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Abstract. Following earlier work of Masood-ul-Alam, we consider a uniqueness
problem for non-rotating stellar models. Given a static, asymptotically flat perfect-
fluid spacetime with barotropic equation of state ρ(p), and given another such
spacetime which is spherically symmetric and has the same ρ(p) and the same
surface potential: we prove that both are identical provided ρ(p) satisfies a certain
differential inequality. This inequality is more natural and less restrictive than the
conditions required by Masood-ul-Alam.

1. Introduction

In this paper we solve a uniqueness problem for non-rotating stellar models.
Namely, given a static, asymptotically flat perfect-fluid spacetime with barotropic
equation of state ρ(p) subject to certain restrictions: we show that this is unique
provided there exists another such model [called "spherical reference (SR-)
model"] which is spherically symmetric and has the same ρ(p) and the same value
Vs of the gravitational potential on the boundary of the star ("surface redshift").
This problem was first raised and solved by Masood-ul-Alam [1] under more
restrictive and somewhat unnatural conditions on ρ(p).

The main motivation for the present problem comes from the "fluid ball
conjecture" which states that a non-rotating stellar model is spherically symmetric
(see Kϋnzle and Savage [2]). If this was known, it would follow that such a model
consists of a family of solutions determined by one parameter, e.g. the value of the
pressure at the centre. (For a rigorous proof of this fact see Schmidt [3].) In the
absence of a direct proof of spherical symmetry for general ρ(p\ one tries to turn
this reasoning around by concluding sphericity from uniqueness for some given
parameter, and here the surface redshift turns out to be a possible choice. However
this parametrization involves a problem, as can be seen already in the spherical
case: Consider, instead of Vs, the mass m of a spherically symmetric configuration
as a function of the central pressure pc. For degenerate matter m(pc) is well known
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[4] to be increasing when pc is not too large, but it develops a local maximum
which corresponds to the onset of gravitational instability. As the numerical
results show [5,6] a similar thing happens with Vs(pc\ although typically at larger
values of pc. Thus pc will in general be a multi-valued function of Vs. If arbitrary
large values of pc were allowed (ignoring, of course, that nothing is known about
the physics in this regime) the results of Harrison et al. (see [5, Sect. 5]) show that
for equations of state ρ(p) which are asymptotically linear for large
p, m^ = lim m(pc) and V^ = lim Vs(pc) exist and are in fact infinitely degenerate.

p->oo p->co

Thus the uniqueness-problem studied here will necessarily entail some bound on
ρ(p) - or on the range of p for given ρ(p) - which rules out the multi-valuedness of
pc(Vs). It remains a mathematical challenge to prove the fluid-ball conjecture
without such a restriction, i.e. independently of stability questions. On the other
hand it is precisely this relationship with stability which endows the uniqueness
problem studied here with independent interest.

We now sketch Masood-ul-Alam's approach and our improvement thereof,
where such an additional condition on ρ(p) emerges in an apparently natural
fashion. The main tool is a corollary to the positive-mass theorem. This states that
a complete, asymptotically flat Riemannian metric must be flat if its Ricci scalar is
everywhere non-negative, and if its mass vanishes [7]. To explain the use of this
theorem in the present problem, we first recall (a part of) the uniqueness proof for
non-rotating black holes due to Bunting and Masood-ul-Alam [8]. When ds2

= — V2dt2+gabdxadxb is the static spacetime metric, these authors use a conformal
rescaling of the form gab=τβ(l + V)Agab. Because of the field equations, gab has zero
mass and zero scalar curvature. This metric can be extended through the horizon
to a complete Riemannian metric with everywhere vanishing Ricci scalar. Thus, by
the above-mentioned theorem, gab is flat. The rest follows by an easy integration of
the static field equations.

One now tries to do the same thing for perfect fluids, namely to conformally
rescale the metric such that it meets again the requirements of the positive mass
theorem. We first note that this can be accomplished straightforwardly if ρ(p) falls
under the one-parameter family of equations of state p(ρ)=iρ6l5(ρo15 — £ 1 / 5)~\
ρ < ρ0 = const > 0, since for such solutions we again have #[g] = 0 everywhere,
where gα5=τ£(l + V)Agab as before. For any ρ?>

0> o n e finds [9] that (gab, V) is a
member of a one-parameter family of solutions given by Buchdahl [10]. We
remark that for all these solutions the matter region necessarily extends to infinity.

In order to determine a suitable conformal transformation for general - i.e.
functionally unrestricted - equations of state, one invokes the existence of a
spherical reference solution (°gab,°V). We take Ω(V) to be °Ω(V), where °Ω is
chosen such that R\_(°Ω)2 °g] = 0. In particular, Ω=^(1 + V)2 in the vacuum region.
In the fluid region, K[Ω2g] takes on the form K[Ω2g] = P(V) [W0(V)- W], where
W=gabDaVDbV and Wo{°V) = ogabDo

aVD°bV. To ensure the required non-negativity
of R[Ω2g~\ it has proved useful (and seems to be necessary) to keep control over the
signs of each of its factors separately. It was shown in [1] that P(F)^0 provided
ρ(p) satisfies K^O, where

K = p(ρ + p)^-^ρ2. (1.1)

Furthermore P(V) = 0 iff K = 0 which just leads to the Buchdahl solutions
discussed before.
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It remains to estimate W— Wo. The general idea is to derive, from the field
equations for (V,gab) and for (°V, °gab), an elliptic equation for this quantity. If this
equation takes the form

(gahdadb + kada + c)(W-WQ)^O, with c^O,

the maximum principle is applicable which, taken together with boundary
conditions, yields the desired result. Such identities were found first in the vacuum
case for the purpose of uniqueness-proofs for static black holes [11,12] (under
more restrictive conditions than [8]), and in the case of perfect fluids of constant
density [13,14]. In [1] Masood-ul-Alam uses a somewhat ad-hoc-modification of
these identities and shows that c^O under rather restrictive conditions on the
equation of state.

