior of any element of the partition C^\
belongs to C2{C^\), and the boundary values of the functions as well as those of
their first and second order derivatives exist and are finite. Moreover, Ss>} takes each
value at exactly two points, taking into account their multiplicities. On any element of
partition C^\ the function d(s) either is monotone with the derivative separated from
zero, or has two intervals of monotonicity and exactly one critical point (minimum
or maximum) separating them; this critical point is non-degenerate.
(3S) for a.e. x e Sι the following inequalities hold:

(a) |

(b)

(c)

d{s)\\s < const,

(d) for any fixed

s

s

x either d2

dx2°

< const, | | F ( S ) | | S < ε s ;

s ))))(ε

ί )(x)

(s) )~1?

< εy
2;

S

> CΊ((i(0)) > 0, or >
moreover, the latter inequality can be violated only in a neighborhood of the critical
point of the function d(t)(x), t = τ ( s )(x), of radius εr(S)( ίc), where the uniform lower
bound for the second derivative holds.

Remark. All the constants in the conditions (1S)-(4S) do not depend upon s, although
some of them may depend upon d^°\ V^°\
(4S) If n,m G ΊJV satisfy the inequality \n — m\ < i? ( s ), and if, in addition,

- d{s~ι\Trnx) I < δ.n - m~B [where the constant B is the same
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as in (1)], δs = ε£, \V{s~ι)(n - m,Trnx)\ > ^ε s, then we say that the condition of
5-resonance is fulfilled for d(s~l)(Tnx) and d(s~ι\Trnx). We shall also say that the
sites n G Έu and m e ΊLV belong to the same resonant group. Any resonant group
contains exactly two sites of the lattice.

For any s > 0, we shall use the following notation:

H(s\n, x) = D(s\n, x) + V{s\n, x) = d(s\x)δn0 + V(s\n, x).

Inductive Lemma. If the conditions (1S)-(4S) are fulfilled for some s > 0, then there
exists a set ΩsJrl C Ω such that

(A) mes Ωs+ι < εa^1+κ^s for some constant a > 0 (independent of s);

(B) for any ω G i? ( 5 + 1 ) = Ω\Ωs+ι there exist two functions

Q%+ι)(n,x), n e If, x e S\ such that

and

(the norm is taken in the space S$Qs+x for any fixed x), the operator Q^+l) is a
product of rotations in two-dimensional subspaces; each subspace in consideration is
spanned by two columns of the matrix of the operator

r=\

which correspond to the couple of sites in (s + l)-resonance; and the function

can be decomposed into the sum of its "diagonal" and "off-diagonal" components,

tf ( s + 1 ) (n, x) = d(s+ι\x)δn0 + (1 - δn0)V(s+ι)(n, x),

where the functions d ( s + 1 ), V ( s + 1 ) satisfy conditions (1S + 1)-(4S + 1) with respect to a

new equipped partition (ζ( s+1)5ξ( s+1) ? τ(
5+1)) which is defined as follows:

(I) if C^\x) does not contain any point of (s + l)-resonance, then

Cf+ι\x) = Cf(x), r(s+1)(x) = r(s\x)

(II) if C*f (x) does not contain any point of (s + l)-resonance, then

C[s+I)(z) = cf(z);

(III) if x satisfies (I), but does not satisfy (II), then

C(

ζ

s+ι\x) = Cf+1)(x);

(IV) assume that C^s\x) contain some points of (s+l)-resonance; then we decompose

it into elements of the new partition ξ ( s + 1 ) of the following types:

(a) connected components Cίs+ι\x) of the set of (s + 1) resonance such that

inf \dis\Tnx) - d^iT^x)] < ε ( β + 1 )/4 over C{

ξ

s+ι\x), with r ( s + 1 ) (x) = 5 + 1;
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(b) connected components of the complement to the latter set with r ( s + 1 ) (x) = r ( s ) (x).
The partition ξ ( s + 1) consists of the elements listed above. The partition C ( s + 1 ) *s

defined in the following way:
(1) ς s < ξ s

(2) elements C ^ + 1 ) , C ^ 1 } belong to the same element C ^ 2 ) if for the functions

d(s\Tnx)χc(s+\)(x), d^s\Trnx)χc(s+i)(x) the condition of a (s 4- l)-resonance is

fulfilled for some n, m G Ίf. D

Remark. We say that the Diophantine property is fulfilled for ω £ W if fractional
part of |(n,(j)| is more than ε^\n\~u~ι for all |n| < i? ( s + 1 ) . The set i? s + 1 consists of
all such ω.

