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Abstract. In this paper we consider operators H(a, x) defined on 12(Έ) by

H(a,x)ψ(ri) = Σ mφ
meΈ

where φ(oc, x) = (oc,x — α), tm is in the algebra of bounded periodic functions on R 2

generated by the characteristic functions of the sets

This class of hamiltonian includes the Kohmoto model numerically computed by
Ostlund and Kim, where the potential is given by

υatx(n) = λχ{1 _βt n(x + ncc), n eZ, x, λ, α e R

(see [B.I.S.T.]). We prove that the spectrum (as a set) of H(oc, x) varies continuously
with respect to α near each irrational, for any x. We also show that the various

strong limits obtained as α converges to a rational number - describe either a

periodic medium or a periodic medium with a localized impurity. The correspond-

ing spectrum has eigenvalues in the gaps and the right and left limits as α-> - do

not coincide, for the Kohmoto model. The results are obtained through
C*-algebra techniques.

1. Introduction

Let us consider the following discrete one dimensional Schrόdinger hamiltonian
with quasiperiodic potential, acting on 12(Z) and given by

α, x, λ)ιp(n) = ψ(n+l) + ψ(n-l) + λvafX(ή)ψ(ή), (1)
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with:

where χ{1 _α> n is the characteristic function of the interval [1 — α, 1 [ CT=[0,1 [, the
numbers x and α are in T, and λ (the coupling constant) is in JR. This model was
considered first by Kadanoff, Kohmoto, and Tang [K.K.T.], for α = ^(j/5-l).
They used a renormalization group analysis and transfer matrices to construct the
energy spectrum and the wave functions. Later on, Ostlund and Kim [O.K.] gave
a numerical algorithm to compute the spectrum for any rational value of α.
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Fig. 1. The energy E has been plotted as a function of α if it is in the spectrum of H(oc, x, λ). The
coupling constant A is 1 and x = 0

The beautiful fractal nature of the picture reflects the properties of the
renormalization group.

The model was interpreted by Luck and Petritis [L.P.] as describing the
phonon spectra in a one dimensional quasicrystal. In this latter case, the cut and
projection method based on a periodic two-dimensional structure gives rise to
Eq. (1) where α is the irrational slope of a strip and x is the position of this strip. The
fact that the potential is discontinuous is justified in some problems of
quasicrystals: for instance, the spectrum of surface states of electrons on a crystal
face with large Miller indices, and electrons on a dislocation the direction of which
is incommensurate with the lattice periods.

This model has also been related to the problem of Peierls instability for one
dimensional chains. In this respect, the work by Machida-Nakano [M.N.], based
upon a mean field approach to the Frόhlich hamiltonian, gives rise to a one
electron energy spectrum very much reminiscent of Fig. 1. This fact seems to
indicate that the effective one electron hamiltonian belongs to the class of
operators we consider in this paper. It is interesting to remark that α represents the
product of the modulation frequency of the charge density wave by the period of
the chain. Hence it can be modified by changing the charge carrier density. So α
appears as a physical parameter. The same is true for x which is related to phason
modes if one takes into account the fluctuation of the phonon groundstates.
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Model (1) can be also used for describing the quasisuperlattices grown
according to a role given by the Fibonacci sequence whenever α = J(]/5 — 1). Such a
device leads to a number of interesting questions: computation of the electrical
resistivity, optical transmission, effective impedance, Raman scattering from
acoustic phonons, interface polariton modes, critical plasmons... [M.].
The aim of this paper is to give a mathematical explanation of the Ostlund-Kim
spectrum (see Fig. 1). We shall especially address the following questions:
- The numerical computations involved only rational values of α. Is the picture
relevant for irrational α's? In other words, is the spectrum continuous in the
vicinity of an irrational number?
- We can easily see from this figure that the spectrum is discontinuous at α = -,

where p,qe N*. In particular the right and left limits do not coincide and they both

differ from the spectrum at -. More precisely the difference is given by isolated

eigenvalues located in each gap. Is there a physical interpretation of this
observation?

The main result of this paper is Theorem 1 below according to which the
spectrum is a continuous function of α in the vicinity of irrational values. This
result actually applies to more general hamiltonians acting on 12(Έ) as follows:

% * ( « ) = Σ tmoφ-n(a,x)ψ(n-m), (2)

where the ίm's are in the subset defined below, of periodic bounded functions of
period one.

As a byproduct of the method we use here, we will get an explanation of the
discontinuity of the spectrum at rational values of α. In particular we will show that
isolated eigenvalues showing up in gaps of the right (left) limits of the spectrum
near rational numbers come from a localized impurity appearing in the
hamiltonian by taking a strong right (left) limit with respect to α.

The usual description of the hamiltonian (1) goes through the transfer matrix
formulation [K.K.T., O.P.R.S.S., C, L.] and leads to the result that the spectrum is
a Cantor set of zero Lebesgue measure for any irrational α and any λή=O [S.,
B.I.S.T.]. We will rather use a somewhat different approach (see however
Theorem 7 below). The reason is that the transfer matrix method is essentially
limited to nearest neighbour interactions, whereas many results still hold for long
range interactions as well.