In the present work, we find an identity of the form (A + c) (W— Wo) = 0. Here A
is formed from the metric g^= V~2Ψ4gab and W- W? = Ψ~\W- Wo) where, for
given ρ(p\ the quantity Ψ(V) is determined by an ordinary first-order differential
equation. In the vacuum case, and in the case of a fluid of constant density, this
identity [with Ψ=^(l — V2) and Ψ = 1 respectively, and with c = 0 in either case]
reduces to ones used by Robinson [12] and Lindblom [13]. Equations of state
satisfying K = 0 are again special in that one obtains Ψ=\(\ — V2) and c = 0,
exactly as in vacuum. In this case application of the maximum principle to
A(W— Wo)^0 provides an alternative proof of uniqueness of the Buchdahl
solutions [9]. In general, we use our identity inside as well as outside the star
provided the density ρ goes to zero at the boundary. (If this is not the case we have
to take, in the vacuum region, some other element of the two-parameter family
given in [12]). The non-positivity of the coefficient c is ensured if 7^0 where

κ
^ - (1.2)

with K = (ρ + p) (ρ + 3p) ~ ιdρ/dp.

The remarkable feature of this condition is the following. Although neither the
factors P(V) and W— Wo in K[Ω2g] themselves, nor the ways of estimating them,
seem to have anything in common, surprisingly, the quantities K and 7 which enter
their respective estimates, are related. We can show that 7^0 implies KgO.
Conversely, K = 0 implies 7 = 0. Thus, if we only assume 7 :§ 0, the maximum
principle combined with the positive-mass theorem shows that Ω2gab is flat which
in turn implies that (gab, V) is spherically symmetric. To prove uniqueness one has
to further conclude W= Wo which was apparently overlooked in [1]. Doing this
turns out to be equivalent to ruling out the Buchdahl case K = 0.

To get an idea of how restrictive the condition 7^0 is, one can check it for an
ideal fermion gas at zero temperature. One finds that 7 ̂  0 is valid for densities up
to 4xl0 1 5 gcm~ 3 which is roughly the critical density where gravitational
instability sets in [15]. We note that for the more realistic models of neutron stars
governed by the Harrison-Wheeler equation of state (see [5, Sect. 10]) 7_0 is
violated in regions where neutron drip occurs.

Finally, we would like to mention two problems which one has to overcome in
the proof. Firstly, the minimal values for V of the given star and of the SR-model,
and hence the domains of W and Wo, need not agree. One can, however, continue
W0(V) into the region V< °Fmin, which we do in a manner different from Masood-
ul-Alam. Another problem is that, if the density ρ goes to zero at the boundary of
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the star, the coefficient c introduced before may diverge there. This is not allowed
in the Hopf boundary-point lemma [16] which we need in the proof. We found,
however, an extension of this lemma which copes with the present kind of
singularity, and which could be of independent interest.

The present paper is organized as follows. In Sect. 2 we define what we mean by
a static perfect-fluid model and obtain some easy consequences. In Sect. 3 we
discuss a few properties, mostly known, of the spherical case and prove a
uniqueness lemma, similar to an early result of Kunzle [17] (see also Avez [18]). In
Sect. 4 we introduce the inequality 7^0 and derive the consequences K ^ 0 and
c^O. Section 5 contains the main part of the uniqueness proof. In Sect. 6 we
discuss the Newtonian situation and possible improvements of our results. Finally,
the Appendix deals with the above-mentioned extension of the boundary-point
lemma.

2. General Assumptions and Properties

We introduce a static metric ds2=-V2dt2 + gabdxadxb (V>0), where both the
Riemannian metric gab and the potential V are (time-independent) functions on a
3-manifold M. We assume for simplicity that there is only one body, leaving a
remark on the n-body case to the end of Sect. 5. More precisely we assume that
there is an open, connected set QcM with smooth boundary dQcM and
<2 = <2ud<2 compact. We also assume dQ to be connected, thus excluding the
possibility of a "hollow" body. It follows that E = M\Q is also connected. There are
functions ρ and p on M which are zero in E and smooth and positive in Q.
Furthermore, on dQ, p is zero and V takes the constant value Vs. The fields gab and
V are smooth both in Q and E and satisfy the Lichnerowicz junction conditions
[19]

gab, VeC\M)nC2(Q)nC2(E). (2.1)

They obey Einstein's static equations with a perfect-fluid source of density ρ and
pressure p, i.e.

Rab=V-1DaDbV+4π(ρ-p)gabί (2.2)

(2.3)

where the covariant derivative Da, A = DaDa and the Ricci tensor Rab are formed
from gab.

We also assume that there is an equation of state of the form ρ = ρ(p\ with
dρ/dp §; 0, where ρ(p) is smooth in an interval [0, pmax] when ρ(0) > 0. When ρ(0) is
zero, in order for p{V) to exist, we have in addition to require that
P

ί [ρ(s) + s]~1ds<oo for finite p. This implied limdρ/dp = oo. Thus, in the case
o ' p-o

ρ(0) = 0, we just demand smoothness of ρ(p) in (0,pmaJ.
The global conditions on M are as follows: After adding a point, the "point-at-

infinity" A, M = Mu{A} becomes a compact manifold without boundary. At A, we
have the following asymptotic conditions: V extends to a C°-function on M with
V\Λ = 1. Furthermore g f lb=τs(l - Vfgab and σ = (l - V)\\ + F ) " 2 extend respec-
tively to a smooth metric and a smooth function on M\Q with σ\Λ = Daσ\Λ = 0. One
can show [20,21] that these conditions imply that the quantity G~γgahΌaσΌbσ is
C00 at A.
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We remark that these asymptotic conditions imply the usual ones: one easily
finds that there exists a coordinate system xa in a punctured neighbourhood of Λ,
such that

where r

2 = δabx
axb and / = O o o ( r " 1 ) means / = O ( r " 1 ) , δf=O{r~2\ a.s.o. It is less

obvious but follows from the field equations [22], that the converse is also true. In
fact, given Eqs. (2.2,2.3) gab and σ are even analytic near A.