The proof of the Inductive Lemma is given in Sect. 4, and now we derive the
statement of the Theorem from the Inductive Lemma. This is done in several steps.
First of all, it is not difficult to see that we can start the induction.

Lemma 1. Let the functions V^\x) = V(x) and S°\x) — d(x) satisfy the conditions
of the theorem. Then there exists an equipped partition (ξ (0\ C(0\ r^) such that the
conditions (1O)-(4O) are also satisfied.

Lemma 2. If the Inductive Lemma holds and, therefore, the conditions (1S)-(4S) are
fulfilled for any s > 1, then for a.e. x G Sι there exists an integer s* = s*(x) such
that for any s > 5*.

r(s\x) = τ(s \x).

In other words, a.e. x G Sι undergoes only a finite number of resonances. D

Proof This is a direct consequence of (4S) and of estimates in Proposition 2 (see
Sect. 5), combined with Borel-Cantelli lemma. D

Lemma 3. Consider the sequence { ^ J ^ , ^ 0 } of operators corresponding to the
elements of the algebra ,A

t

r=\

Then for any function φ on 1/ with compact support the sequence {?2±(x)φ}

converges in the norm topology in 11(ΊJU) for a.e. x G Sι.

Proof of Lemma 3. It suffices to prove convergence for the functions φ(m) = δnπι,
since any function with compact support is finite linear combination of those functions
φ. In other words, we prove the /1(Zzy)-convergence of the columns of the matrices of
$±\x) for a.e. x G Sι. Consider the function s*(x) defined in Lemma 2 and suppose

s*(x) < 00. Lemma 2 claims that mes{x:s*(x) < 00} = 1. Let φ* = &+ {x)\x).
Then, by definition of the integer s*(x), for any t > s*(sc),

Π WW*
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The inductive estimates on the non-resonant perturbations complete the proof. D

Lemma 4. The operators $Q± converge in the strong operator topology on the space

of bounded operators acting in the Banach space ll(Z").

Proof of Lemma 4. Any function ψ £ lι(Z") can be approximated in the norm

topology by functions ψ^ with finite support. Since operators <$$£) are uniformly

bounded, the sequence {fl^} is a Cauchy sequence in the space I1 (If). Indeed, for

any <5 > 0 there exist a number k(δ) such that \\ψ — ψ(k)\\ < δ, and, therefore,

) l | ) \\Φ - Φ(k)\\

Since ψ^ has finite support, the above quantity does not exceed 2δ for sufficiently
large s. Since lι(Zu) is complete, any Cauchy sequence converges in the norm
topology. D

Lemma 5. (i) The limits

where &± are considered as operators on 12{ZU)} also exist and are partial isometries

on f(ψ).
(ii) (fyΛ

ύέό_ = 1 and, therefore, both %+ and $?_ are unitary operators on 12(LU).

(iii) The operators %_H(x)^\ — s-limD^^ are diagonal in the standard basis for

Proof of Lemma 5. (i) The proof of this statement is quite similar to that of Lemma

4. Actually, we mention the /^convergence of the operators $±* just to show that

all the EF of the operators H(x) are summable on Zu. The operators 9^ are unitary

in 12(ZU), so their strong limits must be partial isometries.

(ii) For any s > 1, ^ + ) ^ ) = 1, so by strong convergence, the limits U{± satisfy

U+U_ = \, and, therefore, the inverses (U+)~ι = $_, Φ__)~ι = $+ exist. Since

^ + and ?2_ are shown to be partial isometries, they are actually unitary operators.