Given H(a, x) like in (2), we introduce the unital C*-algebra sίΛ generated by the
family {TnH(oc,x)T*n \neZ}, where T is the translation operator. This is natural
since the system described by H(oc,x) is macroscopically translation invariant.
Therefore, translating the origin in the lattice will give as good as description as the
previous one (see [Be.] where the homogeneity in space is discussed). So stfΛ

contains no more information than the energy and the homogeneity properties of
the system.

Our Theorem lean be rephrased by proving that 0L-*s/a is a continuous field of
C*-algebras [D., T.] near any irrational number.

To prove this, we will go one step further in the abstract setup. We will construct
a "universal" algebra si which is, roughly speaking, the disjoint union (J siΛ. To

α

define s/9 one remarks that H(a,x) is generated algebraically by two kinds of
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operators: First of all, the translation operator T acting on 12{E) as

(Tψ)(n) = ψ(n-1),

and, second, the multiplication by the function χ given by

or more precisely, by the functions ι;αx(n) = χ(α,x + nα), x, αeR. Actually, we get

= χoφ, (3)
where φ(oc, x) = (oc,x — a).

So we can rather consider the abelian unital C*-algebra 38 generated by the
functions χn = χ° φ~n in /°°(T2). By Gelfand's theorem [D.], this is isomorphic to
C(Ω), the set of continuous functions on some compact Hausdorff space Ω. The
map φ defines a *-automorphism on the algebra generated by the functions χM, and
so can be extended as a homeomorphism of Ω which will be denoted also by φ.

The C*-algebra stf is nothing but the C*-crossed product of C(Ω) by the group
ΊL acting through φ [P.]. Namely, every element of stf can be approximated in

N

norm by finite sums £ fmUm, where fm is in C(Ω) and U is an abstract unitary
m=-JV

implementing φ. Ω appears as a compactification of the set
^ = {(α,x)eT2 |α£Q and xφZoc}

endowed with the weakest topology making all the χM's continuous.
One then remarks that the restriction of φ to A does not change the value of the

coordinate α. So that if we define p as the map y l ^ I : = T\Q, p(α,x) = α, then
p ~1 {α} is ^-invariant. We will show that p extends as a continuous function from Ω
ontoT.

Given αel , let Ja be the closed two sided ideal generated by the sums
m = N

Σ /m^m> where the /m's vanish on p~ι{u). Then j / α is the C*-quotient .«///«.
m=-N

We denote by ηa the quotient mapping.
As a corollary of the continuity of the C*-field α->j/α at irrational numbers, if

h = h*es/ and if ηa(h) is the representative of h in j / α , the gap edges of the spectrum
of ηa(h) are continuous functions of α. Then our construction will show that the
topology of I coincides with the topology of T in the vicinity of any irrational
number α, proving the main result (Theorem 1) in the first part of this paper.

Unfortunately the constructed map p is not open, so it gives no information on
the behaviour of the spectrum near a rational number. To overcome this difficulty
we have explicitly described, in the second part of this paper, a compact Hausdorff
space Γ JI and a continuous open map from Ω onto Γ. As a consequence of this, it
is seen that the topology of Ω explains the qualitative nature of the discontinuities
of the spectrum of H(α, x) near the rational values of α. Moreover, a point ω in Ω
can be viewed as a limit point of a sequence (απ, xn) in A. Correspondingly, one can
construct an operator H(ω) as a strong limit oϊH(an, xn). We will prove (Theorem 2)
that if απ-> - in the usual topology, the right and left limits exist for the spectrum.

q
This means that there are limit points ω for which H(ώ) is a periodic operator of the
type given in (1) perturbed by a localized impurity (Theorem 4 and its Corollary).
H(ω) admits a band spectrum and in addition a finite number of eigenvalues in the
gaps, as shown in Fig. 1.
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The paper is organized as follows. In Sect. 2 we describe precisely the results.
Section 3 is devoted to a proof of Theorem 3 concerning an abstract continuity
result in the algebraic set-up. A proof of Theorem 1 is given in Sect. 4 which
concludes part one. Section 5 concerns the construction and the properties of the
spaces Ω and A and the map p. It ends with a proof of Theorem 2. Some details on
the spectrum around a rational number and the proof of its discontinuity at such a
point for the Kohmoto model are given in the last section.

2. Notations and Main Results

The spectrum (respectively the absolutely continuous part of the spectrum, the
essential spectrum, the discrete spectrum) of a selfadjoint operator A will always
be denoted by σ(A) [respectively σac(A), σess(A% σdigcrete(i4)].

We consider the following maps: ((α,x)eT2)

These two maps are obviously related to model (1): Denoting by χn = χ0°φ~n,
neΈ, the translates of χ0 through φn, we have

Thus the map x-+χn((x,x) is right-continuous.
Let Jf(TΓ2) denote the C*-algebra of all complex valued bounded functions on

TΓ2 with the norm given by the supremum and 36 the C*-subalgebra generated by
the functions χn.

