
commun. Math. Phys. 149,335-345 (1992) Communications in
Mathematical

Physics
© Springer-Verlag 1992

Hidden Quantum Groups Inside Kac-Moody Algebra

A. Alekseev, L. Faddeev, and M. Semenov-Tian-Shansky

St. Petersburg Branch of Steklov Mathematical Institute, Fontanka 27,
St. Petersburg 191011, Russia

Received September 1, 1991

Abstract. A lattice analogue of the Kac-Moody algebra is constructed. It is shown
that the generators of the quantum algebra with the deformation parameter
q = Qxp(ίπ/k + h) can be constructed in terms of generators of the lattice Kac-
Moody algebra (LKM) with the central charge k. It appears that there exists a
natural correspondence between representations of the LKM algebra and the
finite dimensional quantum group. The tensor product for representations of the
LKM algebra and the finite dimensional quantum algebra is suggested.

1. Introduction

Fascinating links between conformal field theory and quantum groups discovered
recently suggest that quantum groups also have a direct bearing on the
representation theory of Kac-Moody algebras. It is the purpose of the present note
to trace down this hidden quantum group symmetry in the framework of Kac-
Moody algebras. Our main result is that the monodromy of quantum Kac-Moody
current when properly regularized satisfies the commutation relations of the
quantized universal enveloping algebra Uq(§) with q related to the central charge k

via q = exp I I. The regularized definition of the monodromy is based in its
\k + nj\

turn on a lattice version of the current algebra which we also describe in this paper.
This algebra associated with a periodic 1-dimensional lattice is already quantum
(i.e. incorporates parameter q; in fact, it is defined for any q, not only for roots of
unity) and also takes into account the central charge. It may be regarded as a
nontrivial deformation of Uq($)®N. (The very existence of such deformations is a
typically quantum phenomenon. Indeed, it is well known that classical semi-
simple Lie groups and Lie algebras are rigid. By contrast, quantum universal
enveloping algebras admit certain deformations which may be regarded as finite-
dimensional counterparts of central extensions of current algebras.) Our first key
result is the monodromy theorem for this lattice algebra which asserts that the
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monodromy satisfies the commutation relations of Uq(§). In the scaling limit the
lattice current algebra becomes the ordinary classical current algebra with fixed
central charge, while the monodromy remains quantum. This result has several
important corollaries. First, we are able to describe the regularized Casimir
operators for the Kac-Moody algebra and to relate them to the quantum Casimir
operators for Uq($). Second, we define for the lattice algebra the structure of a
l/g(g)-comodule. This structure reproduces the well known tensor product
properties of Uq($). Remarkably, it essentially coincides with the fusion rules in
conformal field theory.

The present note represents a part of the research program now in progress.
Our approach combines ideas from different independent sources. We should
mention the papers [1, 2] which lead to the definition of lattice current algebras
and the papers [3-7] on quantum exchange algebras. Some aspects of our results
were reported in [8]. While for the lattice current algebras our results are
completely rigorous, the details of our construction in the scaling limit are still to
be worked out. In this note we content ourselves with the physical level of rigour.
Complete proofs and the mathematical background of the construction of lattice
current algebras will be given in a subsequent paper.

2. Current Algebras: A Brief Reminder

Let g be a finite dimensional simple Lie algebra, g the associated current algebra on
the circle. For simplicity, we may assume that g = s/(2, <C). By definition, the current
algebra with central charge k is a Lie algebra with generators Ja{x), 0^x^2π,
associated with an orthogonal basis {σa} in g, satisfying the commutation relations

lJa(x), J\yy\ =fe

άbJe(x)δ(x-y)+ ^δabδ'(x-y), (1)

where fc

ab are the structure constants of g with respect to the basis {σa}. To get the
more familiar generators one has to perform the formal Fourier transform

Then (1) is equivalent to

V'm, JhΔ =fcabJc

m+n+kmδ"bδm+n<0 . (1')