In the sequel the notion of a "static perfect-fluid model" will refer to a solution
(M, gab9 V) satisfying the above conditions. We now point out some of their
consequences.

Lemma 1. Vs< V< 1 in E and Vmin^V< Vs in Q.

Proof The lemma follows easily by applying the maximum principle (see
Theorem 3.5 in [16]) to Eq. (2.3) on the domains Q and E separately. Possible
maxima of V on dQ are excluded by virtue of the boundary point lemma
(Lemma (3.4) in [16]).

Another elementary but important fact is contained in

Lemma 2. The pressure p is a monotonically decreasing function of V satisfying

dp τ r t /

Ί^ = ~~V~ (Q + P) ( 2 5 )

or, equivalently,

I o J
Proof Applying the Bianchi identity Da(Rab-^gabR) = 0 to (2.2,2.3) we find

Dap= — V~i(ρ + p)DaV (2.7)

and hence DaG = 0 in Q. Thus, since Q is connected, G is constant. But since G = 1
on δQ, Eq. (2.6) follows.

The point of this lemma is that one does not need any assumptions concerning
the critical set of V. We remark that since dρ/dp ̂  0, ρ is also a function of V which is
uniquely determined by Vs and satisfies dρ/dV^ 0. In the sequel we use for ρ on δQ
interchangeably the forms ρ(0) or ρ(Vs), depending on whether we consider ρ as a
function of p or as a function of V.

We finally note an important identity due to Lindblom [13].

Lemma 3. With the definitions

W=DaVDaV (2.8)

and the "Cotton tensor"

Babc = 2Dlc(Rb]a-igb]aR) (2.9)

there holds

AW=iV4W~ιBabcB
abc+V-ίDaVDaW+8πVDaVDaρ+%W-ίDaWDaW
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for all non-critical values of V. The proof is by direct computation, using
Eq. (2.2,2.3).

The function W, from (2.1), is C° across dQ. It satisfies [13]

(W-1DaVDaW)(Vs

>)-(W-1DaVDaW){Vs

<)=-$πVsρ(O), (2.11)

where ( ){VS

>) and ( ){VS

<) denote the limits F-> Vs of the quantities in brackets for
V> Vs and V< Vs respectively. Equation (2.11) follows from decomposing Eq. (2.3)
as

W~1DaVDaW= -2W1/2k + SπV(ρ + 3p), (2.12)

where k is the mean curvature of the F-level sets.

3. The Spherical Case

We now discuss some properties of a static perfect-fluid model (M, gab, V) which is
in addition spherically symmetric. Since dQ is by assumption connected it follows
in this case that Q is a ball and M ^ R 3 . The metric can be brought into the form

g=-V2dt2 + hdr2 + r2dω\ (3.1)

where dω2 = dS2 + sin 2 Sdφ 2 and V and h are smooth functions of r2 for r^rs.
Explicitly we have

/z(r) = ( l - 2 r - 1 m ( r ) ) - 1 (3.2)

r

for r^rs9 where m(r) = 4π\ρ{rr)rf2dr' and

/z(r) = ( l - 2 r " 1 m ) - 1 , F(r) = ( l - 2 r " 1 m ) 1 / 2 (3.3)

for r > rs, where m = m(rs). There is in general no explicit form of V(r) for r^rs but, as
we shall see presently, V(r) is implicitly determined by W. It follows from the
maximum principle that dV/d(r2)>0 for 0 ^ r ^ r s . Thus r 2 can be considered as a
smooth function in [_VC, Vs) with r2(Vc) = 0 and r2(Fs) = r2. Hence W is also a smooth
function in \_VO Vs\ which for later convenience we write as Wo(^) We note that
Wo(Vc) = 0 and Wo>0 in (Fc, KJ.

Specializing Eq. (2.10) to the spherical case, where Babc = 0 and g = Wo

 1dV2

+ r2(V)dω2 for F > V& we find

' +16π 2 F2(ρ + 3p)2, (3.4)

where primes denote derivatives with respect to V. Evaluating Eq. (3.4) at V= Vc9 we
find that one of the quantities

Lll3(V)=K-ψviB + 3p) (3.5)

or

(3.6)
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must vanish at F = Vc. In the spherical case, Eq. (2.12) becomes

(3.7)

and k = k(V) is given by

k=±W0

ί/2r-2(r2)'. (3.8)

If Xrfl(T )̂ = O then k(Vc) would be zero and so r = 0 would not be a regular point.
Thus L1/3(VC) = 0 holds. Dividing Eq. (3.4) by Wo and taking the limit F-> Fc, we find

ψ ^ (3.9)
In the exterior region, W0(V) is explicitly given by

m-2(l-V2)\ (3.10)

Using (2.11) and (3.10), it follows that

Wm + SVJίί-VfriWo^SπVM. (3.11)

We shall need the following uniqueness lemma.

Lemma 4 (Compare Avez [18], Kϋnzle [17]). Let there be given a model (M, gab, F),
not a priori spherical, where W=DaVDaV is a given function Wo of V which is
positive for V> Fm i n, smooth in [F m i n , Vs) and satisfies Wo(Vmin) = 0and Lγ{Vmiτ) Φθ,
where L^V) is given by Eq. (3.6). Then (M, gab, V) is a spherically symmetric solution
uniquely determined by W0(V).