Let (ίJmez be a family in J*. We define formally the hamiltonian iί(α, x) by

H(a,x)= Σ tm^xT
m, (4)

meZ

where Tis the shift on 12(Έ), tmax is the multiplication by tm°φ~n(a,x) and we
assume that the £w,α)JC's are such that the sum converges in norm and defines a
bounded selfadjoint operator.

Definition 1. Let H(α, x) be as in (4). The total spectrum at α of H is

σΛ=l)σ(H(a,x)).
X

In this case, the total spectrum at each α coincides with the spectrum:

Proposition 1. Let α e T and let H(a,x) be as in (4). Then the spectrum of H(ot,x) is
independent of x and coincides with the total spectrum.

Proof With the notations of (4),

xe[0,l[, keZ.

Assume first α = -. H(α, x) and H(α, 0) are unitarily equivalent for any x: It is easily
q

checked that vp/qt ε(ή) = vp/qt 0(w) for all n e Z if ε e 0, - . Given χ9 there exists k e TL
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satisfying x + k - e 0, - . It follows that χ0>Plqf x = TkχOiPlqtOT*k, and by extension
^ L ^L

to 0ί, the claim is proved.

Assume now that α£Q. Let x,y be in [0,1[. Then, there exists a sequence of
integers nk such that 0^x + nkoc — y->0 when fc->oo. The map x^ίm(α,x) being
right-continuous, tmay is the strong limit of tm α x+nk<x=Tktm α xT*k. Thus
σ(iί(α,y)) is included in σ(iί(α,x)) ([R.S.] p. 290).

A reasonable definition of the continuity property of the spectrum as a function
of α is that the gap boundaries are continuous functions of α:

Definition 2. Let {Σβ}β be a family of subsets of IR indexed by β e ]0,l]. This family
is said to be outer-continuous (respectively left outer-continuous, right outer-
continuous) at the point αe]0,1] if for any closed interval F in R such that
ΣanF = 0, there exists ε>0 such that Σβr\F — 0 if j?e]α — ε, α + ε[ (respectively
jSe[α-ε,α[, j8e[α,α + ε[).

Similarly it is said to be inner-continuous (respectively left inner-continuous,
right inner-continuous) at the point α e ]0,1] if, for any open interval 0 in R such
that ΣanO + 0, there exists ε>0 such that ΣβnOή=0 whenever βe]α —ε, α + ε[
(respectively β e ]α — ε, α], /? e [α, α + ε[).

When the family is outer-continuous and inner-continuous (respectively left
outer-continuous and left inner-continuous, respectively right outer-continuous
and right inner-continuous), we simply say it is continuous (respectively left
continuous, respectively right continuous) and we write:

Σ ^ l i m ^

respectively Σ~ = lim Σβ9 respectively Σ+ = lim Σβ\.
α>0->α a<β-><x J

The main result is:

Theorem 1. Let H{a,x) be as in (4). The map αe [0, l[->σα is continuous at each
irrational number.

Theorem 2. Let H(α, x) be of type (4). The sets Gp/q and σ~/q exist at each rational

The proof of Theorem 1 uses the following Theorem 3. Let us introduce first
some notation:

Let Ω be Hausdorff compact metrizable spaces, φ be a homeomorphism of Ω
and p be a continuous surjective map from Ω onto a compact space Γ such that
poφ=p. Denote by stf the C*-crossed product C(Ω) xφΈ of the complex valued
continuous functions on Ω by the action of Έ through φ. The map φ is
implemented by a unitary U in s/. For ω in Ω, we define the representation Πω of
jtf by Πω(f)ψ(n) = f(φ-nω)ψ(n) and ilω(l7)v?(n) = φ(n-l) when ψel2(Z). For
7 e Γ, let J y denote the norm-closed ideal in si.

and ηγ the canonical map from si onto the quotient C*-algebra siΊ =
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Definition 3. We say that ω e Ω is p-isolated whenever there is an open set U in Ω
containing ω, and a sequence yn in Γ converging to y=p(ω) such that U intersects
none of the p~x{yn}.

Note that the set of p-isolated points is open in p~x{y}

Theorem 3. Let (Ω,Γ,p) be as before and h = h* be in C(Ω) xφΈ.
(i) The spectrum σ(ηy(h)) is outer-continuous at every point y in Γ.

(ii) Let y in Γ be such that the fiber p~ 1{y} contains no p-isolated points. Then the
spectrum σ(ηy(h)) is inner-continuous at y.

This theorem is very close to Theorem 3.1 of [T.] and Theorem 4 of [Le.].
However, we do not require that the decomposition of the structure space of
C(Ω) xφZ by means of ηy be Hausdorff (see Lemma 9 and Remarks 1). This is why
p-isolated points may create discontinuities in the spectrum.