(iii) The off-diagonal components of the operators %^}(x)H(x)%6±(x) decay as
t —> oo, so the off-diagonal component of the limit is zero, provided that the limit
exists. As we have already shown, the limit in question exists for a.e. x £ Sι. D

The statement (iii) of the Lemma 5 combined with (ii) imply that for a.e. x the
operator H(x) has pure point spectrum, and Lemma 4 implies that any EF of H(x)
belongs to I1 {If). D

Remark. The analysis of the eigenvalues given in the proof of the Inductive Lemma
shows that the multiplicity of any EV cannot be more than 2.
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4. Proof of the Inductive Lemma

First of all, we introduce the following decomposition of the element ίΓ ( s ) G Λ?QS :

H(s) = D{s) + C(s) + jjis) = D(s) + £,(*) + ^(s) + jjtf)^

where
(1) £>(s) is the diagonal component of H{s\ i.e. D{s\n,x) = δnOd{s\x);
(2) C ( s ) represents the "resonant" component, namely,

*) i f M(s)(T"x) - Ss\x)\ < δs+ι\n\-B

0 otherwise

(3) His) = Dis) + C ( s ) + f/(s);
(4) the elements ϋ[s) and L^5) are defined as follows:

U[8\n, x) = U{s\n, x)χ{rneΣv: \

^ s ) ( n , x) - t/ ( s )(n, x)χ{meZu:

Now we define explicitly the function W^s+ι'p\x). We emphasize that it is non-
zero only for non-resonant (n,x). For those (n,x) we apply the standard formula of
the KAM-theory (see, e.g. [3] where it was used in a similar situation):

Here F ( s ' 0 ) (n, x) = F ( s ) (n, x); the functions F^ '^ ίn , a;) for p > 0 will be defined
later in this argument: we just need to introduce some notations for their definition.

Besides the £(s)-norms, we will use also £ ( 5 ? p ) -norms with £ ( s ' p ) = ρ ( s ) ( 1
+ 2j9

0 < p < I = 16. For the sake of simplicity of notations, we will write || | | s p instead

Of II ||ρ(*,P)-

We set U{

2

s>0) = U[s\ U[8iθ) - U[s\ By definition of the ̂ '^-norm, we have

\s,l — - Ss\x)\ '

where summation in Σ ^s taken over all (s + l)-nonresonant pairs (n, a;), i.e. those

with U[8'°\n,x) φ 0. Then

if ε is sufficiently small. We have used in the above argument the condition
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Let us estimate now the £(Sϊl)-norm of Jjίf^:

llt '̂Xi = Σ iΦV^Iexp '̂Vl)

= Σ I ^
sΛ) - ρ ( s 0 )) |π |

πrax^

_ . _()
sεs εs+l

Define the function

The decay of the off-diagonal component of H^*1'® can be estimated in the following
way. First of all, we can write that

^(s+1,0) = D(s) + C(s) + jjis) + jji

oo oo

+ Σ fcί H ^ . Λ ) * ^ + Σ fcT
fc=2

- C(s))

It follows from the definition of the element W£+ιfi) that

Besides,

)t/f exp(iW£β+1 0>) - f/f||s+1,0

and
( ) 0 ) ) - C ( s ) |

s + l i 0

Furthermore, if we denote

OO
. , J~ i

s = Σ F {&άiw^kD(s) + Σ F '
k=2 ' k=l

then
^ / i 1

5 = i [ t / ί β ) , w i β + i ' o ) ] + y " ( Λ -

and
| | 5 | | s + l i l < 2 | | ^ + 1 0 ' | | 5 ) 1 | |C/ 1

w | | S j l .
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Now we expand i7^ s + 1 ' 0 ) into the sum

in the same way as we represented H^\ We emphasize that the non-resonant pairs
(n, x) for i7^ + 1 ' 0 ) and for i7 ( s ) are the same. Note also that the above norm estimates
imply that

and

It is worth to mention that the same upper bound holds for ί/{s'0):