We are interested in representations of the algebras (1) which may be integrated to
projective unitary representations of the corresponding compact loop group. This
means that if the generators Ja(x) correspond to the orthogonal basis of the
compact real form of g, the constant ίk should be integer and purely imaginary. We
shall see below that passing to the compact real form of the lattice current algebra
defined in the next section presents some difficulties, so we have to deal with
complex algebras while still keeping the natural condition on the central charge. It
is convenient to suppress the Lie algebra indices in (1). Let us put

J(x) = Ja(x)σa, C = σa®σa. (2)

Then (1) is rewritten as

)] = \ίc, j1(X)-j2(yy]δ(χ-y)+ ^Cδ'(x-y), (3)
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where thfe indices 1, 2 refer to two copies of the auxiliary space g and Jt(x) is
regarded as an element of Q®QiCQ®Qι®Q2' The commutation relations (3) are
invariant with respect to the action of gauge transformations

J(χ)g(χΓί + ^ιdxg'g-1(x), (4)

and in particular with respect to global gauge transformations

g-1. (5)

The monodromy of the current J(x) is formally defined by

M = P e x p ί — \J{x)dx\. (6)

Since the commutation relations for J(x) are highly singular, it is not easy to derive
the commutation relations for M. One of our main assertions is that when properly
regularized M has the commutation relations of the quantum universal envelop-
ing algebra Uq($) with q related to central charge k by q = exp ί I . This may

be regarded as a new type of anomaly which leads to the spontaneous breakdown
of the global gauge symmetry (5). [There is some evidence that this anomaly is
associated with the cohomology class in #3(g) which also generates via trans-
gression the Schwinger anomaly in the commutation relations (3) - see discussion
in Sect. 5 below.]

The usual definition of the quantized universal enveloping algebra Uq(q) is by
means of generators and relations. (For g = sl(2) it is due to Kulish, Reshetikhin,
and Sklyanin, while the general case was worked out by Drinfeld and Jimbo (see
[9]).) As an algebra, Uq(sl(2)) is generated by the elements H,X+,X_ which satisfy
the following relations

[H9X±]=±2X±9

sinhftH)

The coalgebra structure which determines the tensor product of the repre-
sentations is given by

hH _hΉ_ (8)

ΔX±=e2®X±+X±®e 2 .

There is a different way to express these commutation relations, due to Faddeev,
Reshetikhin, and Takhtajan [10]. Let R = R(q) be the quantum ^-matrix
associated with the standard representation of Uq(sl(2)) in <C2, R e End(<C2(χ)<C2):

R =

(q
0

0

0

1

q-q'1

0

0

0

1

0

0

0

q)

= eh. (9)
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The β-matrix (9) satisfies the quantum Yang-Baxter identity

^12^13^23=^23^13^12 (10)

Along with R we shall also need the matrices

R+=PRP, R-=R-χ. (11)

[Here PeEnd(C2(x)<C2) is the permutation matrix defined by (P(x®y) = y®x.']
Consider the 2 x 2-matrices L+,L~ whose coefficients are generators of Uq(sl(2)):

0 q»

Then the following commutations are satisfied

Ltγ L»2 R = R L*2 Lt\ 5

Li j 1^2 R == R A-*2 -*-Ί

It is convenient to combine L+,L~ into a single matrix L = L+(L~)~1. The
commutation relations for L are

(R-)-ίLίR-L2 = L2(R+)-ίLίR
+. (14)

One can show that a free associative algebra generated by the matrix coefficients of
L=(Lij) satisfying the relations (14) is isomorphic to Uq(sl(2)). The rearrangement
of simple commutation relations (7) into the rather complicated form (13,14) may
seem artificial. However, there are profound mathematical reasons to prefer this
form of commutation relations. In a sense, passing from (7) to (14) or (13) is similar
to passing from a Lie algebra to the corresponding Lie group. We shall not go into
further discussion of this point (although a complete exposition of the underlying
theory is still lacking in the existing literature), but simply notice that the
commutation relations for the monodromy (6) have exactly the form (14). Another
important fact is that relations (14) serve as a starting point to define the lattice
version of the current algebra.