As in the introduction, let 38 denote the abelian C*-algebra generated by the
χΛ's. Let Ω denote the spectrum of ̂ , so that 36 is identified with C(Ω), and consider
the homeomorphism φoϊΩ corresponding to the translation (α, x) e TΓ2 ->(α, x — α)
through J*. Consider the crossed product si of @t by Έ via the action φ.

Proposition 2. (i) The set yl = {(α,x)eT2 |α^Q and xφΈoc} can be canonically
identified (via evaluation) with a dense subset of Ω.

(ii) The points (->-), P, τ*e{0, ...,q— 1}, are also in Ω.

Proposition 3. Let H(u, x) be of type (4) and h be the element of C(Ω) x φΈ defined by

(i) H(a,x) = Π{afX)(h) for any
(ii) The total spectrum σa of H coincides with the spectrum of ηa(h) in s/a.

(iii) Π(pMq)(h)=H(j,^), p, re{0,...,q-l}.

Proposition 2 indicates that the "irrational points" of the square are in Ω. More
generally, every point in T 2 gives rise to at least one character. But for some points,
one can get more than one and Ω appears as a non-locally trivial fiber bundle on
TΓ2. This desingularization of T 2 is at the origin of the continuity and discontinuity
properties of the map α->σα. For instance, when α^Q, x = moceZoc, there are two
characters corresponding to the point (α, x) in TΓ2, representing the right and left
limits as x converges to ma. More complicated is the situation where α is a rational

number - and x= - for re{0, ...,q — 1}. Here, three possibilities for α coexist,

-, — 0 and - +0, where ±0 refers to the right and left limits. The first case gives

rise to the usual periodic hamiltonian, the spectrum of which contains q bands. The
two other cases correspond to periodic operators with an impurity producing
eigenvalues in the gaps. This explains, first, the discontinuity of the spectrum at
each rational α and, second, the shape of the spectrum in [O.K.]. More precisely,

given ( -, - j , we define two elements of Ω by ωjΛ = I -, -J, ± 1, where; eZ refers

to the wedge bounded by two lines with integral slope passing through (-,-) . This

\4 q)
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character is the limit of points converging to (-, - I within the wedge, respectively

from the right ( + ) and from the left (—).

Theorem4. Leth = h*es/ = C(Ω)xφZ.
(i) Πωj ±{h) converges strongly to the q-periodic operator Π{pJq rJq)(h) asj tends to
±00.
(ii) σ(Πω. ±(h))Dσ(Π{p/q,r/q)(h)) and

Corollary 1. Let H(a, x) be of type (4) and he si be the associated operator. Then

Πω. ±(h) is equal to S%H ( -, - j S+ modulo a finite rank operator, where S+ is a

partial isometry associated to the impurity domain of Πω. ±(h). Moreover,

4,0,0, ±)V

and

σ.JΠ^ ± (A)) = σac(77ωj. ± (h)) = c

Since the size of the impurity domains for Πip/qfO>Of +)(h) and Π(p/qOfOf _}(fr) are
different, the spectra σp/q and σp/q generally differ from each other. More precisely:

Theorem 7. Let H(<x,x) be of type (1) and he si be the associated operator. Then:

σdiscτete(Π(p/q, 0,0, -)(")) + σdiscrete(^(p/g, 0, 0, +)("))

3. The Abstract Continuity Theorem

Let C(Ω) be the C*-algebra of continuous functions on a compact metrizable space
Ω. Let φ be a homeomorphism of Ω and si = C(Ω) xφZ be the C*-algebra defined
as the crossed product of C(Ω) by the group Z acting on C(Ω) by φ. This action is
implemented by a unitary U in si. We consider the dense subalgebra si0 whose
elements are of the form

N

α= Σ anυ\
n=-N

where an e C(Ω).
To each ω e Ω corresponds a representation Πω of si on 12(Έ) defined on the

generators by

\Πω{f) is the multiplication by Πω(f)(ή)=f(φ~nω)

[Πω(U)=T.

By definition of the crossed product [P.], the map

is an isometry and ωeΩ->i7ω(α) is strongly continuous for aestf.
It is well known that the torus T (the dual group of Έ) acts by automorphisms ρt

on si (the "dual action" on the crossed product): VίeT, V/eC(Ω)

= exp(i2πt)U.
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This gives (a e si)

Πω(ρt(a))=VtΠω(a)V*, (5)

where (Vtψ)(ri) = exp(i2πnt)ψ(n\ ψel2(%).
Given a in sd, we now want to construct an explicit sequence (aN)N of elements

in J / 0 , converging in norm to a. Let g be in I}(W) and let

Qg(a)= ί g(ήρt(a)dt
ίeT

(Bochner integral). ρg is a continuous linear operator on si with norm less than the
Zf-norm of g. Taking a sequence {gN}N such that gN^0, ||g]vllLi = l a n d, for any
ε>0,

limf J gN(ήdt)=O,
N \\t\>ε )

we have that aN=QgN(a) converges in norm to a. If, moreover, the g '̂s are Fourier
transforms of functions with compact support, then ρgN(a) belongs to s/0.

