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Abstract. In this paper we consider operators H(a, x) defined on 1*(Z) by
H(a’ X)lp(n) = zl tm ° ¢ —n(a’ x)W(n - m) s

where ¢(a, x)=(a, x — ), t,,, is in the algebra of bounded periodic functions on R?
generated by the characteristic functions of the sets

¢"{(a,x)eR?*|1 —a<x<a (mod1)}.

This class of hamiltonian includes the Kohmoto model numerically computed by
Ostlund and Kim, where the potential is given by

Vo, M) =AYy —g1((x+10), neZ, x, i, aeR

(see [B.I.S.T.]). We prove that the spectrum (as a set) of H(, x) varies continuously
with respect to o near each irrational, for any x. We also show that the various

strong limits obtained as a converges to a rational number P describe either a
periodic medium or a periodic medium with a localized impurity. The correspond-
ing spectrum has eigenvalues in the gaps and the right and left limits as «— P 4o

not coincide, for the Kohmoto model. The results are obtained through
C*-algebra techniques.

1. Introduction
Let us consider the following discrete one dimensional Schrodinger hamiltonian
with quasiperiodic potential, acting on [*(Z) and given by

H(a, x, App(n)=y(n+1)+pn—1)+ v, (n)y(n), 1)
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with:

va,x(n) = X[l —-a, 1[(x + na) s
where x;; -, 118 the characteristic function of the interval [1 —a, 1[ CT=[0, 1[, the
numbers x and « are in T, and A (the coupling constant) is in R. This model was
considered first by Kadanoff, Kohmoto, and Tang [K.K.T.], for a=1 ([/_ 1).
They used a renormalization group analysis and transfer matrices to construct the

energy spectrum and the wave functions. Later on, Ostlund and Kim [O.K.] gave
a numerical algorithm to compute the spectrum for any rational value of «.
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Fig. 1. The energy E has been plotted as a function of « if it is in the spectrum of H(«, x, A). The
coupling constant A is 1 and x=0

The beautiful fractal nature of the picture reflects the properties of the
renormalization group.

The model was interpreted by Luck and Petritis [L.P.] as describing the
phonon spectra in a one dimensional quasicrystal. In this latter case, the cut and
projection method based on a periodic two-dimensional structure gives rise to
Eq. (1) where « is the irrational slope of a strip and x is the position of this strip. The
fact that the potential is discontinuous is justified in some problems of
quasicrystals: for instance, the spectrum of surface states of electrons on a crystal
face with large Miller indices, and electrons on a dislocation the direction of which
is incommensurate with the lattice periods.

This model has also been related to the problem of Peierls instability for one
dimensional chains. In this respect, the work by Machida-Nakano [M.N.], based
upon a mean field approach to the Frohlich hamiltonian, gives rise to a one
electron energy spectrum very much reminiscent of Fig.1. This fact seems to
indicate that the effective one electron hamiltonian belongs to the class of
operators we consider in this paper. It is interesting to remark that o represents the
product of the modulation frequency of the charge density wave by the period of
the chain. Hence it can be modified by changing the charge carrier density. So «
appears as a physical parameter. The same is true for x which is related to phason
modes if one takes into account the fluctuation of the phonon groundstates.
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Model (1) can be also used for describing the quasisuperlattices grown

accordingto a role givenby the Fibonacci sequence whenever a = %(1/5— 1).Sucha
device leads to a number of interesting questions: computation of the electrical
resistivity, optical transmission, effective impedance, Raman scattering from
acoustic phonons, interface polariton modes, critical plasmons... [M.].

The aim of this paper is to give a mathematical explanation of the Ostlund-Kim
spectrum (see Fig. 1). We shall especially address the following questions:

— The numerical computations involved only rational values of a. Is the picture
relevant for irrational o’s? In other words, is the spectrum continuous in the
vicinity of an irrational number?

— We can easily see from this figure that the spectrum is discontinuous at a= E,

q
where p, g € IN*. In particular the right and left limits do not coincide and they both
differ from the spectrum at S More precisely the difference is given by isolated

eigenvalues located in each gap. Is there a physical interpretation of this
observation?

The main result of this paper is Theorem 1 below according to which the
spectrum is a continuous function of « in the vicinity of irrational values. This
result actually applies to more general hamiltonians acting on I%(Z) as follows:

Hooxypln)= % tme¢~"( x)pn—m), )

where the t,’s are in the subset defined below, of periodic bounded functions of
period one.

As a byproduct of the method we use here, we will get an explanation of the
discontinuity of the spectrum at rational values of a. In particular we will show that
isolated eigenvalues showing up in gaps of the right (left) limits of the spectrum
near rational numbers come from a localized impurity appearing in the
hamiltonian by taking a strong right (left) limit with respect to a.

The usual description of the hamiltonian (1) goes through the transfer matrix
formulation [K.K.T.,O.P.R.S.S., C,, L.] and leads to the result that the spectrum is
a Cantor set of zero Lebesgue measure for any irrational o and any 41+0 [S,,
BIS.T.]. We will rather use a somewhat different approach (see however
Theorem 7 below). The reason is that the transfer matrix method is essentially
limited to nearest neighbour interactions, whereas many results still hold for long
range interactions as well.

Given H(a, x) like in (2), we introduce the unital C*-algebra o, generated by the
family {T"H(«, x)T*"|neZ}, where T is the translation operator. This is natural
since the system described by H(a, x) is macroscopically translation invariant.
Therefore, translating the origin in the lattice will give as good as description as the
previous one (see [Be.] where the homogeneity in space is discussed). So o7,
contains no more information than the energy and the homogeneity properties of
the system.

Our Theorem 1can be rephrased by proving that o — 2/, is a continuous field of
C*-algebras [D., T.] near any irrational number.

To prove this, we will go one step further in the abstract setup. We will construct
a “universal” algebra .« which is, roughly speaking, the disjoint union | &,. To

define o/, one remarks that H(x, x) is generated algebraically by two ai(inds of
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operators: First of all, the translation operator T acting on [*(Z) as

(Ty)(m)=yp(n—1),
and, second, the multiplication by the function y given by

xlo, x)= Xi1—a, 1[(x) s

or more precisely, by the functions v, (n)=y(a, x+na), x, xeR. Actually, we get

TyT*=yo
where (0, %)=, x— ). rr=xe9, 2
So we can rather consider the abelian unital C*-algebra # generated by the
functions y,=y o ¢ " in [°(T?). By Gelfand’s theorem [D.], this is isomorphic to
C(9), the set of continuous functions on some compact Hausdorff space . The
map ¢ defines a *-automorphism on the algebra generated by the functions y,, and
so can be extended as a homeomorphism of Q which will be denoted also by ¢.
The C*-algebra o is nothing but the C*-crossed product of C(€2) by the group
Z acting through ¢ [I;]. Namely, every element of o/ can be approximated in

norm by finite sums Y, £, U™ where f,,is in C(Q) and U is an abstract unitary
m=—-N

implementing ¢. Q appears as a compactification of the set
A={(0,x)eT?|a¢Q and x ¢ Zo}

endowed with the weakest topology making all the y,’s continuous.

One then remarks that the restriction of ¢ to 4 does not change the value of the
coordinate a. So that if we define p as the map A—-1:=T\Q, p(«, x)=0«, then
p~*{a} is ¢-invariant. We will show that p extends as a continuous function from Q
onto T.