Let us finally discuss the coproduct structure and the tensor products in terms
of the generators Lr,L. Assume that there are two representations of Uq(§) in
linear spaces Jtf",3tf"'. Let L,L" be the matrices of generators acting in 3tf",Jίf",
respectively. Put

zlL = (L+yr((L-)" 1y. (15)

We may regard ΔL as a 2 x 2-matrix whose coefficients are linear operators acting
in #?'®J^". Then ΔL also satisfies commutation relations (14) and hence defines a
representation of Uq(§) in 3tf" ®#?". One can show that this construction agrees
with the standard definition of the tensor product for Uq(gi) based on (8).

3. Lattice Version of Current Algebras

As already explained in the Introduction, our strategy will be as follows. First, we
describe the lattice version of commutation relation (3) and state the correspond-
ing monodromy theorem. Then we discuss the continuous limit.
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By definition, the lattice current algebra J / L C is a free algebra generated by
matrix coefficients of 2x2-matrices L\ i = l,2,...,N, satisfying the following
relations

Lι^L/2 =-*v 1^2-LΊ^ J

L^R-LΪ^LΪ^, (16)

L\Ώ2 = Ώ2L\ for \ί-j\

We assume that i + N = i, i.e. that the matrices Ώ are associated with a periodic
1-dimensional lattice. To make these relations more transparent let us introduce
the .R-matrix on the lattice

κ. _ , = < . ί l /)

U> ι+J-

Commutation relations (14) for l/^g)®* may be rewritten in the form

The relations (16) have the form
(Ί?~ \~lτi Ό~ T j TJ(Ώ+ \~lτi Ώ+ (IZλ
V i — v 1 i —1+12— 2\ i — j — 1/ 1 /— /* V ®/

In other words, the perturbation of the relations (14) consists in replacing
conjugation by R± with lattice gauge transformations (cf. [2] where similar
commutation relations are derived for central extensions of quantum Kac-Moody
algebras). We omit the mathematical background which serves as a motivation for
this definition. (Its classical counterpart is already present in [1].) Relations (18)
are not ultralocal in that the neighbouring matrices L\ Lι±1 do not commute with
each other. In [8] a change of variables is described which replaces (18) with local
relations. This change of variables is important for the study or representations of
£&LC' We are planning to discuss these questions in a separate publication. The
main property of the lattice current algebra is given by the following theorem.

Theorem. Put

M = LNLN_ί...L2Lί. (19)

Then the monodromy matrix M satisfies relations (14).

The commutation relations of M with Lf is given by

One may notice that the definition of M depends on the initial point k = 1. In a
similar way we may define monodromies

k + N-l

Mk= ft h (21)

which satisfy (14) and also

M\Rr_k+1U2(Rr_k+iy
ί=U2(R^ky

ίMk

ίRt-k. (22)

Commutation relations (18) admit certain quantum automorphisms. To describe
them let us first recall the definition of the quantum group (as opposed to the
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quantum universal enveloping algebra). By definition, the algebra ^ =
is a free algebra with generators Γ = (7^) and relations

TιT2R
+=R + T2Tί. (23)

For various classical groups these relations are supplemented by the symmetry
relations for T and the condition on its determinant. For instance, for G = SL(1) the
latter relation has the form

detqT=T11T22-qT12T2ί = l. (24)

One can show that as aΉopf algebra A is the dual of Uq{q).The duality is set up by

<L±,Γ> = ( ^ ± ) - 1 . (25)

Now let A®N = A®A®...®A and put

L^T+^XVy1, (26)

where we assume that Lι and Tj commute with each other. Then U satisfies the
same relations (18). [In more mathematical terms, (26) defines the structure of an
^-comodule on J / L C . ]

Another interesting question is the structure of the Casimir operators of J / L C .

Theorem. For generic q and N odd the center of srfLC is a free algebra generated by 1
and the elements

fc = l,2,...,rankg. (27)

(Here ρ is half the sum of positive roots.)
It is well known that Ck generate the center of Uq(q). (This was proved by [10],

cf. also [11, 12].)
In more mathematical terms we may regard the monodromy map as an

embedding
M*: Uq($)c+^LC.