Proof Using W= W0(V) in Eq. (2.12) we conclude that k = k(V). Near infinity, the
level sets of V are 2-spheres. Since, by assumption, Vmin is the only critical value of
V, the surfaces V— const form a family of nested 2-spheres for all Vmin < V< 1. In the
case where W= W0(V) and k = k(V\ the field equation (2.2) shows that

DΛ(kAB- \yAB^j =DAkAB = 0, (3.12)

where γAB and kAB are the metric and the extrinsic curvature on V= const, and DA is
the covariant derivative w.r.t. yAB. Since yAB is conformal to the unit 2-sphere, this
implies (see, e.g. [23])

&ryAB^W0-'kAB=W0-'kyAB, (3.13)

where <£T denotes the Lie-derivative w.r.t. to Γa=W0~
1DaV. We now choose a

coordinate system (5, φ) on some initial 2-sphere such that

yABdxΛdxB = r2(d32 + sin2 Sdφ2) (3.14)

and extend it by Ser& = &Γφ = 0. We find from Eq. (3.13) that the form of Eq. (3.14)
holds for all values V> Vmin, where r\V), from Eq. (3.8), satisfies

r" 2 (r 2 y = ( 2 ^ 0 ) - 1 L 1 ( F ) . (3.15)

Note that W0~
ίLί is C° at V=Vmin. It follows that gab is locally spherically

symmetric so that Eq. (3.4) holds. This, in turn, implies

(3.16)



380 R. Beig and W. Simon

Weclaim that L1(F)<Ofor F<1. This is clearfor F>FS, where W0(V) is of the form
of Eq. (3.10). For F< Vs we can argue as follows: Eq. (2.11) means that L^V) is
continuous across dQ. Thus L1(VS

<)<0. If Lί was zero for some V, Eq. (3.16) would
imply L/

1(F)>0 which is a contradiction.
It follows that Eq. (3.15) defines a monotonically increasing, for V>Vmin

positive function r2(V). Using Eq. (3.16), Eq. (3.15) can be explicitly integrated
to give

(3.17)

where C is a constant. This shows that r2(Fmin) = 0 and that r2(V) is smooth in
[Fm i n, Vs). Inverting Eq. (3.17) gives F as a function of r. Observe, finally, that
h= WQ~ 1(dV/dr)2. Since, by asymptotic flatness, lim h(r)= 1, we have to set C2 = 1,

and so h(r) and V(r) are determined. Thus (gab, V) is a unique spherically symmetric
solution which completes the proof.

4. The Condition 7<0

In the introduction, we defined the quantities

K = 6p(ρ + p)- 5ρ2 (4.1)

and

7=iκ;2 + 2κ; + (ρ+ /?) — , (4.2)

dp
where κ = (ρ+p)(ρ + 3p)~ίdρ/dp and stated some of their properties which we
prove here. The lemmas of this section require, as usual, ρ ̂  0, p ̂  0, and dρ/dp ̂  0.
It is understood that, in the case ρ(0) = 0, K and 7 are defined only for p>0.

Lemma 5. 7^0 implies K^0.

Proof. Define the quantity Φ(p) by

Y * V P 1 1 6 (4.3)

for p>0. We first show that Φ(p) can be continuously extended to p = 0. It is
obvious that Φ(0) = 0 in the case where ρ(0)>0 (dρ/dp finite). When ρ(0) = 0 and
dρ/dp is infinite, we first note that, since 7^0, λ = κ~x satisfies

| J ^ (4.4)
and hence lim dλ/dp=oo. Thus,

limpK = lim -. = l im (ψ\ = 0 (4.5)
p->o p->o λ p-+o\dpj

which, when used in Eq. (4.3), shows that Φ(0) = 0 in this case also.
By a long computation, one now finds

G ) ] (4 6)
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for p>0. If Φ were positive for some p>0 we would obtain (dΦ/dp)(p)<0 from
Eq. (4.6) which leads to a contradiction with Φ(0) = 0. Hence Φ^O which proves
the lemma.

We remark that, from Eq. (4.6) K = 0 implies 7 = 0. The converse is false, as the
example ρ = const shows.

The conditions 7^0 and K ̂  0 imply estimates for the spherical case which will
be crucial for the proof of our main theorem in the next section. One of these is
contained in [1] and is recorded here for convenience.

Let (gab, V) be spherical and Ω(V) be the (positive) function which makes Ω2g
Euclidean. Ω(V) is C1 across dQ and d2Ω/dV2 makes a finite jump there. In the
vacuum region (V^VS) one can take

(4.7)

In Q, Ω{V) satisfies

2Ω-1Ω"-Ω-2{Ω')2 = tSπρ-8πV(ρ + 3p)Ω-1Ω'-]W0-
ί=sW0-

1. (4.8)

From [1] we take over the following result.

Lemma 6. K^O implies s^O.

A quantity of prime importance is Σ(V) defined by

oκ. (4.9)

From L1/3(Fc) = 0 and from Eq. (3.9) we obtain Σ(Vc) = Σf{Vc) = 0. There holds the
following estimate for Σ(V)\

Lemma 7. 7^0 implies Σ^Oin [Fc, Vs).

Proof. Equation (3.4) implies

W^2tf=^WoVt2-^VWo

ίl2(ρ + 3p)t-^V-3W^I (4.10)

for the quantity t{V)=^W0~
 1/2V~ XΣ in the domain V^ Vc. From lΉospital'sj ule,

we obtain t(Vc) = 0. If t was negative for some V> Vc, then, by Eq. (4.10), tf(V)>0
which is a contradiction. Thus ί(F)^0 and hence Σ(V)^.0.