\\uisfi)\\stl < 4iι^r i'O)ιι s,o(iι^(s)ιia)1 + iit^iUi + ιι^ s )ι
By iterating this procedure k times we get the element H^+i<k) with

= D(s'k) + C ( s > f c ) + U\3'k) + U^s'k),

where the elements of the decomposition satisfy the following inequalities:

ί=0

/ k
4 Σ

\t=0

Therefore, we see that

\\ττ(s,k)\\ <

\\Ul llβ.fe+l - *£s£s

If μ and σ < σ{B) satisfy

1 - μ(l + «;) - σ(J3 + 1) > « + 7

with 7 > 0, then for k = I = 16 we have

| |ί/ί s'υ |L,z + 1 < 8 ε ^ ^ < (ε β + 1) H ^ + ^

with 77/ > 0 (if Z = 16), and

β ' Z ) ι //

8,1+1 - 6s+l

Note that

\D^ι\x) - D(s\x)\ < ει

a
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\C^s^(r) ΎΛ — (Ί^(n τΛl <T F (F V+«

if (n,x) is a (s + l)-resonant pair, while for a nonresonant pair C ( s )(n,x) =
C(s^(n, x) = 0. Furthermore,

\\C(s'l)\\(n,x)\\S!l+ι<εs+ι.

Thus, if |D ( s '>(a;) - D(s)(ί/)| > ε^+1, then

and if |£>(s)(x) - £>(s)(y)| < εμ

8+v then

Set
_ ΣT(S+1) _ n(s+l) ,

where D^+V = D^ι\ &u

s+l) = CM\ M i 5 + 1 ) = U\s'l) + u!f'l). The norm of the
element M\^+V) can be estimated as follows:

\Wu+ IL,z+i - £ s + Ί > 7/;/ > o .

Let us estimate the derivatives of the elements Wis+1>fc):

ronςtconst |

and similarly

This yields

dx2

It is easy to verify also that

<

< ε

<

5+1 '

l+(fc-l/2)«
l+« - 1

dx2

<

< ε
1/2

H-l '

Since ^>(s+1) < ^ ( S ) Z + 1 ), we can replace in all the estimates the £ ( s'/+1)-norm by the
^( s +i)_ n o r m % Thus, we come to the following

Proposition 1. There exists α positive constant η"' such that

dx
<

s+1
dx2 < 3+7"
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and

dx < ε
1+7"
s+l

5+1
dx2 < ε

s + l

1/2

β+1 *

Consider the function d^s\x) obtained at the step s of the inductive construction.
Recall that it takes any value at precisely two points (taking into account their
multiplicities). Consider all intersections of the graphs of {d{s)(T™x), \n\ < R^s+ι)}.

Proposition 2. There exists a measurable subset Ωs C Ω such that mesi? s <
l/R{s+l) and for any ω e Ω\ΩS

(i) all the triple intersections

Zf> = {xe S'-.d^ix) = d ( s ) ( T » = cfs\Tϊx)} , ί,j G Ί?, \i\, \j\ < i ? ( s + 1 ) ,

are empty. Moreover, there is no triple ί( almost intersection' satisfying the following
condition:

with \i\,\j\ <R^ι\
(ii) Let y £ Zt = {x e Sι :d(s\x) = d^X^x)}, \i\ < R(s\ Then the angle between
the graphs intersecting at the point y is not less than εσ

s^
B+v+ι\

The proof of the Proposition 2 is given in Sect. 5.
Now we show how the statement of the Inductive Lemma can be proven with the

help of Proposition 2. The general scheme is the following:
(1) Consider a 2 x 2 matrix if(s+1) with the following entries:

the resonance condition (4S) is fulfilled. Putting y = Tnχx we find out that
(0, n) — (0, n 2 — nx) is such a group of indices. So we can restrict ourselves by
the consideration of only maximal connected groups with n{ — 0.