Given aell, let J, be the closed two sided ideal generated by the sums

m=N
Y f.U™ where the f,’s vanish on p~!{a}. Then 7, is the C*-quotient o//J,.

m=—N
We denote by 7, the quotient mapping.

As a corollary of the continuity of the C*-field «— </, at irrational numbers, if
h=h* e o/ and if n,(h) is the representative of h in 7, the gap edges of the spectrum
of n,(h) are continuous functions of a. Then our construction will show that the
topology of I coincides with the topology of T in the vicinity of any irrational
number «a, proving the main result (Theorem 1) in the first part of this paper.

Unfortunately the constructed map p is not open, so it gives no information on
the behaviour of the spectrum near a rational number. To overcome this difficulty
we have explicitly described, in the second part of this paper, a compact Hausdorff
space I' DI and a continuous open map from Q onto I'. As a consequence of this, it
is seen that the topology of Q explains the qualitative nature of the discontinuities
of the spectrum of H(a, x) near the rational values of a. Moreover, a point w in Q
can be viewed as a limit point of a sequence («,, x,,) in 4. Correspondingly, one can
construct an operator H(w) as a strong limit of H(x,, x,). We will prove (Theorem 2)

that if o, — P in the usual topology, the right and left limits exist for the spectrum.

This means that there are limit points w for which H(w)is a periodic operator of the
type given in (1) perturbed by a localized impurity (Theorem 4 and its Corollary).
H(w) admits a band spectrum and in addition a finite number of eigenvalues in the
gaps, as shown in Fig, 1.
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The paper is organized as follows. In Sect. 2 we describe precisely the results.
Section 3 is devoted to a proof of Theorem 3 concerning an abstract continuity
result in the algebraic set-up. A proof of Theorem 1 is given in Sect.4 which
concludes part one. Section 5 concerns the construction and the properties of the
spaces Q and 4 and the map p. It ends with a proof of Theorem 2. Some details on
the spectrum around a rational number and the proof of its discontinuity at such a
point for the Kohmoto model are given in the last section.

2. Notations and Main Results

The spectrum (respectively the absolutely continuous part of the spectrum, the
essential spectrum, the discrete spectrum) of a selfadjoint operator 4 will always
be denoted by a(A) [respectively 0,.(A4), Oos(A); O giscrete(4)]-

We consider the following maps: ((«, x) € T?)

oo, x)=(or, x — ) e T2,

Xo(o X) = 21 -4, 1((%) €{0, 1} .
These two maps are obviously related to model (1): Denoting by y, =y, ¢ ™",
neZ, the translates of y, through ¢", we have
Xn(a’ X) = Uy, x(n) .

Thus the map x—y,(, x) is right-continuous.

Let #(T?) denote the C*-algebra of all complex valued bounded functions on
T? with the norm given by the supremum and % the C*-subalgebra generated by
the functions y,,.

Let (t,)mez be a family in #. We define formally the hamiltonian H(x, x) by

Ho,x)= Y tpq.T", 4

meZ

where T is the shift on 1*(Z), t,, , . is the multiplication by t,, o ¢ ~"(, x) and we
assume that the ¢, , ,’s are such that the sum converges in norm and defines a
bounded selfadjoint operator.

Definition 1. Let H(a, x) be as in (4). The total spectrum at o of H is
o,= U o(H(o, x)).

x

In this case, the total spectrum at each a coincides with the spectrum:

Proposition 1. Let o €T and let H(x, x) be as in (4). Then the spectrum of H(a, x) is
independent of x and coincides with the total spectrum.

Proof. With the notations of (4),
XO,a,x+ka=TkX0,a,xT*ka XE[O,l[, kGZ

Assume first o= g H(e, x) and H(a, 0) are unitarily equivalent for any x: It is easily

checked that v,, (n)=v,, o(n) forallneZifee [0, $|: Given x, there exists ke Z
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o 1 .
satisfying x +k s € [O, 1—1[ It follows that xo, /0. = T*X0, yja, 0 T**, and by extension

to 4%, the claim is proved.

Assume now that a ¢ @Q. Let x, y be in [0, 1[. Then, there exists a sequence of
integers n, such that 0 <x+mn—y—0 when k—oo. The map x—1,(«, x) being
right-continuous, t,,,, is the strong lLimit of f, . sma=T"tmqT** Thus
o(H(a, y)) is included in o(H(e, x)) ([R.S.] p. 290).

A reasonable definition of the continuity property of the spectrum as a function
of « is that the gap boundaries are continuous functions of a:

Definition 2. Let {X,};be a family of subsets of R indexed by f e ]0,1]. This family
is said to be outer-continuous (respectively left outer-continuous, right outer-
continuous) at the point ae€]0,1] if for any closed interval F in IR such that
Z,nF=(J, there exists >0 such that X;nF=J if feJa—e, a+e[ (respectively
ﬂE[oc—s,ac[, ﬂe[a,tx+8[).

Similarly it is said to be inner-continuous (respectively left inner-continuous,
right inner-continuous) at the point « € 0, 1] if, for any open interval O in R such
that X,n0 + (, there exists ¢>0 such that Z;,n0 # (J whenever feJa—e, a+e[
(respectively fela—e,a], fe[o,o+e[).

When the family is outer-continuous and inner-continuous (respectively left
outer-continuous and left inner-continuous, respectively right outer-continuous
and right inner-continuous), we simply say it is continuous (respectively left
continuous, respectively right continuous) and we write:

2,=lim 2,
p—a

(respectively ;= lim X, respectively 2 = lim Zp>.

a>p-a a<f-a

The main result is:

Theorem 1. Let H(x, x) be as in (4). The map ae[0,1[—o0, is continuous at each
irrational number.

Theorem 2. Let H(x,x) be of type (4). The sets a,,, and 6, exist at each rational

==
q

The proof of Theorem 1 uses the following Theorem 3. Let us introduce first
some notation:

Let Q be Hausdorff compact metrizable spaces, ¢ be a homeomorphism of 2
and p be a continuous surjective map from Q onto a compact space I" such that
pe ¢ =p. Denote by &/ the C*-crossed product C(€) x,Z of the complex valued
continuous functions on Q by the action of Z through ¢. The map ¢ is
implemented by a unitary U in «/. For w in Q, we define the representation II,, of
o by I(f)pn)=f(¢ "wyp(n) and I, (Uyp(n)=yn—1) when yel*(Z). For
yerl, let J, denote the norm-closed ideal in /.

Jy={aest |I,(a)=0, wep™'(y)},

and 7, the canonical map from 2/ onto the quotient C*-algebra &/, =//J,.
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Definition 3. We say that w € Q is p-isolated whenever there is an open set U in Q
containing w, and a sequence y, in I" converging to y = p(w) such that U intersects
none of the p~*{y,}.

Note that the set of p-isolated points is open in p~*{y}.

Theorem 3. Let (2,1, p) be as before and h=h* be in C(Q) x ,Z.

(i) The spectrum o(n,(h)) is outer-continuous at every point y inI.

(i) Let y in T be such that the fiber p~*{y} contains no p-isolated points. Then the
spectrum a(n,(h)) is inner-continuous at y.

This theorem is very close to Theorem 3.1 of [T.] and Theorem4 of [Le.].
However, we do not require that the decomposition of the structure space of
C(2) x 4Z by means of 7, be Hausdorff (see Lemma 9 and Remarks 1). This is why
p-isolated points may create discontinuities in the spectrum.