We remark that, using dρ/dp^O, one can show that L 1 / 3 ^0 in [Vc, Vs). Thus,
from Lemma 7,

-^V-'WoK^L^O. (4.11)

In particular, in the incompressible case K = 0, Eq. (4.11) reduces to Σ = L1 / 3 = 0 in
\VC, V^. Therefore, in this particular case, the second-order equation (3.4) can be
reduced to the first-order equation L1 / 3 = 0 which is readily integrated. This
solution, i.e. the interior Schwarzschild solution, is the only one we know of having
£ = 0 and satisfying our present criteria. Another asymptotically flat solution
having Σ = 0, due to Buchdahl, which has matter extending to infinity, is discussed
in [9].

In the next section we will need an extension of W0(V) for values V< Vc. We
define such an extension by requiring (compare [1])

Σ(V) = 0 for V<VC. (4.12)
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Lemma 8. Wo( V) exists for all V< Vc and is negative for V>0. Furthermore, Wo is C2

across V— Vc.

Proof Existence and negativity are obvious from the form of Σ. The rest follows
ϊτomΣ(Vc) = Σ'(Vc) = 0.

W0(V) does not, of course, satisfy Eq. (3.4) in the region V< Vc. Instead, we have,
for all V< Vs,Vs,

-2J, (4.13)

where

J = 0 for V>VC,
(4.14)

J = I for V<V,.

5. The Main Theorem

We now proceed to derive the divergence identities which are basic for the main
theorem. These identities use as the dependent variable the quantity W— W0(V)
where, as before W= gabDaVDbV and W0{V) is the pull-back by the map V: M->R
of the function W(°F) corresponding to a spherical reference (SR-) model. In detail,
we make the

SR-Assumption. There exists a spherical model (R3, °gab, °V) with the same equation
of state ρ(p) and the same surface potential Vs as the given stellar model. We define
W0(V)=W(V), where W(°V) = °gabD°VD$V.

We remark that it is not clear a priori that Vmin ^ Vc and for this reason we need
the extension of Wo below Vc defined in the last section. The conditions on ρ(p),
namely ρ>0, dρ/dp^O and J^O will be required for all pe(0,max(pmax,/?c)].

The function Wo satisfies, of course, DaW0 = WQDaV and

J W 0 = WW(;' + 4πV(ρ + 3p)W(;. (5.1)

To formulate a divergence-identity we perform the following conformal
rescaling of gab, W and Wo on Q

gab=v~2ψ4gab, w=ψ-*w, W0=φ-*w0. (5.2)

Here Ψ=Ψ(V) is defined, in the region V^ K, by

^ ιLlβ. (5.3)

Thereby Ψ is determined up to a constant factor Ψ(VS) which we choose to be
positive. We first note some properties of this function.

Lemma 9. Ψ(V)>0 for all V^ Vs. Furthermore, Ψ(V) is C00 for V+ Vc, C1 across
V= Vc and its second derivatives suffer a finite jump on V= Vc.

Proof The positivity is obvious from Eq. (5.3). The rest follows by noting that, due
to Lemma 8, L 1 / 3 is C 1 across V= Vc and zero for V= Vc.

We remark that the second derivatives of Ψ as a function on M at V= Vc can be
defined as follows. Writing DaDbΨ= Ψ'DaDbV+ Ψ"DaVDbV, Ψ is C2 at points of
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V=VC which are critical points of V. The non-critical points of V=VC form
2-surfaces on which DaDbΨ can be defined by taking the limit V->VC (V> Vc).

After a long computation, we obtain from Eq. (2.10), (4.13), (5.1), and (5.3),

= \w~ 1BabcB
abc+ I W-ιDa{W- W0)D\W- Wo)- ^W2J^0 (5.4)

in Q, where A and Babc are formed from gab. The inequality obviously holds
provided 7^0. In the special case ρ = const, we have Ψ = const and Σ = 0, and
Eq. (5.4) is equivalent with Lindblom's [14] Eq. (19).

We have to comment on the singular terms in Eq. (5.4). Firstly, it can be shown,
using Σ(Vc) = Σ'(Vc) = 0, that the quantity W0~

2Σ is finite jit V=VC (but discont-
inuous). Furthermore, because of the terms containing W~ι on the right-hand
side, Eq. (5.4) still only makes sense at non-critical points Fin Q. But, due to A V> 0
in Q, the critical set is nowhere dense in Q. Thus, by using the inequality (5.4) off the
critical set and taking limits, we obtain Eq. (5.4) everywhere in Q.

In the vacuum region E, we have to employ a more general equation than (the
restriction of) Eq. (5.4). Our choice is the two-parameter family of identities used by
Robinson [12] in his uniqueness proof for static black holes. For our purpose, this
family is conveniently written in terms of

gab=V~2Ψ*gab, W=Ψ-\1-V2)-3W, W0 = ψ-ί(l-V2Γ3W09 (5.5)

where Ψ{V) is defined, in E, by

Ψ=a(l-V2) + b, (5.6)

and where a and b are constants. Here we have to specify these constants as
follows:

a=^-mo2ρ(θyι(i-Vs

2)2-(l-Vs

2yι, b=ί if ρ(0)>0

(5.7)
α = l , b = 0 if ρ(0) = 0,

where m0 denotes the mass of the SR-solution. When Ψ{V) for F g Vs is the solution
of Eq. (5.3) with Ψ(Vs) = a(l — V2) + b, we obtain, as a complement to Lemma 9,

Lemma 10. ^(F)>0 for F S ^ F < 1 . Furthermore, Ψ(V) is C1 across dQ.