The Space of Orbits. Let us assume that there exists a continuous surjective map p
from Ω onto a compact space Γ such that poφ=p.

We introduce for any yeΓ, aesi, the seminorm

||α| |,= sup | | J 7 » | | .
ωep~ί(y)

Clearly, ||α||y ^ ||α||. The set Jy = {aejtf \ | |α||y = 0} is a closed two sided ideal in si.
We define the quotient C*-algebra jtfγ = <stf/Jy with the canonical surjective
morphism ηy from si onto sir Using (5) we get ρt(Jy) = Jy, Vy e Γ, so by extension
ρg(Jy) = Jy, Vg e U(W). This implies:

Lemma 1. Jyn<stf0 is dense in Jr

The following lemma is a generalization of a result of Elliott [E.].

Lemma 2. Let aeJr Then lim \\ημ{a)\\=Q.

Proof. We may assume that aeJynstf0 because Jyr\stf0 is dense in Jy and
n = N

\\a\\ < \\a\\. So a= X anU
n, where aneC(Ω). Using

n=-N

an= f Qt(U~na)dt
ίeT

it follows that aneJynC{Ω).

Since ||ΠJa)\\ ^ " Σ IIΠω{an)\\, we may suppose that ae JynC{Ω). So Πω{a) is

a diagonal operator in the canonical basis of 12(Έ) and α(ω) = 0, Vωep"1^).
Let us assume that sup |α(ω)| does not tend to zero when μ tends to γ. There

ωep~Hμ)
exist o O and a sequence {ωk}k in Ω such that p(cok)^y a n d lβ(ωfc)l>c Ω being
metrizable and compact, there is a convergent subsequence, also denoted by ωk,
with the same properties. Let ω denote its limit in Ω. Thus |α(ω)| ̂  c and p(ω) = y, a
contradiction. Moreover, for any ωep~1(μ% aeC{Ω),

\\ΠJa)\\£ sup \a(ω')\.
ω'ep 1(μ)

This gives the result.
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Proof of Theorem 3. Let F be a closed interval in R such that σ(ηγ(h)nF = 0 . By
Urysohn's lemma there exists a continuous function g with 0 ̂  g ̂  1, equal to one
on F and zero on σ(ηy(h)). Thus, g(h) e s/ and ηy(g(h)) = 0. By Lemma 2, there is ε > 0
such that if |j9-y| <β then \\g(ηβ(h))\\ = ||^(g(Λ))|| < 1/2. Assuming σ(ηβ(h))nFή=0
for such /?, we get a contradiction since g equals one on F. This proves the outer-
continuity.

We claim that for yeΓ,

σ(ηy(h))= U σ(ΠM) (6)
ωep-1(γ)

In fact, for a in s/9 ηy(a)=0 if and only if 27ω(α) = 0 for all ω e p " x(y). [Recall that a
real £ is not in the spectrum of a selfadjoint bounded operator A if and only if there
exists a continuous function g on 1R satisfying O^g^l, g(E) = ί and g(Λ) = 0.']

Now let γ be as in (ii) and 0 be an open interval in R such that Onσ(ηy(h)) φ 0 .
By (6) there exists ωep~ 1(y) such that Oc\σ(ΠJh))φ 0 . Since p~ x(y) contains no
p-isolated points, for any open set if containing ω, and any sequence yn converging
to y9 the fibers p ~ 1(yn) (or a subsequence) meet if for large n. Suppose that there is a
sequence yn converging to y such that Onσ(ηyβί)) = 0. Then, there exists a
sequence ωn converging to ω with Or\σ(Πωn(h)) = 0 for all n. Since the map ω e Ω
-*Πω(a) is strongly continuous, it follows that Onσ(Πω(h)) = 0 [R.S., p. 290] and
we get a contradiction.

4. Proof of Theorem 1

In this section we describe partially the spectrum (also called the character space)
of the C*-algebra generated by H(oc, x) and its translates, using a geometrical
partition of T 2 . Actually, the knowledge of a dense subset is sufficient for proving
Theorem 1.

Let#(a,x)beoftype(4).

Lemma 3. // [ ] denotes the integer part, then for all n in Z,

χn(a,x) = [x+(n + l)α] - [x + nα].

Proof We have

χπ(α, x) = 1 o 1 — α ̂  (x + nα) — [x + net] < 1.

o3meZsuch that 1— α^(x + nα) — m<\.

olmeZ such that (x-h«α)<m+l^x + («

Moreover, [x + (n + l)α] — [x + nα] e {0,1}. Actually,

where { } is the fractional part.
On the other hand,

o3keZ such that x + nα<fe^x + (n-

Now let us consider the geometry on TΓ2 determined by the generators of $.
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Definition 4. A band in TΓ2 is a set of the form

where Ank is a half-plane in TΓ2,

and(n,fc)eZ2.

The interest of this definition stems from the following

Lemma 4. Let σnΛ (respectively ρnΛ) denote the characteristic function of Ύnk

(respectively Λnk). Then 3ft is generated by the σnk's or by the ρn>fc's.