As in the introduction, let Z denote the abelian C*-algebra generated by the
2. 8. Let Q denote the spectrum of 4, so that 4 is identified with C(€2), and consider
the homeomorphism ¢ of Q corresponding to the translation (o, x) € T2 (o, x — )
through #. Consider the crossed product <7 of # by Z via the action ¢.

Proposition 2. (i) The set A={(x,x)eT?*|a¢Q and x¢Za} can be canonically
identified (via evaluation) with a dense subset of Q.

(i) The points Z, —;—), p,re{0,...,q—1}, are also in Q.

Proposition 3. Let H(x, x) be of type (4) and h be the element of C() x ,Z defined by

h= Y t,U™ If a¢Q, then:
z

(@) ’;{G(oc, x)=1II, .\(h) for any x ¢ Zo.
(ii) The total spectrum o, of H coincides with the spectrum of 1,(h) in </,

r
(111) H(p/q,r/q)(h)=H <§’ a); D; TG{O, ’q_l}

Proposition 2 indicates that the “irrational points” of the square are in Q. More
generally, every point in T? gives rise to at least one character. But for some points,
one can get more than one and 2 appears as a non-locally trivial fiber bundle on
T2 This desingularization of T? is at the origin of the continuity and discontinuity
properties of the map «—o,. For instance, when o ¢ Q, x =ma € Zo, there are two
characters corresponding to the point (a, x) in T?, representing the right and left
limits as x converges to ma. More complicated is the situation where o is a rational

number S and x= 2 for re{0,...,q—1}. Here, three possibilities for a coexist,

—Z, g —0and? +0, where +0 refers to the right and left limits. The first case gives
rise to the usual periodic hamiltonian, the spectrum of which contains g bands. The

two other cases correspond to periodic operators with an impurity producing
eigenvalues in the gaps. This explains, first, the discontinuity of the spectrum at
each rational « and, second, the shape of the spectrum in [O.K.]. More precisely,

given (g, 2), we define two elements of Q by w; , = (g, 2, i, x ), where j e Z refers

to the wedge bounded by two lines with integral slope passing through (5, 2) This
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character is the limit of points converging to <§, g) within the wedge, respectively
from the right (4+) and from the left (—).

Theorem 4. Let h=h*e o/ =C(Q) X ,Z.

(i) I1,, ,(h) converges strongly to the g-periodic operator II,, ,,(h) as j tends to
+ 0.

(i) oI, (1) 6(Tyyq,pi0(h) and

adisctete(Hmj, + (h)) = J(Ha)j, + (h))\a(H(p/q, r/q)(h)) .
Corollary 1. Let H(a, x) be of type (4) and he o be the associated operator. Then

@5, x

1, ,(h)is equal to S$H 2’5 S modulo a finite rank operator, where S is a
partial isometry associated to the impurity domain of I1,,, ,(h). Moreover,

03ia=0 p1q,0,0, +)(h)
and
pr
el =01, =0 (1 (2. 1))
Since the size of the impurity domains for IT ,, ¢, 0, +)(h) and I1,, o o, -\(h) are
different, the spectra ¢, and o, , generally differ from each other. More precisely:

+
pla rlq

Theorem 7. Let H(o, x) be of type (1) and he of be the associated operator. Then:
adiscrete(H(p/q, 0,0, — )(h)) 4: adiscrete(H(p/q, 0,0, + )(h)) .

3. The Abstract Continuity Theorem

Let C(2) be the C*-algebra of continuous functions on a compact metrizable space
Q. Let ¢ be a homeomorphism of Q and & = C(Q) x ,Z be the C*-algebra defined
as the crossed product of C(Q2) by the group Z acting on C(Q) by ¢. This action is
implemented by a unitary U in .«/. We consider the dense subalgebra 2/, whose
elements are of the form
N
a= Y a,U"
n=—N

where a, e C(Q).

To each we Q corresponds a representation IT, of &7 on [*(Z) defined on the
generators by

{H,,,( f) is the multiplication by IT (f)(n)= f(¢ "w)
,U)=T.

By definition of the crossed product [P.], the map
acsd — @weﬂnw(a)

is an isometry and w e Q—I1 (a) is strongly continuous for ae <.
Itis well known that the torus T (the dual group of Z) acts by automorphisms g,
on & (the ”dual action” on the crossed product): Ve T, Vf e C(Q)

elf)=f, elU)=exp(i2n)U.
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This gives (ae &)
II(eda))= VI (a)V*, O]

where (Vy) (n)=exp(i2nnt)p(n), we 1X(Z).
Given a in &/, we now want to construct an explicit sequence (ay)y of elements

in &/, converging in norm to a. Let g be in L}(T) and let
o@)= I gtela)t

(Bochner integral). ¢, is a continuous linear operator on .« with norm less than the
L!-norm of g. Taking a sequence {gy}y such that gy=0, |lgy|,..=1 and, for any

e>0,
lim( | gN(t)dt) =0,
N \|t|>e

we have that ay=g,,(a) converges in norm to a. If, moreover, the g’s are Fourier
transforms of functions with compact support, then g, (a) belongs to .27,.

The Space of Orbits. Let us assume that there exists a continuous surjective map p
from Q onto a compact space I" such that po ¢=p.
We introduce for any yeI', ae &/, the seminorm

lal,= sup IIHw(a)II .

wep~

Clearly, |lal|,< |al. The set J,={ae | ||a|]y=0} is a closed two sided ideal in <.
We define the quotient C*-algebra «/,=.//J, with the canonical surjective
morphism 7, from o/ onto «/,. Using (5) we get g,(J J=J,, VyeT, so by extension
0,(J,)=J,, VgeLl(']I‘) This 1mp11es

Lemma 1. J,ns/, is dense in J,.
The following lemma is a generalization of a result of Elliott [E.].

Lemma 2. Let acJ,. Then lim |n,(a)| =0.
-y

Proof. We may assume that aeJ,n/, because J,no/, is dense in J, and
n=N
lal,Zllall. So a= Y. a,U" where a,e C(Q). Using
n=-N
a,= .f 0{U ""a)dt
teT
it follows that a,eJ,nC(<Q).
n=N
Since [T (@£ Y |,(a,)l, we may suppose that ae J,nC(€). So I1,,(a) is
n=—-N

a diagonal operator in the canonical basis of 13(Z) and a(w)=0, Yo ep~}(y).

Let us assume that sup |a(w)| does not tend to zero when u tends to y. There
ep~1(u)
exist ¢>0 and a sequence {w,}, in 2 such that p(w)—7 and |a(w,)|>c. Q being

metrizable and compact, there is a convergent subsequence, also denoted by w,,
with the same properties. Let w denote its limit in Q. Thus |a(w)| = ¢ and p(w)=1y, a
contradiction. Moreover, for any wep~ (u), ae C(Q),

[T, @= sup |a(e).
w'ep~ 1w

This gives the result.
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Proof of Theorem 3. Let F be a closed interval in R such that o(n,(h)nF = . By
Urysohn’s lemma there exists a continuous function g with 0 < g <1, equal to one
on F and zero on a(n,(h)). Thus, g(h) € o/ and n,(g(h))=0. By Lemma 2, there is ¢ >0
such that if |3 —y| <e then ||g(ns(h))| = n5(g(h)ll <1/2. Assuming o(ns(h))NF + &
for such B, we get a contradiction since g equals one on F. This proves the outer-
continuity.