The theorem then asserts that the extension

cent Uq($)c> Uq(gί)c+^LC

is central. The semiclassical version of this theorem was proved in [1]. Along with
the monodromy (19) we shall also need the wave functions

«'= ft U (28)

which satisfy the following exchange relations:

(29)

The exchange algebra (29) will be used in Sect. 5 to derive the scaling limit.
Relations at one point have the form

Miw2 = Λ+M2w\^". (30)

4. Lattice Current Algebra as a Comodule

It is possible to define an action of s/LC in tensor products of representation spaces
oϊs/LC with representation spaces of Uq(q). Let J4? be a representation spade of s/LC
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and V a1 representation space for Uq(§). We denote by (U)f the matrices of
generators of siLC acting in Jf and by (N*)" the matrices of generators of Uq(§)
satisfying relations (9) which act in V.

We define matrices V acting in ffl ®V by

- 1 ) ^ , (31)

LN = (N+)"(LNy.

It is easy to check that matrices U satisfy ^relations (18). In more mathematical
terms, we may regard the mapping C: Lι^Lι as a homomorphism from J / L C into
<rfLC®Uq(gi). Clearly, it satisfies

(C®id)C = (id® A)C (32)

and hence is consistent with the coproduct Δ in Uq(§). The monodromy M(L) is
mapped into (N+)"M(L)'((N~)~1)", and hence we have a commutative diagram

M*\ |M*®id

which expresses consistency with the monodromy map.
The comodule structure of J / L C suggests simple tensor properties of its

representation. First of all, since s/LC and Uq(g) have common Casimir operators,
it seems plausible that an irreducible representation ^fs of stfLC is uniquely specified
by its "spin" s. Moreover, as a L/€(g)-module the space J^s decomposes into direct
sum of "isotypical" components with the same spin s. Thus

where the monodromy acts trivially in J f. We then have

jfs®Vj^(jir®vj®Vj

and hence (by the uniqueness assumption)

Moreover, the decomposition into irreducible representations of J^® Vj and its
braiding properties are completely determined by the corresponding properties of
Uq(§). Clearly, this picture resembles the fusion algebra in conformal field theory.
The tensor algebra still makes sense if q is a root of unity (the latter condition being
imposed by the scaling properties of our algebra, as explained in the next section).

5. The Scaling Limit

Let us now discuss the continuous limit of the lattice current algebra. We shall
argue that the commutation relations for currents become those of the ordinary
Kac-Moody algebra, while the commutation relations for the monodromy remain
quantum. As mentioned in the Introduction our arguments will be not completely
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rigorous. The starting point is the exchange algebra (29). If we replace the lattice
variable i with the continuous variable x we get the following exchange algebra

y) = u2{y)uγ{x)R{x - y), (33)

where

*>-{J: :
For x=y we get formally

u1(x)u2(x) = R+u2(x)uί(x)R~,

but this relation has, of course, a dubious status since it does not survive when ux

and u2 are smoothed down by averaging with test functions.
The current J(x) is formally the derivative of u{x\

J(x) = dxwu-1. (35)

However, since the commutator of w's has singularities at coinciding points we
must take care to extract them first. Thus we write

- u\x + ε)u(x) ~ x = - + J(x) + 0(β). (36)
ε ε

By dimension count the singular term A/ε is the only one possible. For symmetry
reasons, the matrix A is scalar, A = al. We may also write

u\(x+έ)u2(x)" * = — h regular terms, (37)
ε

where B is a matrix in the tensor square. Again for symmetry reasons, Bijkι = bδjkδa.
A simple calculation shows that a = nb, where n is the size of our matrices.

The relation of the current J to the lattice variables is formally

U = PQ\^X{ J{y)dy. (38)
JC

Thus we expect that in the scaling limit lattice variables are close to identity. A
more thorough inspection shows, however, that this is true only for normal
ordered exponentials

:Lί: = :PQχpX^J(y)dy:τ^I. (39)

The lattice variables I) differ from these normal ordered exponentials by a finite
factor

Lι' = eα:L':, (40)

where a is the same constant as in (36). Below we shall actually compute this
constant using the operator expansion. The computation of the commutation
relations for currents which follow from the exchange algebra (33) is based on the
following general formula for the ̂ -matrices

R±=F12q
±pF21\ (41)
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where P i s the permutation matrix, F12 an invertible matrix in <En®<Cn, and
F2ί=PF12P. Hence we have for the β-matrix R(x—y):