Proof σnΛ (respectively ρπj t) can be expressed as a finite linear combination of ρnk

(respectively σntk) and it is sufficient to prove the statement concerning the ρΠjk's. A
typical generator of 3ft is of the form (Lemma 3)

χM(α, x) = [x + (n + l)α] - [x + wα] .

Notice that this is equivalent to

n - l

X χk(α,x).

So 3ft is generated by the functions /π:(α,x)->[x+ noc], neZ. For n^O, such
functions are valued in {0,..., n}. Let Pnk be a polynomial of degree n + 1 such that
for me{0, ...,n},

p π f c ( m ) = l if

p π k ( m ) = 0 if

Thus, Pπ,fc([x + wα]) e {0,1} and

> — n α + k = x -

It follows that Pn,k(fn) = Qn,k i s i n ^
The case n < 0 is similar.
It is immediate to check that

fc=-oo

where only a finite number of terms are not zero in the sum. This proves the
assertion.

Let 9~ be the smallest set of subsets of T 2 containing all the bands THtk, which is
stable under taking finite intersections, finite unions and complements.

The TΠffc's give a partition of T 2 by lines

Dπ = {(α,nα)6T 2 |α6[0, l [} , neZ.

Here the lines are taken modulo 1. If 2 is the set of such lines, we remark first that

-, x )
Q J

= - for s o m e re{0,...,q — l}.
q
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We use the convention that - always defines an irreducible fraction so that there

is a unique couple (/?',qf) such that ί^q'^q — l,p'eZ and pq* = \ + qpr. Actually,

given p, q, r we get (-, - I e Dn with n = rq\ where q' is the inverse of p modulo q the

converse is immediate.

There are many lines passing through the point (-,-), namely,
\9 9/

and conversely, all lines passing through that point are of the form Drq,+jq.
Finally we note that if (α, x) e 2 for α φ Q, then (α, x) e Dn for a unique neZ.In

particular, the partition of T 2 defined by 2 is given by polygons whose vertices are

of the form (-,-) . These polygons are the atoms of the collection 2Γ. In particular,
\ί 9/

every element of if has a nonempty interior. Note that χτ is a projection of J* for
any Te3Γ.

In the following figure some lines passing through (f, j) are drawn.

Fig. 2

It will be useful to define the set

\ \q q I

Notice that for Te3Γ, either T contains Ip/q>r or Tc\lplq>r = 0.
Recall that Ω is defined as the set of characters of 0&. Then we get:

Lemma 5. Given ε > 0 and ωeΩ, there exists a finite partition of TΓ2 by bands (7])i6/

in 3~ satisfying:
- The diameter of the first projection of T{ is less than ε for all i (such bands will be
called ε-bands).
- There is a unique j in I such that ω(χTj)=l.
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2
Proof. Let us take n > - {T_Mfe|—n^fc^0}isa partition of T 2 by ε-bands. Since

k = 0

k=-n

there is k0 such that ω(σ_πfco) + 0, σ_π>fco being a projection in &, it follows that
ω(σ_Mjfco) = l and therefore ω(σ_nfc) = 0 if feφfe0.

Let @0 be the algebra made of finite linear combinations of finite products of χn.
Then &(W2)D@0 and

Lemma 6. If Λ = {(α, x) e T 2 | α £ Q and x <£ Za}, ί/ien /or any / in &,

| | / | | = sup |/(a,x)|.
{Λ,x)eΛ

Proof. The equality is satisfied when / is in J^o. Let now / in 3d and a sequence
{/„}„ in ̂ o be such that /.-•/ For (α,x)eT2,

Thus,
II f

Since

it follows that

|| = sup |/(α,
(α,Jc)eT2

sup |/Λ(α,x)
(α,x)eT2

||/||^2||/

x)|^||/-/J| + sup |/π(α,x)|.
(α,x)eT2

| = sup |/π(α,x)|
(a,x)eΛ

ύ sup |(/n-/)(α,x)|
(a,x)eΛ

+ sup |/(α,x)|,
(α,x)eyl

- / J | + sup |/(α, x)|,
(a,x)eΛ

and the lemma is proved.

& is an abelian C*-algebra with unit. Thus, 8ft is identified with C{Ω(08)\ where
Ω{0$) is a compact metrizable space. By the Gelfand transform, the set Λ is
embedded in

Proof of Proposition 2. (i) Let ω be in Ω(0S) but not in the closure of Λ. By
Urysohn's lemma, there exists a non zero / in ffl with values 1 on ω and 0 on A.
This contradicts Lemma 6.
(ii) follows from the next lemma.

For ω E Ω(β\ we define

Since ω is a homomorphism, ̂ ω is a filter on ̂ ~ and even an ultrafilter because T or
its complement Tc is in yω for any T in ^ . Let

where T is the closure of T in TΓ2 for the usual topology. S(ω) is not empty because
the family {Γ| Γe#"ω} has the finite intersection property and the T's are closed
subsets of the compact set T 2 .
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Lemma 7. S is a map from Ω(β) into the subsets of T 2 with the following properties.
(i) Let ω e Ω(&). If S(ω) contains more than one point then

S(ω) = Ip/qtr for some re{0,...,q-ί}.