A connected component of the region on Sι in which the resonance condition
\d^s\x) — d^s\Tnx)\ < ε^+ι takes place will be called zones of resonances of
order s. If the condition (4S) is satisfied for a point x in some resonance zone then
\V{s+ι\n,x)\ > ε s + 1 /8 for all points of the zone. It follows from the inductive
estimates of derivatives of y^ s + 1 )(x) and from the estimate of size of any resonance
zone given in Sect. 5. Any resonance zone is a small neighborhood of intersection of
several translates of the graph of d^s\x). Therefore we arrive at the auxiliary spectral
problem for the matrix K^s+ι\x).
(2) If the condition (4S) is fulfilled at a point of some resonance zone we perform
a conjugation y ( s + 1 ) (x) which diagonalize K^s+ι\x) for every point x in the zone
and define a new function d^s+ι\x) in the zone as one of EV X^x) (i = 1,2) of
K^s+ι\x)\ the precise meaning of this statement will be clear from the rigorous proof
given below. It is worth to mention that \\(x) — \2(x)\ > ε s+i/4.
(3) Assume that the point x is contained in some resonance zone of order s. Then this
point can be contained in some resonance zone of order s + k for the same connected
resonance group during the successive inductive steps (k = 1,2,...). The number of
those steps is bounded by const | lnμ|.

If (4S) is fullfilled on one of those steps we have to perform the corresponding
conjugation. However it is not difficult to see that in this case the conjugation is close
to the identity in ρs+k norm and the needed estimates of derivatives are valid. Indeed,
this case can be considered as the nonresonant one. Moreover τ^s+ι\x) = τ^s\x).
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(4) We also have to treat the "potential" zones of resonance, if any appeared at
previous steps of induction as it is explained in the previous paragraph. Inside those
zones, which were not considered as resonant zones at previous steps of induction,
we proceed as follows:
- define the corresponding matrix K{x) again;
- if the off-diagonal component still has the norm which is too small (less than
εs+2>

 εs+3> > a t m e s t e P s -5 + 2, s + 3,...), we consider again the corresponding
sites as non-resonant, until this process eventually stops (if it does).
(5) If for a group of diagonal elements D^n , D^n the above mentioned events
happen infinitely many times, then they converge to a common limit as s —> oo.
Therefore, in this case the operator D(x) has an EV of multiplicity k > 1. However,
this multiplicity cannot be bigger than 2 (this is related to the absence of triple
intersections of graphs of Ss\x) and their translates). And besides, all the EF
corresponding to that degenerate EV are localized, by virtue of our estimates of
the £>-norms of the off-diagonal components V^.

Remark. We have to stress that we do not claim the existence of degenerate EV of the
operators ίϊ(x) in question. However, the way we prove the theorem in the present
paper does not allow us to claim absence of degenerate EV, either.
(6) Even if there exist zones of resonance for which the off-diagonal component
of the matrix K(x) is less than εs+ι, as described above, the multiplicities of the
corresponding groups of lattice sites cannot exceed the maximal possible value
άimS1 - ( - 1 = 2 . This follows from the fact that in this case we do not subject the
diagonal elements to a resonant splitting and, therefore, they undergo only a C2-small
perturbation at each step. So, the graphs of these diagonal elements, as functions of
x, can get closer to each other in smaller and smaller intervals on the circle Sι. This
process is controlled by the inductive estimates of non-degeneracy of the derivatives.

Now, we give the rigorous proof.
1. On the set of points x G Sι where the condition of a new resonance is fulfilled we
can apply the inductive estimates of the derivatives of Ss\x) and of V^s\-,x) given
by (3S). On any element of the partition ξ ( s ), by virtue of (3bs), the following upper
bound of the second derivative holds:

< 4 s ε - i ) ^ ( s ) ^ .
ζ

Furthermore, we have an upper bound on the size of the new zone of resonance;

namely its length is less than δμ/2 < ε(s~κ)μ/2. The EV's λ + > λ_ of the K{s+ι\x)

are given by the following explicit formula:

± [\{K[γι\x) - K%+ι\x))2 + (K[s

2

+ι\x))ψ2 . (3)