R(χ-y) = F12q
Psi*n{χ-y)F2-1

1. (42)

Formulae (41), (42) are based on the general philosophy of "quasi-Hopf algebras,"
due to Drinfeld [13]. Before proceeding to the actual computation it is worth
commenting on the meaning of these formulae and their general implications. As
already noted, the regularized commutation relations for the monodromy are the
manifestation of symmetry breaking which introduces quantum ^-matrices into
the basic commutation relations. Now, for higher rank groups the quantization
and hence the ̂ -matrices are certainly not unique, and one might wonder why the
particular Λ-matrix which defines the theory is preferred to all the others.
According to the general philosophy of Drinfeld [13], the uniqueness of
quantization is restored, modulo some natural equivalence relation, in a larger
class of algebras for which the coassociativity constraint is replaced by a milder
assumption. Formula (41) shows, in particular, that any quantum ^-matrix is
"gauge equivalent" to the standard ^-matrix

(More precisely, this is true for a certain class of R-matrices which define the so-
called quasi-triangular Hopf algebras; all physically relevant ^-matrices fall
within this class.)

The permutation operator P, or, more generally, the Casimir operator C, is
stable, i.e. it does not depend on the particular choice of quantization. [One might
show that this stability has a cohomological nature: the Casimir operator defines
an element in #3(g) which may be regarded as the cohomology class of
quantization. Incidentally, this same cohomology class also determines, via
transgression, the cohomology class of the central extension of the current
algebra.] Of course, it would be conceptually more simple to work directly with
the R-matrix (43), but as explained in [13] this leads to complications with
associativity.

Our general conclusion resolving the difficulty referred to above is that one may
take any .R-matrix in the given "gauge class" and this will lead to essentially
equivalent results (choosing an .R-matrix means roughly to specify some particular
regularization of the theory). The independence of the choice of R is manifested in
the computation of the Schwinger commutation relation for currents: as we shall
see, the answer depends only on P, and the "gauge matrix" F 1 2 is cancelled out.

Let us now proceed to the actual computation. We shall compute the
commutation relations between J and u in two ways, which will allow to fix the so
far unspecified constant a. We have

-y)" 1 «iW" 1 - (44)

Using the expansion (36) and the formula

we get, after simple calculation,

Ui(x), u2(y)-] = 2lnqPu2(y)δ(x-y). (45)
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On the other hand, the expansion (37) implies that

Jι{x)u2(y) = Pu2{y) + regular terms. (46)

The operator expansion of the form

A(x)B(y) = C(y) + regular terms

x y

implies, by the Sokhotski-Plemel formula, that

lA(xlB(y)-]=2πiC(y)δ(x-y).

Thus a comparison of (45) and (46) yields

»--£. (47,
and hence

^ i (48)α .
πi

Now we are ready to calculate the commutator of currents. We have

ε

>,J2(y)-]δ(x-y)-2lnq(l+a)δ'(x-y).

and hence

Ui(x), Jiiyϊ] = 2 ln<?[P, J2{y)]δ(x -y)-2 \nq{\ + a)Pδ\x - y). (49)

Assume that \nq is purely imaginary,

"«-*?;• < 5 0 )

Then

-y). (51)

If we rescale the current by setting

we get

iik + rή
(x)- 2π J,

= \{_P, Jί{χ)-J2{y)-\δ{x-y)+ ^Pδ'(x-y). (52)
2 Zn
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Thus we get

J^dxu-u-K (53)

Let us notice that the presence of i= ]/ — 1 in formula (53) for the rescaled current
causes difficulties in dealing with real forms of our algebras. Indeed, (53) implies
that J(x) is anti-Hermitian (i.e. lies in the compact form of the current algebra) if
u(x) is Hermitian. But in that case the monodromy

does not satisfy the expected unitary condition. The same trouble is also reflected

by the fact that the quantization parameter q = exp ί ) is a root of unity while
\k-\-nJ

a bona fide Uq(su(ή)) is defined for real q. Of course, the emergence of quantum
groups l/g(g) for q a root of unity is highly typical for the problems of conformal
field theory.
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