We claim that for yeT,

otn,)=""1J, ol ). ©

In fact, for a in o/, #,(a)=0 if and only if IT,(a)=0 for all we p~'(y). [Recall that a
real E is not in the spectrum of a selfadjoint bounded operator 4 if and only if there
exists a continuous function g on R satisfying 0=<g=<1, g(E)=1 and g(4)=0.]

Now let y be as in (ii) and O be an open interval in IR such that Ona(n,(h)) + &.
By (6) there exists we p~(y) such that 0na(I1 ,(h)) + . Since p~*(y) contains no
p-isolated points, for any open set ¥~ containing w, and any sequence y, converging
to y, the fibers p~(y,) (or a subsequence) meet ¥~ for large n. Suppose that there is a
sequence 7y, converging to y such that Ona(y, (h))=(J. Then, there exists a
sequence w, converging to w with Ona(I1,, (h))= & for all n. Since the map we Q
—1II_(a) is strongly continuous, it follows that Ono(I1,(h))= & [R.S., p.290] and
we get a contradiction.

4. Proof of Theorem 1

In this section we describe partially the spectrum (also called the character space)
of the C*-algebra generated by H(x, x) and its translates, using a geometrical
partition of T?. Actually, the knowledge of a dense subset is sufficient for proving
Theorem 1.

Let H(a, x) be of type (4).

Lemma 3. If [ ] denotes the integer part, then for all n in Z,
1 X)=[x+m+1)a]—[x+na].
Proof. We have
Il x)=1<1—a<(x+no)—[x+na]<1.
<>3ImeZ such that 1 —a <(x+na)—m<1.
<>IdmeZ such that (x+ne)<m+1=<x+(n+1)x.
Moreover, [x+(n+1)a] —[x+na]e{0,1}. Actually,
0=[x+(m+Na]—[x+na]<x+na+oa—[x+nou]
={x+na}+a<2,

where { } is the fractional part.
On the other hand,

[x+@n+1Da]—[x+na]=1
<>3JkeZ such that x +na<k<x+m+1).

Now let us consider the geometry on T? determined by the generators of 4.
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Definition 4. A band in T? is a set of the form
T =An,k/An,k+ 15
where A, is a half-plane in T?,
A, ={(0,x)eR?| —na+k<x}nT?,
and (n, k) e Z>.
The interest of this definition stems from the following

Lemma 4. Let o, (respectively g, ) denote the characteristic function of T, ,
(respectively A, ;). Then % is generated by the o, ;’s or by the g, ;’s.

Proof. o, (respectively g, ;) can be expressed as a finite linear combination of g, ,
(respectively o, ;) and it is sufficient to prove the statement concerning the g, ;’s. A
typical generator of 4 is of the form (Lemma 3)

Ll x)=[x+(n+ 1] —[x+na].
Notice that this is equivalent to
n—1
[x+na]= kgo 20, X) .

So 4 is generated by the functions f,:(«, x)—>[x+ na], neZ. For n=0, such
functions are valued in {0, ..., n}. Let P, , be a polynomial of degree n+ 1 such that
for me{0,...,n},

P, (m=1 if kzm,

P, (m=0 if k<m.

Thus, P, ([x+na])e{0,1} and
P, ([x+na])=1<k<[x+na] < —na+k=x.
It follows that P, ,(f,)=0n,; is in %.

The case n<0 is similar.
It is immediate to check that

+
[x+no]= ¥ ko,u%x),

k=—o

where only a finite number of terms are not zero in the sum. This proves the
assertion.

Let 7 be the smallest set of subsets of T2 containing all the bands T, ;, which is
stable under taking finite intersections, finite unions and complements.
The T, s give a partition of T? by lines

D,={(a,na)eT?|ae[0,1[}, neZ.

Here the lines are taken modulo 1. If & is the set of such lines, we remark first that

(g,x> EDx= 2 for some re{0,...,q—1}.
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[We use the convention that Z always defines an irreducible fraction so that there

is a unique couple (p, q') such that 1 <q'<q—1, p'eZ and pq'=1+qp'. Actually,

given p, q,r we get g, 2 € D, with n=rq’, where ¢’ is the inverse of p modulo g; the

converse is immediate.

There are many lines passing through the point <Z, g), namely,
pr
<5’ E) © ,Dz Drase

and conversely, all lines passing through that point are of the form D, , ;.
Finally we note that if (o, x) € 2 for a ¢ @, then («, x) € D, for a unique neZ. In
particular, the partition of T? defined by 2 is given by polygons whose vertices are

of the form (B, 2) These polygons are the atoms of the collection 7. In particular,

every element of 7 has a nonempty interior. Note that yr is a projection of 4 for
any TeJ .
In the following figure some lines passing through (3,3) are drawn.

X

Fig. 2 «
0 1

It will be useful to define the set

p rr+1 [
IL.,=3=¢t X |— .
ol {q} [q q

Notice that for Te 7, either T contains I, , or Tnl,, ,=J.
Recall that Q is defined as the set of characters of 4. Then we get:

Lemma 5. Given¢>0and w € Q, there exists a finite partition of T? by bands (T);.;
in 7 satisfying:

— The diameter of the first projection of T, is less than ¢ for all i (such bands will be
called e-bands ).

— There is a unique j in I such that o(xr)=1.
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Proof. Let us take n> % {T_, | —n=<k<0} is a partition of T? by e-bands. Since

k=0

Z a—n,k=1l’

k=-n

there is k, such that w(s_, ;,)*0, o_, ,, being a projection in 43, it follows that
(o _,,)=1 and therefore w(o_, ;)=0if k+k,.

Let 4, be the algebra made of finite linear combinations of finite products of y,,
Then #(T%)> 4%, and

Lemma 6. If A={(x,x)eT?|a¢ @ and x ¢ Za}, then for any f in B,
Ifl= sup f (o, )]

(a,x)ed

Proof. The equality is satisfied when f is in %,. Let now f in & and a sequence
{f.}. in B, be such that f,— f. For (a, x)eT?,

|f (o )l =S (e, X) = Sl )|+ ol X)]

Thus,
| ||=(s1)1p Ifle, )= f— fnll+ SUP | falos, ).
Since
Sup, | fulot, X)) = Sup | fulet, )|
é(sup [(fu—f) (2 %)
+ sup |f(xx),
(o, x)eA

it follows that
IAI=20f—full + sup [ f(x),

a x €A
and the lemma is proved.

4 is an abelian C*-algebra with unit. Thus, 4 is identified with C(Q(%)), where
(%) is a compact metrizable space. By the Gelfand transform, the set A is
embedded in Q(%).

Proof of Proposition 2. (i) Let w be in Q(%) but not in the closure of 4. By
Urysohn’s lemma, there exists a non zero f in & with values 1 on @ and 0 on 4.
This contradicts Lemma 6.
(i) follows from the next lemma.

For w e Q(#), we define

Fo={TeT |o(i)=1}.