2. The difference \(Sa))'(x) - (Ss))f(Tnx)\ is estimated in Proposition 2. The second
derivative can be estimated with the help of the explicit formula (3) for the EV \±(x)
of the matrix K{s+i\x)\

[ΐ+ι\x)\-1
|λ±(a;)| < const \K\γl)(x)\

Moreover, a similar lower bound for the λ^.(x) holds in a neighborhood of the critical

point of an EV of K(s+l)(x) of radius at least Const |
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Remark. In a similar way the upper bounds for the derivatives of the element γ(s+l)

can be obtained:
aϊ(x)

< const \K[s

2

+ι\x)\-1

dx

i-i)

< const \K\s

2

+[\x)\
dx2

s+l

5+1

Now we apply the solution of the auxiliary two-dimensional spectral problem for

the matrix K{s+ι\x) to the construction of the element Q ( 5 + 1 )(x) G Λ>ρ s . Namely,
let F ( s + 1 ) (x) be a unitary transformation which diagonalizes Kis+ι\x); certainly,
such a transformation is not unique, but we fix one of those transformations. Let
nx,n2 G ΊJ" be the sites which are in resonance. Then we define the following

element Q (

c

s + 1 ) G ^ ρ ( s + 1 ) :

Q(

c*
+1)(n, - npx) = Yg+ι\T-niχ), z, j = 1,2,

and Q (

c

s + 1 )(n,x) = <5n0 for any n φ {ni — Πj,i,j ~ 1,2}. In terms of the matrix

entries of the operator Q^+ι\x) corresponding to Q (

c

s + 1 ), this means that

/A(s+1)/ x\ _ Γ)( s + 1 Vrί — n Tn3 τ\ — V^'^V'rΛ ? ^ — 1 9
We \x))nt,n3 ~ ^c yni ϊlj'>1 X)~χij W > 1 >J — Y >L >

while the restriction of Q(

c

s+1)(x) on the subspace orthogonal to the nf and nf columns
of H(s\x) is a diagonal operator.

Remark. As it is mentioned above, the operator γ( 5 + 1 ) is defined not uniquely. Even if
its EV's are distinct, it is defined up to a reflection which interchanges the eigenvectors
of K{s+ι\x). This is a direct consequence of the fact that the condition of (s + 1)-
resonance is fulfilled for the ordered pair of diagonal elements H^(x), H^m(x) (or,
in other words, for the ordered pair (n, m) of lattice sites), then the same is true for the
reversed pair ίϊ^(x), ίfff^x) [resp., for (m, n)]. Therefore, we have to introduce a
self-consistent way to determine when H^(x) — λ+ or H^(x) = λ_. In order to do
so, we introduce the natural lexicographical order n y minZu, and put ίϊ^(x) = λ+

if n y m and H^(x) = λ_, otherwise. The points n, m should not coincide, so this
convention is correct.

Since Y^s+ι\x) diagonalizes K^s+l)(x), the conjugation by Q(

c

s+1)(x) results in
vanishing all off-diagonal entries in the considered resonant cells. In the cells which
are non-resonant because of smallness of the off-diagonal entries of K^s+1)(x) we do
not carry out any conjugation, so the magnitude of those off-diagonal entries does not
change at all, hence, it does not increase.

Now we shall estimate how the conjugation by Q^+ι\x) perturbs the norm of
£+i)

Proposition 3. Let L (

c

s + 1 ) = ( Q (

C

S + 1 ) ) - 1 M ^ S + 1 ) Q (

C

S + 1 ) . Then

( 0 I I 4 S + 1 ) I I ^ ) < c o n s t H M ^ I I ^ D < ε 4 ;(0 II4 S + 1 ) II^) < const H M ^ I I ^ D < ε4

s+1;
(ii) ιX/2

(iii)

Proof of Proposition 3. (i) Note that the restriction of the operators (Q^+ι^)±ι on
any 2-dimensional resonant subspace is a rotation by some angle #, so it is equal
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to cos($)l -f sin(ΰ)Sn, where Sn is an operator of translation by the vector n,
\n\ < R(s+ι\ Therefore,