(ii) S coincides on A with the inverse of the Gelfand transform.
(Hi) S(Ω(&)) is the union of the following sets:

U {(α,x)|
xeΈ

u
peN,qe¥ϊ*,re{O,...,q-l}

I I / ,
KJ p/q>r'

*,re{0, ...,q — 1}

Proof (i) Let (α, x), (α', xf) be two different points of S(ω).
(a) If α Φ α', there exists a line in S which separates these two points. Thus there is
TeZΓ such that (α,x)eT and (α',x')eTc. If Te^ω tfien (α',x')<£^ and thus
(ocf,x')φS(ω). If Γ^J2^, then T is in J ^ and (oc,x)φTc, so we obtain again a
contradiction. «
(b) If α = α'<£Q, the same situation occurs. The same is true when α = α' = - and
x, xr are not in the same segment Ip/qtr.

 q

(c) The last case is α = α' = - and x, x' e /p/q,r. For each T in #"ω (α, x) and (α, x') are

in T, so by construction T contains JD/fl r. Since there are no lines between I -, - I

a n d (E ? ' l±_] 5 so also does S(ω). By (a), S(ω) contains <-> x[0,l[. By(b),

Clearly if α^Q, 5(ω) is a point.
(ii) Let ω = (α, a) e A. For each T in ̂ ω , (α, x) is in the interior of T, so (α, x) e S(ω).
Now apply (i).

(in)

Let α^Q. The map
+ lim

where fceZ defines a character on the algebra ^ 0 . Its (unique) extension to the
closure & is in Ω. It is easily checked that if Te ^ω then (α, fax) ε Γ and thus S(ω)
= (α,/cα)by(i).

U
N N {0

Given p, q, r, consider the extension to & of the character

r
lim χτ (- ,

where q' is the inverse of p modulo q (pqf = l+p'q with p' e Έ). If T ε J^, ( -, - ) ε T
/p r\ ^ . W V'p r

and thus S(ω) contains (-,-) . The set
\4 9/

T=A , _ ,r\(A > Y
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is in F (Lemma 4) and in fact in &m by definition of ω. Moreover, ί -, J is not

in T. On applying (i), S(ω) is reduced to ί -, - J,
\q qj

0 q-l)

For δ e]0,1[, we define ί -, ) as the extension of the character
\q q /

If Te^ωΛ -, - ) e T and T contains < - > x ~ by construction. Hence

S(ω) = Ip/qr9 on using (i) again.

is a compact metrizable (since 3ϊ is separable) space for the σ(J**,
topology. Indeed this topology is equivalent to a natural topology associated to
the family ST. For ω e Q(β) and Ύt&ω define Vτ = {ωf e Ω(β) \ Te^ω). The family
Y{oS) = { Vτ I T e J^} satisfies the axioms for a fundamental basis of neighborhoods
of ω. Actually

Pi VT=V n τt

is{i,Ln} ι ί e { i n) ι

when Tt e &ω and if ω'eVτe Y°{ω\ Vτ e τΓ(ω'). The ^-topology defined this way
is Hausdorff for when ω and ω' are different points of Ω(&\ there exists ^
satisfying Te^ω and T C G ^ . Thus ωe FΓ, co'eFp and VTnVTc = 0.

Lemma 8. The ^-topology and the σ(β*, @)-topology are equivalent on

Proof. Let {coβ}β be a net in Ω(β\ ^"-converging to ω. To prove that it
σ(^*5 ^-converges, it is sufficient to check that ωβ{χτ)-+ω{χτ) for any Te^ω. By
hypothesis, for Te^ω there exists β0 such that if β>β0, then ωβeVτ. Hence

^ and ω^(χΓ) = l ^ l = ω ( χ Γ ) .
Conversely, let ω be the σ(&*, 0&)-X\m\\ of a net {ωβ}β included in Ω(38). For

, ωβ(χτ)^ω(χτ)= 1 and there is a /Jo satisfying Te^ωβ ϊovβ>β0. So ω is the
of ω .̂

Lemma 9. The map p=prχoS is a continuous surjection from Ω(8$) onto T
satisfying

poφ=p.

Proof p is a well defined and surjective map by Lemma 7.
It is sufficient to prove that p(ωn) converges to p(ω) for any sequence {ωn}n in

Q{β) ^-converging to ω. If Te^ω and ωw(χΓ)~κo(χΓ) = l, then ωn{χτ) = \ and
S(ωn) is contained in T for n large enough. By Lemma 5, for any ε there exists an
ε-band TE in &ω. Since S(ω) and S(ωw) are in Tε, \p(ωn)-p{ω)\<ε.

Since S o φ = S is the identity on Λ,wegetpoφ=p by continuity oϊp and density
of Λ.