Since wis a homomorphism Z,isafilteron J and even an ultrafilter because T or
its complement T° is in &, for any T in 7. Let

S@)=n{T|Te#,},

where T is the closure of T in T? for the usual topology. S(w) is not empty because
the family {T | Te #,,} has the finite intersection property and the T’s are closed
subsets of the compact set T2
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Lemma 7. Sisamap from (%) into the subsets of T? with the following properties.
(i) Let weQA). If S(w) contains more than one point then

S(w)=1

(ii) S coincides on A with the inverse of the Gelfand transform.
(iii) S(€AKB)) is the union of the following sets:

U X x¢Q},

for some re{0,...,q—1}.

pla,r

I
peN,qeN*re{0,...,q— 1}

Proof. (i) Let (a, x), (¢, x) be two different points of S(w).
(a) If oo/, there exists a line in &2 which separates these two points. Thus there is
TeJ such that (a,x)e T and (oc x)e’T‘ If Te#, then («,x)¢ T, and thus
(o, x")¢S(w). If T¢F,, then T¢ is in £, and (a, x)¢ T, so we obtain again a
contradiction. P
(b) If a =0’ ¢ @, the same situation occurs. The same is true when a=o'= — and
X, x' are not in the same segment a

pla,r

p/qr

(c) Thelastcaseisa=ao' = P and x,x'el Foreach Tin &, («, x) and (o, x") are

plg,r

. . r
T, so by construction T contains I,, ,. Since there are no lines between (B, —

q49
and <£, —_;—1), so also does S(w). By (a), S(w) contains {g} x [0,1[. By(b),
q
S((O)= Ip/q,r'
Clearly if a ¢ @, S(w) is a point.

(ii) Let w=(x,a)e A. For each T in £, (¢, x) is in the interior of T; so («, x) € S(w).
Now apply (i).

(iii) SQ#)> U (e x);:

Let a¢ @Q. The map

pla,r

o r€Bo— lim  y(o, ka+e),
0<e—0

where keZ defines a character on the algebra %, Its (unique) extension to the
closure 4 is in Q. It is easily checked that if T e &, then (o, ka)e T and thus S(w)

= (o, kz) by (). b
S(QAA)> U {(— —)} :
peN,geN*,re{0,...,q— 1} q q

Given p, g, r, consider the extension to # of the character

r
w:xr€Bo— lim xr <Z +s,a+rq’s>,

0<e-0

where ¢’ is the inverse of p modulo q (pq'=1+p'q with p' e Z). If Te &, <§ 2) eT

and thus S(w) contains 2’5 . The set

T= Arq —rp’ (Arq’+q,—rp’—p)c
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isin 7 (Lemma 4) and in fact in %, by definition of w. Moreover, (B, i) is not
in T. On applying (i), S(w) is reduced to <§, 2),

S(A28)> U T,

T
peN,geN*re{0,..., g—1} pla

1)
For 6€]0,1[, we define (B, i) as the extension of the character

pr+é
W:Xr€ERBy— (—,—).
T 0 T q q

If Te#,, (I—), ﬂ) e T and T contains {E} X ]ﬁ, rti [ by construction. Hence
9 4 q q 4
S(w)=T

Q(#) is a compact metrizable (since # is separable) space for the o(%*, %)-
topology. Indeed this topology is equivalent to a natural topology associated to
the family 7. For w € Q(#) and T € %, define V= {w' € Q(B)| T € Z,,}. The family
¥ (w)={Vy| TeZ,} satisfies the axioms for a fundamental basis of neighborhoods
of w. Actually

/a,» ON Using (i) again.

VTi:V isuQ.n) 7:

when T,e #, and if o' € Vy € ¥ (w), Vy€ ¥ (). The T -topology defined this way
is Hausdorff for when w and ' are different points of (%), there exists Te 7
satisfying Te #, and T°e &,.. Thus we Vy, o' € Vi and VinVe=.

Lemma 8. The 7 -topology and the o(#*, %)-topology are equivalent on SA(%).

Proof. Let {w}; be a net in (%), 7 -converging to w. To prove that it
o(98*, B)-converges, it is sufficient to check that wy(yr)—wl(xr) for any T e Z,. By
hypothesis, for Te %, there exists f, such that if f> p,, then wze Vy. Hence
Te#,, and wy(xr)=1-1=0(x7).

Conversely, let » be the o(%*, %)-limit of a net {w;}, included in (%). For
TeZ,, wyxr)—~>o(xr)=1and thereis a B, satisfying T € #,,, for B> Bo. So wis the
 -limit of w;.

Lemma 9. The map p=pry°S is a continuous surjection from X(2) onto T
satisfying :
pe¢=p.

Proof. p is a well defined and surjective map by Lemma 7.

It is sufficient to prove that p(w,) converges to p(w) for any sequence {®,}, in
QB) T -converging to o. If Te Z#, and o,(x7)—o(xy)=1, then o,(y;)=1 and
S(w,) is contained in T for n large enough. By Lemma 5, for any ¢ there exists an
¢-band T, in Z,,. Since S(w) and S(w,) are in T;, |p(w,)— p(w)| <e.

Since S o ¢ =S is the identity on 4, we get p o ¢ = p by continuity of p and density
of 4.

Lemma 10. Let ¢ @.

(i) If wep~'(a), then S(w)=(a,x) for some x€[0,1[.
(i) A,=p~ ()N is dense in p~ ().
(iii) p~*(«) has no p-isolated points.
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Proof. (i) Let we p~'(x) and suppose that (B, x) € S(w). Let T, be an e-band in &,
(Lemma 5) and (o, x,) be a sequence in A4 which J-converges to w. Then
(B,x)e T, and | —a,| <e. The continuity of p gives o, = p(a,, x,) > p(w) = . ¢ being
arbitrary, f=o. Lemma 7 shows that S(w) is reduced to a point.

(i) It is sufficient to prove that given wep™'(®) and TeZ,, there exists
' € A,nVy(Lemma 8). By (i), S(w) = (o, x) for xin [0, 1[. Since («, x)isin T but is not
a vertex of T and since T has a non-empty interior, {(«, )|y ¢ Zoa}nT # . If we
choose (a, y) in this intersection, then («, y)€ A,NVr.

(iii) We need only to show that 4, has no p-isolated point. Let (a, x)€ 4, be a
p-isolated point. There exist T'in #,, a sequence o, in T which converges to « in the
ordinary topology of T such that p~*(a,)nVy= Q for each n. Since (o, x) is not a
vertex of T, a is in the interior of p(T) and so are «, for largen.

Case a, ¢ Q: Clearly {(a,, x) | x ¢ Zo,} n T+ &. Choosing w, in this intersection,
we get w,ep~ Y(a,) and w, €V, in contradiction with the hypothesis.

1. o
Case o, = Pn. Since o,—0a, we may suppose that — is arbitrarily small. In

particular, there exists r.€10,...,q,—1} such that I, n, is in the interior of T.
Choose w, in (%) such that S(w,,) I, a.r, (Lemma 5) and again we obtain the
contradiction w,ep~!(x,) hence w, € Vr.

Proof of Proposition 3. It is immediate to verify that
H(a, x)(h)=H(a’ X), X¢ZO¢

(7)
g, (W) =H (g’ g) .

Moreover, when a¢ @,

onh)= 1) oll{). ®

Actually, if E is in a(n,(h), E€e ) (I, (h) by (6). Hence E is in
(@)

(DEE_
(J o(M, ,(h) by density of A, in p~*(a) [R.S., p. 290]. Using Proposition 1, (7)
x¢Za
and (8) we get o, =a(n,(h)).