\\Sn\\s+{ <

yielding

The statements (ii), (iii) can be proven with the help of the estimates of the
derivatives of Q^+x\ D

Now we consider the element

and notice that the function J^ s + 1 ) (n, x) vanishes for all resonant pairs (n, x), where we
carry out the resonant splitting, and coincide with C!^+ι\n,x) otherwise. Therefore,
the conjugation by Q (

c

s + 1 ) does not affect the derivatives of C^+ι\n,x) for those
values of n and x. This allows to prove the inductive estimates of the derivatives
(3bs) and (3cs) in the Inductive Lemma. D

Remark. In order to get the function Ss+ι\x) taking each value no more than twice
it is sufficient to include in our inductive procedure some smoothing operator.

The details can be found in [7] where the proof of the exponential decay of EF's
is given.

5. Geometry of Splitting

For the sake of simplicity of notations, we shall not write the superscript (s) in Ss\x).
Note that the graph of the function d(x) which has exactly two critical points and
two intervals of monotonicity, can intersect its own translate d(Tnx) only at a point
x%, where sgnd'Or*) = — sgnd'(x*). Therefore, both of those derivatives can be
small simultaneously only if x is close to one of the two critical points x* of d(x)
and, hence, Tnx* is equally close to the critical point Tnx* of d(Tnx*). In other
words, T n x * must be close to x*. This simple geometrical property preserves even
after resonant splitting. This follows from the analysis of resonances and from the
explicit formula for the EV of the axiliary two-dimensional problem for the matrix
K{x) given in Sect. 4.

We begin with the proof of the statement (b) of Proposition 2.
(b) Consider a point of the intersection set Zn introduced in the formulation of
Proposition 2. The entire intersection set Zn consists of two isolated points. At each
intersection point #*, we have sgnc^x*) = - sgndf{Tnx*), so if these derivatives
are close to each other, both of them are close to zero. Thus, we can write that

\d\x) - d'(Tnx)\ > 2min{|d/(x)|, \d\Tnx)\} .

Let τ(s\x%) = t. Then, by definition of r^s\x), the point x* did not belong to any
other resonant zone since the moment t + 1 up to s. Therefore, we can make use of
the property (3ds) and consider two alternative cases:
(1) \d'(x*)\ > C2εt, C2 = C2(d(0)) > 0;
(2) \d"(x*)\ > C 1 = ^ ° >
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In the case (2), by virtue of the Diophantine properties of the frequencies ω9 the
critical point x* appeared in the considered resonant zone of order t = τ ( s )(x*) is
not too close to its translate Tnx*. Namely,

Therefore, we can apply the inequality ^"(a;)! > C1 on the interval (#*,#*) and
arrive at the following lower bound for the first derivative:

Let us set βs = mm{Cιε
σ

s

{B+u+2\C2εt). The following statement displays the
relation between εs and εt.

Lemma 1. Ifσ/μ is small enough, then εt > εs

 +iy+ .

Proof. We start with the equality which follows directly from the definition of the
sequence {ε s}:

εt = ε U + Ό - s + t , 8 > t . (4)

Now we estimate how large the difference s — t between two successive moments
of resonance for any given point x G T1 should be. First, we note that the condition
of the t-resonance implies that \D(t)(x) - D(t\Tmx)\ < δt = ε{\ Furthermore, using
the inductive estimate for the first and second derivative we can write that the size
of the resonant zone is less than

if σ/μ is small enough. The distance between a given point x £ Sι and its translate
T m x at the step t + k is greater than

(Έ)t+kΛ-(B+u+\) ^ σ(B+v+l) _ σ(B
VΛ ) ^ &t+k — ε t

Therefore, if σ(B + z^+ 1)(1 + κ)k < μ/2, then the translates of x cannot get in

the considered neighborhood of diameter ε^ of the point x. Resolving the latter
inequality and substituting k into (4), we complete the proof. D

Corollary. \d!(x^) - d'(Tnx*)\ > \d'(x*)\ > εσ

2

{B+u+2\ D

Inside the new resonant zone we can neglect the second order terms in the Taylor
expansion of d{x) and d(Tnx), by virtue of the inducitve estimates (3b, cs). Now we
substitute the lower bound for the new resonant EV into the explicit formula for the
new resonant EV and obtain the alternative estimates (3ds) for their second derivatives
[inside the neighborhood of radius ε

ι-σ(B+v+2) Or for the first derivatives (outside
that neighborhood)].