The proof is a simple verification. Using the variables introduced above, and
Θ = Ψ(l - V2)'1 Robinson's identity in E reads,

(5.8)

We remark that, when the definition (5.3) and Eq. (5.4) are also used in the
vacuum region, they become identical with Eqs. (5.6) and (5.8) in the case ρ(0) = 0.

Again, the inequality (5.8) is at first only valid off critical points of V in E. But in
E the geometry (gab, V) is well-known [24] to be analytic. The existence of an open
critical set would imply V— const in E which would in turn contradict the
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positivity of the total mass. Thus the critical set is nowhere dense and we reason as
before to obtain the inequality (5.8) everywhere in E.

We are now ready to show

Proposition 1. Assume we are given a static perfect-fluid model (M, gab, V) with
equation of state satisfying 7^0, and a SR-solutίon (R3, °gab, °V). Then W— Wo^0

Proof We first consider the case where ρ(0)>0. The maximum principle, when
applied to W— Wo in Eq. (5V8) yields the foliowingresult: Either W— Wo takes on its
maximum at infinity, where it vanishes. Or W—Wo has a positive (absolute)
maximum at some point q e dQ. In the latter case, the boundary point lemma gives
that naDa(W— Wo)<0 at q, where the normal na points inside E. But, on dQ,

naDa(W- Wo)= -6Θ-2Ψ-2(W- W0)VnaDaV+Θ-3naDa(W- Wo). (5.9)

Due to W- Wo>0 at q and naDaV>0 on dQ, this implies

naDa(W-Wo)\q<0. (5.10)

We now invoke inequality (5.4). Recall that Ψ is C2 except at non-critical points
(w.r.t. V) of the set V= Vc. Since this set is clearly of measure zero, Ψ - and hence
W—Wo - are still in the space W^3(Q). Application of the weak maximum
principle of Alexandrov (Theorem 9.1 in [16]) shows that

sup(W-W0)^m<ϊx{W-W0). (5.11)
Q dQ

From Eq. (2.11) we see that W- Wo and hence, due to Lemma 10, W- Wo is C1

across dQ. But then Eq. (5.11) contradicts Eq. (5.10) when the point q in the latter
equation is chosen where W— Wo takes on its maximal value. Thus we are left with
W- Wo S 0 in E which, together with Eq. (5.11) implies also sup (W- Wo) ̂  0. This
settles the case ρ(0)>0 in the proposition. Q

The argument in the case ρ(0) = 0 is formally simpler, but depends on a more
detailed knowledge of the asymptotic behaviour of (gab, V) near infinity. We first
consider Eq. (5.8) in E. The definition of asymptotic flatness in Sect. 2 yields that
gab extends to a smooth function on Eu{Λ}. This fact, using the maximum
principle on E, implies that either there is an absolute maximum of W— Wo on dQ,
or W— Wo is constant in E. Assuming, in the first case, that the value of W— Wo at
this maximum is positive, we reach a contradiction in the same way as above. Next
assume, in the second case, that W— Wo = z0 > 0 in E. Note that this possibility was
excluded in the case ρ(0)>0, where we had (with a different definition of
W—Wo)lim(W—Wo) = 0. Now the Alexandrov maximum principle again gives

sup(W"— W0)^z0, and the strong maximum principle applied near dQ shows that
Q

either W— Wo < z0 near dQ, or that W— Wo is constant also in Q. Since lim κ=oo,

it can happen that (ρ + 3p)Σ diverges on dQ, which forbids the application of the
boundary point lemma as given in Sect. 3.2 of [16]. [This is precisely the case
where ρ'(V) diverges at F->1^<.] However, a suitably generalized version of this
lemma, proven in the appendix, admits the present kind of singularity. When
W- ίV0 < z0 in Q near dQ, Lemma A shows that again naDa{W- Wg) > 0 on dQ. But
this would contradict W— Wo = z0 in E. Supposing now that W— W0 = z0 = W— Wo

everywhere, we infer, from Eq. (5.4), that Σ = 0. This is again a contradiction since
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lim κ = co, whereas the other terms in Σ remain finite on dQ. (We remark that, if

the star extended to infinity, this last conclusion could be evaded, since then Wo

would be zero where K diverges. The case K = 0 provides an example [9].)
Thus we are only left with the possibility that W— Wo in E has a non-positive

maximum on dQ. Invoking again the Alexandrov maximum principle shows that
W-W0SO holds on M for ρ(0) = 0 also.

Finally, W— Wo^0 implies Vmin^Vc since W^O everywhere and Wo<0 for
V<VC.

We remark that from Proposition 1 there follows that m, the mass of the given
solution, is not smaller than m0, the mass of the SR-solution, since asymptotically,
as K->1,

O^W-W0^(m-2-nto2)(l-V2)\ (5.12)

One could perhaps argue on physical (e.g. stability) grounds that m^m0 implies
m = m0. If this is granted, the compactification argument used above in the case
ρ(0) = 0 would imply the desired relation W= Wo. A mathematical proof is afforded
by

Proposition 2. Under the requirements of Proposition i, W= Wo and Vmin = Vc.

Proof. Let °Ω: \Va 1] ->R be the function introduced in Sect. 4 in the particular case
of the present SR-solution and define Ω(V) = °Ω(V). Since V^VC, this is well-
defined. A computation shows

RlΩ2g] = 2Ω~2[2Ω-1Ω"-Ω-2(Ω')2](W0-W). (5.13)

From Eq. (4.8), Lemma 6 and Proposition 1, we see that R[Ω2g~] ^ 0. Furthermore,
from Eq. (4.7), R[Ω2g~] vanishes in E and gab = Ω2gab has vanishing mass. Since gab

is in Cι(M)nC2(Q)nC2(E), the assumptions for the positive-mass theorem to hold
(see Bartnik [25]) are satisfied. It follows that (M,gab) agrees with (R3,<5Λb). In
particular, we have #[g]=0.