Now Theorem 1 is a consequence of Theorem 3, Proposition 3, and Lemma 10.

5. The Spectrum of the C*-Algebra Associated to the Hamiltonian

In this section we describe completely the spectrum of the C*-algebra generated by
the translates of H(a, x) of type (4), using the geometrical partition of T2,
We now write the different parts of the spectrum:

A={(o,x)eT?|a¢@Q and x ¢ Za},

Q' = (v, ko, s): feB— lim f(oz,kac+sa)},
0<e-0

a¢Q,keZ,se{+, -} {

pr.
Q s <_’ e ,S)}a
»/a, jeZ,re{(g—,)...,q—l}{ q q /
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where se{+, —} and (q’ —J, s ) is the character

fe#B— lim f( + s¢, 5+(rq +]q+5)ss) Voe[0,q[,

0<e—0

s p r+5> }
9= oY i) reas (577 et

As can be seen from Fig. 2, the character <§, 2, Js i) is nothing else than the

limit of points going to 2,2 within the edge between the lines D,, . ; and

D,q G+ 1)g respectlvely from the right (+) and from the left (—). When j= oo the
sign + or — is not determined. This justifies the introduction of the space 23,
because for each r, the characters <§ rT) 0 €[0, 1[, cannot be separated by left
or right limits.

For later convenience, we introduce the notation

Q=02 uQ?
where
Q%.= U Q +
t P geNs pla, >
= U 2
p,qeN* P

Theorem 5. The spectrum Q(%) of # can be identified with
Q=A0QtuQ?UQ3.

Proof. Q(#)>Q: Clearly the points of Q define characters on the algebra %,
Their (unique) extensions to the closure 4 are in (%). It is easily checked that all
these characters in Q are different.

Q> 8%): For proving that w € Q(%) is in £, it is sufficient to find an element o’
of Q which coincides with w on the projections yy, T € #Z,,: Actually, if Te J then
o(xr)€{0,1}. Thus, if T¢ Z,, then

o(xr)=0=1—(r)=1—(tr)= (1)

A 3e-type argument shows that w(f)=w'(f) Vf € 4.
We exhaust all possible cases for S(w) (Lemma 7):
(i) S(w)={(o,x)}, x¢@Q and z¢ Zx: we A by Lemma 7 (ii).
(i) S(w)={(a,ka)}, a¢ Q and keZ: We assert that we Q.
For TeJ, define

T, =TnA_;0={(B,y)eT|yzkB}
(respectively T_=TnA_, 6={(B,y)e T|y<kB}).
When Te#Z,, either T, or T_ is in %,. Actually we have T,uT_=T and

T,NnT_=. This fixes a sign + or — because =T, NR_eZ, is impossible
when R, T are in &,
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Supposeitis + and let T € #,,. Thus (a, ka) € T, and there exists ¢o(T) such that
(o, ke +¢) is in the interior of T for e€]0, ey (T)[. So, for these &,

o(xr)=1= (o, ko + &)= (o, kat, +) (x7) -
Similarly for the sign —.
(iii) S(w)= {(g 2)} withre{0,...,q—1}: We assert that in that case, 0 €Q?, ..
For jeZ, define the sectors
Sp,q,r,j, + =(A—rq’-jq, —rp’—jp)m(A—rq'—(H 1)g, —rp'—(+ l)p)c’
Sp.ari,— =(A-rg =G+ v, ~rp G+ DM A—rgr —jg, —rpr - i)' -
Recall that pg'=1+pq.
Note that (g, 2) belongs to none of these sectors.

There exists a unique sector S, , , ; ; in &%, where jeZ and se {+, —}:
Let T,e#, be such that T,nI,,,.=. Such a set exists, otherwise the
inclusion S(w)DI would contradict the hypothesis Similarly, there is T, € #,,

satisfying T,nI . So T=T,nT, being in &, must be nonempty and
TnIl

p/q.r.
plar—17

par=T NIy, 1=, Since B —)eT, T is included in a finite union of

q4q
sectors, otherwise S(w) would contain other points than {(g, 2)} These sectors

being separated by lines in &, one of them is in the filter #,. The intersection of
two of these sectors being empty, only one, say S, , , ; +, 18 in Z,,.

Define arbitrarily small (for large integers n) triangles inside the sectors

T;:,q,r,j, +,n=Sp,q,r,j, + r\(‘Anq, 1 +np)ca
Tp.qr. 0= Sp.auri.~ M Ang,np) -
The T, ,., s .S are all in J and actually in Z,: If not the intersection of the

complement of a triangle and its sector would be in &,, but this is impossible
because then B, — | would not be in the closure of the intersection.
q4q

Let us now show that if Te#, then there exists n>0 with the inclusion
TOT, 4ri 4,0 TOT, 41 i 50 8 in Z,, 50 is not empty and the assertion is proved
for n large enough

For Te #,, we get by this result

op)=1= lm 7q <<§ +a,2 P+ jq+6)e>> Vo e[0,q[

0<e—0

pr. 2
and w=\|-,—,j, + |eR .
<q q pla, +

. 1
(iv) S(w)= {s} X 2, r—;— : We assert that weQm

Let T in #,: thus, TDS(w)>1,, ,. If Tnl,, =, then the boundary of T
contains the vertical segment [ which is impossible because its boundary must

pla,r>
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be in 2. It follows that T>1,, , for Te #, and if 6€[0, 1] then

r+ad
o(xr)=1=xr <§, —q—>

Hence w= <Z ; eQl,.
This concludes the proof of Theorem 5.
Remarks 1. (i) p is not open on Q:

Let w bein Q and let Te #,,. If iy =inf(pr,(T)) and sy =sup(pr,(T)), then i, = 2—
and sp= p_” by construction. There exist @’ in Q2. , and " in Q2. ,. _ with
_{rr
Te%,n%,. This implies p(Vy)= pardll

(ii) Suppose that p is a continuous open map from Q onto I'=p(Q). Then, 'is a
topological quotient of Q for an equivalence relation the classes of which are
saturated by p. Then no fiber p~!(y) has a p-isolated point in Q.

(i) The map ¢ has been defined by extension on 2(%). Actually, one can check
that ¢ : Q—Q is explicitly defined on each component of Q by

Ao, x)= (o, x— 1),
oo, ka, s)= (o, (k—1)a, 5),

d)(p’ r,j> ) <§ar_;_p(m0d1)aj+q’as>: S€{+5_}a

q4
#(59)- (G o)

We now introduce the space I" of Sect.2:
Let p be the map from Q onto the disjoint union

r=[01[Y([0, 1[nQ) x {+, —})

defined b
efined by p@)=p) if weduQ'UQ?,

pl)=(pw),s) if weQ? se{+,—}.

For p(w) in I, let #(p(w)) be the set of neighborhoods V,,,(¢) of p(w) given for
£>0 by

{p(@)| o' e Q, p(w)eIp(@)—e p(w)+e[} if weduQ'uQ3,
{p(@)| @' € Q, p(@') € [p(w), p(w) +e[}\{(p(w), —)} if weQ,
{p(@) |0 € Q, p()eIp(@)—& p@)}\{(pw), +)} if weQ?.

Naturally we do not take into account (0, —) and (1, +).
#(p(w)) defines a fundamental basis of neighborhoods of p(w) giving a
Hausdorff topology 7, on I'. Then, p and I satisfy the hypothesis of Theorem 3:

Lemma 11. p is a continuous open map from Q onto I' such that po ¢ =p.