It is worth to mention that, in principle, it might happen that the resonant condition
holds at a point x^ which is not close to an intersection point. We can prove, however,
that this possibility is excluded by Diophantine properties of the frequencies ω. Indeed,
recall that any element of the partition ξ ( s ) either is an interval of monotonicity of
the function d(x) or consists of two adjacent intervals of monotonicity separated by
a critical point, local maximum or local minimum. Moreover, for any value E G M ,
there exists at most two elements Cίs\ such that E e d(Cίs\). Therefore, two intervals

Cl s], C£ either do not intersect or coincide. In the latter case d(x) is monotonic on
either of these intervals and its derivatives have opposite signs on them. In the former
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case, the intervals are separated by at least one forbidden zone which appeared in
a corresponding resonance and having, therefore, the width not less than εt, where
t is the moment of the resonance. Now we shall show that the difference s — t is
large enough so that the spacing εt is of lower order of smallness than the quantity
δs+ι = ε3+1. The latter quantity determines, by definition, the resonant condition at
the step s + 1. Indeed, the Diophantine property of ω implies that any point x G s1

(hence, any critical point) cannot return to its neighborhood of radius C(ω) \n\~B~u

under Tn. Therefore, if \n\ < R{s+l) and t = s + 1 - k, k < 0, then the considered
above "resonance without intersection" means that the critical point returned under
T n , \n\ < R{s+ι\ into its own neighborhood of radius δtεϊσ{B+1/+l) < ε%/2:

Therefore,

v ' ' -2σ(B + u+ί)

In order to prove that for such k the spacing due to a resonance at the moment
s + 1 — k should not be less than the "resonance threshold" δs+u we have to show
that the following inequality follows from the previous one:

£(l+κ)s+l~k __ £ > £μ/2 __ £(\+κ)sμ/2

which is equivalent to (1 + κ)~k+ι < μ/2. Thus, we have to prove that the inequality

\fc-l ^
( + Λ ) ~ 2σ(B + v + 1)

implies
(1 + κ)k~ι > 2/μ.

We assume from now on that μ > 2(σ(B + v -+- I)) 1/ 2. Then the above inequalities
become equivalent and the needed implication becomes obviously true. Note that the
only relation between σ and μ we need in our proofs is that the ratio σ(B + v + l)/μ
is sufficiently small, which holds if σ is sufficiently small.
(a) Assume that the condition of (s + l)-resonance is fulfilled at a point x for three
functions: d(x), d(Tnx), and d(Tmx). Note that the property of double resonances
proven above implies that the graphs of all the three functions appeared on the same
resonant zone, so there can be no "resonance without intersection" between them. At
least two functions should have the same sign of the derivative at the intersection
point. So, there exists a point x* and an integer t, \t\ < R^s+ι\ such that

Recall that inside any element of partition £ ( s ) the function d ( s ) either is monotonic
or has one critical point which separates two intervals of its monotonicity. Thus, the
previous condition implies that both x* and Tιx^ lie inside subintervals where either
both functions are increasing or both are decreasing. Therefore the difference between
a monotonic functgion (monotonic component of d ( s )) and its translate by T* is less
than 2δ3+ι. It is not difficult to see that in this case

τ t x ^ ci/4 μ/4

o 1 x*) ^ °s+l ~~ εs+l ^
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provided that σ{B -f v + l)/μ < 1/4. On the other hand, the above inequality is

impossible in view of the Diophantine condition, since t < 2R^s+ι\ This contradiction

completes the proof. D
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