Suppose now that the square bracket on the right in Eq. (5.13) was zero for all
Vmin^V< Vs. Integrating and using that Ω is C1 across dQ, it follows that Ω(V)
=ί( l + V)2 holds for all V. Inserting this into Eq. (4.8) gives (1 - V)ρ = 6pV. Taking
the derivative w.r.t. V of the latter equation, using Eq. (2.5) and integrating yields

Q = Q0(ί-V)5

9 P=hoV-\l-V)\ (5.14)

where ρ0 is a positive constant. Thus p(V) does not go to zero for any Vs<ί. This
means that the square bracket in Eq. (5.13) cannot vanish identically. [This
contradiction is evaded when Vs = 1. In this case, Eq. (5.14) again gives rise to the
equation of state employed by Buchdahl for which X = 0.]

In order for R[g] to be zero we conclude that there are points in Q where
W= Wo. In particular, W— Wo has a non-negative maximum in Q. Using again the
maximum principle, this implies W= Wo inside Q and hence everywhere by the
boundary point lemma.

Since V attains its minimum in β, W must be zero somewhere. Since Wo > 0 for
V> Vc, it follows that Vmin= Vc. This ends the proof.

Combining Proposition 2 and Lemma 4, we obtain our main result.

Theorem. Under the requirements of Proposition i, the given model and the
SR-model are isometric.
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We finally point out that our result allows the following generalization to the
n-body case (for n = 2 compare Mύller zum Hagen [26]). Suppose that Q has n
connected components β1 ( l^ f^n) with mutually disjoint smooth connected
boundaries dQι and identical boundary values Vs of V on dQ\ Then we conclude as
before that W= Wo. In particular W>0 in E so that V has no critical values for
VS^V<1. Since the F-level sets are spheres near V=ί, Vs = const is also a
topological sphere whence dQ is connected so that n=ί. Of course, the strong
assumption on Vs renders this result not satisfactory.

6. Discussion

In this section we first comment on the question of weakening the requirements of
our theorem. Then there follows a discussion of some results on spherical
symmetry of perfect fluids in Newton's theory.

There appear to be essentially two directions in which one could try to improve
the uniqueness-result of this paper. One concerns the existence of the SR-model
which is, of course, a highly implicit requirement. Once could try to actually prove
this from the existence of the given model combined, presumably, with some
bounds on Vs depending on ρ(p). The other requirement one might try to weaken is
/ ̂  0. The problem is that this condition enters the proof at four places: It controls
the sign of s in Eq. (4.8) (via K ^ 0), the sign of Σ" in Eq. (5.4), the sign of J in Eq. (5.4),
and, for ρ(0) = 0, also the singular behaviour of Σ [see Eq. (A.8)]. Improvements at
the first two places seem possible upon strengthening Lemmas 6 and 7 respectively
e.g. assuming K^O or 7^0 only for sufficiently large values of p. Next, the
requirement on J in Eq. (5.4) is related to the existence and extension of the
SR-solution. One could remove J from Eq. (5.4) altogether if, instead of solving
Eq. (4.12) for Wo ^0, a solution of Eq. (3.4) in this region was available. As regards
the weakening of J ̂  0 in Lemma A a comment is made there.

The main challenge is, however, giving a proof of spherical symmetry for any
static perfect-fluid model satisfying the assumptions of Sect. 2 - without taking the
detour via uniqueness. It might be possible to employ the approach used here,
combined with a better understanding of the spherical case, to complete this task
also.

We now consider Newton's theory. The problem is to show spherical
symmetry, respectively uniqueness, for solutions of A V= 4πρ and Dap = — ρDaV in
R3 for certain equations of state ρ(p). The other requirements of Sect. 2 apply with
appropriate modifications (depending on whether one sets out to prove spherical
symmetry or uniqueness as explained in Sect. 1 for the relativistic case). Here,
however, direct proofs of spherical symmetry are available, which only require
positivity of/?, ρ, and dρ/dp^O. In [27] Lichtenstein solved, under some relatively
mild restrictions on the level sets of the density, a symmetry problem in
hydrodynamics, which, in particular, yields spherical symmetry in the static case.
Recalling that the present problem is equivalent to the study of the semilinear
equation ΔV=4πρ(V) on R3, we can, in the case where ρ(Vs) = 0, also invoke the
general results of Gidas et al. [28] to conclude spherical symmetry. In either case,
essential use is made of the symmetries of flat space and of the semi-linearity of the
field equation, so it is by no means clear how to extend these methods to the
relativistic case.

On the other hand, one could try to use the methods employed in this paper in
the Newtonian case also. There, clearly, the positive-mass theorem is not available.
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Also, unlike in the relativistic case, the uniqueness of the solution is no longer
related to conformal flatness of the 3-geometry. We can, however, adapt the basic
formula of the present work, naftiely the elliptic equation (5.4) which leads to
W— WQ = 0 This step seems to be of independent interest since it is a well-
established means of obtaining a-priori-bounds for the derivatives of solutions of
elliptic or parabolic equations (see, e.g., Sperb [29]).