Proof. po¢=p follows from the definitions.
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To prove the continuity of p, it is sufficient, by the metrizability of Q, to verify

that p(w)= lim p(w,) for any w in Q and any sequence {®,}, J-converging to w.
n— oo

Thanks to Lemma 9, p is a continuous surjection from (%) onto T. Thus p is

clearly continuous at each we AUQ'UQ3.

Suppose that o= (g, 2, 7, +> € Q2. The triangles

Tm = Sp.q,r,j, + m(Amq, 1 +mp)c

are in &, for m>0. Thus p(w,) is in

for n large enough, so p is continuous on Q3.
Similar arguments give the continuity on Q2.
Before proving that p is open, let us observe a useful fact:
Let we, Te %, and let yeI' be such that its spatial part y (y=(y,s)), where
yeT and se{+,—}) is in the interval Jir, sy[ with

ir=inf(pr(T)) and sy=sup(pr(T)).

There exists o’ € Q such that S(w’)=(y, x) is in the interior of T (thus o’ e V) and
pl@)=y.
In particular for convex polygons T in £,
p(Vr)2Jig, sy[ iz, syl x { +} Ui, se[ x {—}.

To prove that p is open, we need only show that for we and T a convex
polygon in &, p(Vy) is open in I

Let o’ e Vr. We assert that there is ¢>0 such that V,,(¢) is included in p(V7).

When p(w’) € Jir, s[, the remark gives the assertion. p

When p(@)=ir, ' €Q* and iy and s; are in Q. Write ir== and let

r,05r<q—1 and jeZ be such that o'= (S,g, i, +> (note that T is not in

F via,rja.j, —) for any r and j). If ¢ satisfies e <sy—iy, then p(Vr)D Vo e)-

Proof of Theorem 2. We assert that o3, =06(#,, +,(h) for h as in Proposition 3.

The map :y e I'-a(n,(h)) is continuous (Lemma 11, Theorems 3 and 5). Let o, be
asequence in T such that P - o, and o, tends to P Since Tisincluded in I', for each
&0, is in Vi, +\(e) when n is large enough anc(l]

g, + W)= lim ol (k).
By extracting a subsequence, we may assume that the sequence {a,}, is in T\@ or
" alzn the former case, o(#,,(h)) =0,, (Proposition 3) and the assertion is proved.

Note that this argument is also valid for hamiltonians of type (4).
In the latter case, a,=p,/q, and

p o)== U (an, i).
an—1}

ref{0,..., qn
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Again by (6), (7) and Proposition 1, we get

o= U o (H ( q—>>

=0

6. The Spectrum Around a Rational Number

In the previous sections, we showed that the limits o, 5, exist for the spectrum of

p/q

the hamiltonian H | =, x) Here we give more details on a general operator in the

algebra o/ =C(Q) xd,Z associated to a “limit” character in Q2,, ..

The situation we want to describe now is, typically, the effect of an arbitrarily
large impurity placed somewhere inside a periodic partition of Z. So we introduce
the

Definition 4. Let A be a bounded operator on I(Z). Then A is called eventually
g-periodic if there exists an impurity domain I={neZ|a<n<b} with b—a=c
modulo g, satisfying for ye I4(Z),

T 9AT*%=Ay when [b,co[Dsupport(y),
THAT %p=Ayp when ]—o0,a]dsupport(y),
3k, =0 such that Yk>k,, T AT ¥~ yp(n)= Ayp(n) when n>b.

Note that the strong limit of T*AT ~* when k goes to + oo is a g-periodic
operator, which we shall denote by 4,.,.

Similarly, a bounded function on Z is said to be eventually g-periodic if the
multiplication by this function is eventually g-periodic on [%(Z).

Given (E, 2), we define two elements of Q by
pr.
i (a’ g i)’

Wy = <B, 0,0, i).
Lemma 12. (i) Let 9

dj, + (n) = Ha)j, 1(X0) (n) - H(p/q, r/q)(XO) (n) .

Then, B

d; :(m)=2 ngl (5—(imq+jq+rq’)_6—(imq+jq+rq’+1))(")'
(i) T™U L, (o) T =11,,, , (Xo)-
(iii) strong-lim I1,, , (xo) = I (g, r/a\(X0) -

j= oo

Proof. (i) By definition, d; ,(n) is

. p ., r P p r
iltTo A1 - (plate), 11 <na + 5 te(rq +14+n)> — X1 - pja. 11 (ng + a)

We treat only the case +.
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Let us assume first that ng + 261 Then n= —rq’ +kq for some keZ. Thus,

d; ,(n)= 01<i?—1»0 Xi1 - pja—e, 11(€q(K+7)) =0
_f0 if kx—j
T if k< —j.
If now n—g+ge<l—§), then n= —rq +kq—1 for some keZ, and
0 if k=—j
d;,+(n)= {—1 if k<—j.

Finally, suppose that ng + 2¢Zu <Z— S)

Lett=1— Z]IZ - ns + 2) (mod 1). Then t+0 by hypothesis. Assume that ¢t >0

and choose a sufficiently small ¢ that

t
< . . a4l
rp +Jq+n+1‘
Then,

,
O<n§ + g +s(rq’+jq+n)§n§ + p +elrg +jg+n+1|—¢

p r
<n-=+-+t—¢
9 4
=1-P2 .
q

Thus d; . (n)=0. In the same way, d; ,(n)=0 when t<O0.
(i) is immediate and (iii) follows from (ii).

Remark 2. Note that the difference between I, ,(xo) and I, ,4(xo) is not a
compact operator, so the proof of Theorem 4 is not direct.

Let #4(w,) denote the algebra of bounded functions on Z generated by
I,,(x,), neZ.

Lemma 13. Any f in By(w.) is eventually g-periodic.

Proof. The previous lemma shows that, when j tends to =+ infinity, the strong limit
of T, ,(xo)T*’ coincides with some g-periodic function. Thus, I, (xo) is
eventually g-periodic. By translation, this is also true for I1,,,(x,) =11 4-n(, ,\(Xo)-
Since the eventually g-periodic functions form an algebra, the lemma is proved.

Definition 5. A bounded operator A on [*(Z) has a finite interaction range when
there exists >0 such that {e,, Ae,,» =0 if [n—m|>r, where {e,}, is the canonical
basis of I*(Z).

Theorem 6. Let A be a self-adjoint bounded operator on 1%(Z) with a finite
interaction range and which is eventually q-periodic. Let A, be its q-periodic part.
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Then,
oess(A) = o‘eSS(Apel') and aac(A) = aac(Aper) *

Proof. Let I =]a, b[ denote the impurity domain of 4 and P_ (respectively P,, P.)
the projection onto I2(]— o0, a[) (respectively 1*(a, b[), I*([b, o).
If ~ means equality modulo a finite rank operator, we have:

P_AP,~0,
P,AP_=~0,
A~P,AP,®P_AP_.
Consider the partial isometry S; on [*(Z) associated to the impurity domain I:
sw)={Je ok neo,
Then S¥S;=1, S,Sf =1—P,. Clearly, the operator
B=S,(P, AP, ®P_AP_)S*

consists in chopping off the impurity and gluing together the periodic parts on the
left and on the right. B is not yet a periodic operator because the P, and P_ parts
are disconnected, but S¥BS;~ A4, The theorem is now a consequence of the
classical Weyl and Birman-Kato-Rosenblum theorems [K.].

Note that if 4 is an eventually periodic self-adjoint operator, the strong limit
Ay, of T'AT ™/ when j goes to + infinity exists and satisfies a(4) D a(A4,.,)-
Using this result, together with Lemmas 12 and 13, we obtain the

Corollary 2. Let he sfy. Then 11,  (W=I1,, ,4(h) up to a partial isometry S;
associated to the impurity domain of 11, ,(h) and

Jess(ij, i(h)) = aac(ij, :t(h)) = O-(H(P/'Iy"/q)(h)) '
Now Corollary 1 is immediate.
Proof of Theorem4. Let he of and ¢>0. There exists h, € o/, such that |h—h,|| <e.
So
”ij, *(h)—'ij, *(he)” <eé.

(i) The strong limit of I1,,, , (h)=T"II )y /a0, +)(h) T~ when j— + co is equal
to I1 4. va(he) (se€ proof of Lemma 13). Thus,

s—lim I, ,(h)=11,, /q(h)

jot
and
oll,, ,(h)=0(,, (b)) for j=*j.

Thus, o(I1,,, ,(h)) contains o(I1,,, ,q(h).
(i) Let G be an open gap in o(Il,,, ., (), d be the length of G and choose

0<8°<E'
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By perturbation theory, o(Il,, ,/,(h;) does not intersect G* for ¢ <g,, where
=[inf(X)+e¢, sup(X)—e]. Corollary 1 implies that

aess(ﬂwj, + (hs)) = aac(ij, t(he)) = G(H(p/q,r/q)(hs)) .

We avoid the accumulation points of 6.(I1,, . , (h,)) if we restrict to G2*. Now the
number of eigenvalues (with multiplicity) of 1,, ,(h) contained in G*®° is
uniformly bounded by the number of eigenvalues (w1th multiplicity) of I1,, , (h,,)
contained in G** for

[y, (h)—11,, ()l <2¢.

Thus, o(I1,,, ,(h)NG>* is a set of isolated elgenvalues with finite multiplicity.
Takmg so—>0 one concludes that o(I1,,, ,(h))NG is in GgiserereI1 o), , (H))-

Wj, +

In the case of the Kohmoto model H(a, x) of type (1), one can give a more precise
result. The associated operator h in C(2) x ,Z has the form

h=U+U*+ly,. )

We suppose in what follows the coupling constant A to be non-zero:

T pia =0 (psq, +)()) (proof of Theorem 2)
= U o) [f(6)]
w€Rp/q, +

=0 (pjq,0,0,+(F)  (Lemma 12).

The impurity domains are of different sizes for I, o, o, +)(h) and I, o, o, —(h): if
the continued fraction expansion of p/q contains an even (respectively odd)
number of quotients, the first (respectively second) one has size g’ and the other
q—q.

Let us first recall notations and the transfer matrix technique (for more details,
see [B.L.S.T.]). In order to find a generalized (not normalized a priori) eigenvector
yw,(neN) of the hamiltonian (1), corresponding to the eigenvalue E, it is equivalent
to solve, up to a common scalar multiple, for (@,(n € N)) %0 (®, e C?), the following
set of equations:

?,.,=T(E)D,,

AR
q’"'( v(n) )

T;,(E)= (E’“Afaz,x(n) —(1))

We also introduce the “resonant transfer matrices”:
M(E)=TE)T,_(B)... T(E)Ty(E),
Mq’(E) = T;(E)'I:; —1(E)... Ti(E)To(E) .

Considering the case that the continued fraction expansion of p/q contains an
even number of quotients (the other case can be treated similarly), we consider now
the problem of finding a generalized eigenvalue for the hamiltonian IT,, 4 o, —(h)

where

and
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[respectively I, o.0,+)y(h)]. On writing ®=&, and &' =&, (respectively
@'=9,_,),itisimmediate to verify that this problem is equivalent to solving, up to
a common scalar multiple, the following set of equations for a non-zero &, (¢, € €2,

nelN):
$o=2
&=
ME),=&ysy  (m21orns—1)
My(E)éo=¢&,  (tespectively M (E)" ' M E)éo=E,).

We can now state the following:

(10)

Lemma 14. The following conditions are equivalent:

(l) E € o'1:liscrete(17(p/q, 0,0, — )(h))u adiscrele(H(p/q, 0,0, + )(h)) .

(ii) The spectrum of M (E) has multiplicity 1 and ® and @' are eigenvectors of M (E)
with different eigenvalues. Moreover, M ,(E)® is a multiple of @ or M (E)®' is a
multiple of ®.

(iii) Tr(M(E))=+|/4+4>.

Moreover, if E € 6 giscrereI(p/q, 0,0, —)(W), then the operator (I, o, 0, +)(h)) admits
a generalized eigenvector with eigenvalue E which increases at both n— + oo, The
same statement holds on replacing + by —.

Before going to the proof of this lemma, let us show that it implies Theorem 7:

First, we remark that any (possibly complex) solution E of the equations (iii)
appears as an element of the spectrum of a selfadjoint operator and consequently is
real. So, the equations (iii) have 2q real solutions. By the remark at the end of
Lemma 14, the discrete spectra of the operators II,, o, o, - (k) and II,;, o o, +)(h)
are disjoint and the result follows.

Proof of Lemma 14. A general solution of Egs. (10) is a superposition of solutions
for which @ and @’ are eigenvectors of M (E). Assume (i) and suppose that M (E)
has its spectrum contained in the unit complex circle. Then &, cannot tend to 0 at

infinity. It follows that o(M (E)) = {(ﬁ, %)} with |B| <1, since det(M (E))=1. For

the same reason, @ (respectively @) must be an eigenvector of M (E) correspond-
ing to the eigenvalue 5 (respectively fB) and (ii) follows. The converse is trivial. The

remark at the end of the statement follows easily from the same argument: an
exchange of @ and ¢ allows to transform the set of equations for the operator
I (pjq,0,0, +)(h) into those for 11, 0,0, -y(h)- ‘ o

Using Lagrange polynomials in order to express the eigenprojections of M (E),
we get that (ii) is equivalent to

(M(E)— )M (E)(M (E)—)=0

or

1 1
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Since both operators on the left-hand side have one dimensional kernel and range,
one has equivalently:

or

Tr(M(E)M(E))= B Tr(M,(E))

Tr(M (E)M (E))= % Tr(M,(E)).

Using the fundamental invariant (see [B.I.S.T.])

(Tr(ME)))* +(Tr(M(E)))* +(Tr(M(E)M (E)))*

—Tr(M(E)) Tr(M(E)) Tt (M (E)M (E)) =4+ 12,

one gets the equivalence of (ii) and (iii) easily and this ends the proof.

Remark 3. The method of proof does not allow to decide simply, amongst the
whole set of solutions of Lemma 14 (iii), what are the eigenvalues of the operators
I y4.0,0, —(h) or II,, 0.0, +\(h). Numerically, it seems that all but one of the
eigenvalues appear in one gap of their common periodic part, and each gap of each
operator contains one eigenvalue, the last eigenvalue can appear as either the least
upper bound or the greatest lower bound of the spectrum, these two situations
being mutually exclusive with respect to the exchange of + and —.
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