Using the same notation as for corresponding relativistic quantities we again
introduce an SR-model, with Vc = °Vmin and the same surface potential Vs as the
given one. We define

W= δabDaVDbV, W0(°V) = δabDa°VDb°V, (6.1)

r w 8 π (m
I ^— 1/1/ f\ I ΓΛ / I

^ 1 / 3 — v v o >i tr j \P'Δ)

dρ

5 dp
Σ=Lιl3 + ΊW0-£, (6.3)

Babc = 4l(DaDιbV)Dc]V- δalbXc]-], (6.5)

where Xc = δab(DaDιbV)Dc]V,

ψ~ιψ' = (AW)~ιL (6 6)

and

Sab=ψ*δab, W-WO = Ψ-\W-WO), Babc = Babc (6.7)

in the domain \VC, Vs), extend Wo to V^ Vc as before and define J as in Eq. (4.14). We
obtain, as analogue of Eq. (5.4),

J. (6.8)

In the vacuum region, there also exists an analogue of Eq. (5.8) [which again
coincides with the restriction of Eq. (6.8) in the case ρ(0) = 0]. The correspondence
between the object Babc as defined in Eq. (6.5) and the "Cotton-tensor" (Eq. 2.9) can
be made manifest by inserting the field equations (2.2,3) into the latter. We also
remark that spherical symmetry is again characterized by W= Wo (due to an
analogue of Lemma 4) or, alternatively, by the condition Babc = 0.

In the relativistic case we showed that, for matter satisfying the Buchdahl
equation p=£ρ6/5(ρ£/5 — ρ1 / 5)~\ (ρ0 = const), uniqueness follows directly from
W—Wo^0 [9]. In the present situation we similarly obtain the same result for
p = constρ6/5, the polytrope of index 5 (which is the non-relativistic limit of the
Buchdahl condition). In general, if the equation of state satisfies /^0, we arrive, as
before, at the conclusion that W— Wo ^ 0.

In the case where ρ = const, we are able to complete this result to a uniqueness
proof. The idea is to modify the first step of Weinberger's proof [30] of a certain
"overdetermined boundary value problem" for Δ V= const [his second step just
consists of using (6.8) for Σ = I = 0 and Ψ = const to show that W-PFo^0]. It
would be of interest to find an argument corresponding to Proposition 2 for
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general equations of state (satisfying 7^0). This should then also give hints for
modifying, and perhaps improving, the relativistic proof.
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Appendix

We derive here a version of the boundary-point lemma in a situation where the
zeroth-order term diverges on the boundary dQ, but which requires a bit more
smoothness of the other coefficients of the differential operator on dQ and of dQ
itself than the standard one. In this lemma we refer, for convenience, to the set Q
and the function V as defined in Sect. 2. It is, however, only important that given a
domain Q, there exists a C2-function on Q near dQ, which is constant and free of
critical points on dQ. Hence Lemma A could be formulated and proven without
any reference to the particular situation at hand.

Lemma A. Consider a neighbourhood Q' of dQ in Q of the form

Q' = {xeQ\V'<V(x)<Vs}.

V is chosen such that there are no critical values of V for V ^ V^ Vs. Suppose there
is a function ueC2(Q')nCι(Q') which satisfies

Lu = (A + kaDa + φ ^ 0 (A.1)

in Q', where gab
eC1(Q% kaeC°(Q') and c is non-positive in Q and of the form

c = d + ef~\ Here d, e are C°(Q') and f is C°{Qf)nC1{Qf), with / + 0 in Q' and f= 0
on dQ. Furthermore, lim naDaf=F, where F is contίnuous,possibly infinite,but non-

vanishing on dQ, and where the V-level sets carry the unit-normal na (directed
towards increasing V) along the integral curves of which the lim is taken. Finally,
assume that there is a point x0 e dQ such that ~*dQ

(A.2)

for all x e Q. Then we have

naDau\Xo>0. (A3)

Proof Define a quantity v by

ι; = exp(-αF)-exp(-αF s), (A.4)

where the constant α is disposed of later. Using ΓHospitaΓs rule, we find

. (A.5)

Thus Lv admits a continuous extension to dQ, namely

Qxp(ocVs)Lv\dQ = (oc2 W- ocA V- otkaDaV- oceF'1 Wil2)\dQ. (A.6)

Since W>0 on dQ, we can choose α large enough such that Lv>0 on dQ.
Choosing, if necessary V still closer to Vs, we have Lv ̂ 0 throughout Q'. By virtue
of (A.2) we have u < u0 on the inner boundary V= V. Hence there is a constant ε > 0
such that u — u0 + εv ̂  0 on V= V. Since v vanishes on dQ and since, by continuity,
u — wo^0 on dQ, we also have u — uo + εv^0 on dQ. Furthermore L(u — uo + εv)
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^ — cu0 ^ 0 in Q. Thus, from the weak maximum principle (Corollary 3.2 of [16]),
it follows that u — u0 + εv S 0 in all of Qr. Consequently, using (u—u0 + εv) (x0) = 0,
we find that naDa(u + εv)^0 at x0, which implies

naDau\X0 ̂  -εnaDav\X0 = εaexp(- aVs)W'l\0 >0. (A.7)

The proof of Lemma A is complete.
It remains to see whether Lemma A can be applied to Eq. (5.4). Transforming

this equation back to the original metric gab, but keeping u = W— Wo, Eq. (5.4) can
clearly be brought into the form of Eq. (A.I) when we choose f(V) = (ρ + 3p)~δλ,
where λ = κ~x as before and δ = const ^ 1 . Note that the factor {ρ + 3p)1~δ is
absorbed into e. In the case of present interest ρ, p, and λ all vanish on dQ. If/ does
not go to zero on dQ, e-f'1 remains bounded so that the usual form of the Hopf
lemma applies. Suppose now that f(Vs) is zero. Using /^Owe find

(A.8)

Choosing 0<<5<l/5 it follows that

lim naDJ= lim Wi/2(df/dV)= -oo

and Lemma A applies.
We remark that 1^0 is used here only to have some control over the second

derivatives of ρ(p) near p = 0. If we had e.g. 7^0 near p = 0, the proof would also go
through.
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