Lemma 10. Let
(i) // ωep~ι{<x\ then S(ω)=(α,x) /or some xe[0,1[.

(ii) yiα = /7~1(α)nyl is dense in p " 1 ^ ) .
(iii) p~ι((ή has no p-isolated points.
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Proof, (i) Let ωep~\θL) and suppose that (β,x)eS(ω). Let Tε be an ε-band in &ω

(Lemma 5) and (ocn,xn) be a sequence in A which ^"-converges to ω. Then
(β,x)eTε and \β — αj <ε. The continuity of p gives aM=p(an,xM)->/?(co) = a. ε being
arbitrary, j? = α. Lemma 7 shows that S(ω) is reduced to a point,
(ii) It is sufficient to prove that given ωep~ 1 (α) and T e J ^ , there exists

ω' e Λ α n F Γ (Lemma 8). By (i), S(ω) = (α, x) for x in [0,1 [. Since (α, x) is in T but is not
a vertex of T and since T has a non-empty interior, {(α, j/) | y φ Za} n T + 0 . If we
choose (α,y) in this intersection, then (a,y)eΛanVτ.
(iii) We need only to show that Λa has no p-isolated point. Let (α, x) e Λa be a
p-isolated point. There exist Tin J ^ , a sequence απ in T which converges to α in the
ordinary topology of T such that p~1(ocw)nFΓ = 0 for each n. Since (α,x) is not a
vertex of 7̂  α is in the interior of p(T) and so are απ for large n.

Case α w φQ: Clearly {(α w ,x)\xφZa n }nT+0.Choosing ωn in this intersection,
we get ωnep~1((xn) and ωneVτ, in contradiction with the hypothesis.

Case α = —: Since αn->α, we may suppose that — is arbitrarily small. In
H n

particular, there exists rne{0, ...,qn — 1} such that IPn/qn>rn is i n the interior of T.
Choose ωn in Ω{β) such that S{ωn) = IPnJqn, rn (Lemma 5)" and again we obtain the
contradiction ωnep~ι(ocn) hence ωneVτ.

Proof of Proposition 3. It is immediate to verify that

KQ 4.

Moreover, when α

= U σ(ΠiatX){h)). (8)
xφZa

Actually, if E is in σ(ηa(h)), Ee~\j σ(Πω(h)) by (6). Hence E is in

(J σ(Π{(XfX)(h)) by density of Aa in P~\OL) [R.S., p. 290]. Using Proposition 1, (7)
xφZa

and (8) we get σa = σ(ηa(h)).
Now Theorem 1 is a consequence of Theorem 3, Proposition 3, and Lemma 10.

5. The Spectrum of the C*-Algebra Associated to the Hamiltonian

In this section we describe completely the spectrum of the C*-algebra generated by
the translates of H(oc, x) of type (4), using the geometrical partition of T 2 .

We now write the different parts of the spectrum:

Λ = {(α,x)eTΓ21α<£Q and

Ωι= (J f(α,fcα,s):/e#-> lim /(α,feα + sε)\,
α£Q,fceZ,se{ + , -} { 0<ε-*0 J

Ω2

Pl9,s= U j ( - , - ,
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where s e {+, —} and ί -, -, j , s ] is the character

lim fll +se,- +(rq'+jq + δ)sε)9 V5e[0,«[,
o<ε-o \q q )

03,= U \(P-A:fe^f (l
{ o i } [\q q) \q

As can be seen from Fig. 2, the character (-, -, j , ± ) is nothing else than the

limit of points going to I- ,-) within the edge between the lines Drq,+jq and

Drq,+u+1)q respectively from the right ( + ) and from the left (—). When7 = 00 the
sign 4- or — is not determined. This justifies the introduction of the space Ω\lq

because for each r, the characters (-, ), δ e [0,1 [, cannot be separated by left
\« Q J

or right limits.
For later convenience, we introduce the notation

where

Ω\=

Theorem 5. The spectrum Ω(β) of 0& can be identified with

Proof Ω(β)Z)Ω\ Clearly the points of Ω define characters on the algebra 0SO'
Their (unique) extensions to the closure $ are in Ω(β\ It is easily checked that all
these characters in Ω are different.

ΩDΩ{β)\ For proving that ω e Ω(β) is in Ω, it is sufficient to find an element ω'
of Ω which coincides with ω on the projections χΓ, Te^ω\ Actually, if Te^ then
ω(χτ)e{0,1}. Thus, if Tφ^ω, then

co(χτ) = 0 = 1 - ω(χτc) = 1 - ω'(χτe) = ω'(χτ).

A 3ε-type argument shows that ω(f) = ω'(f)
We exhaust all possible cases for S(ω) (Lemma 7):

(i) S(ω) = {(α,x)}, α^Q and zφΈoc: ωeΛ by Lemma 7 (ii).
(ii) S(ω) = {(α,feα)}, α^Q and keZ: We assert that ωeΩ1.

For Te3T, define

(respectively T_ = TnA_kf0 = {(β,y)eT\y<kβ}).

When Te^ω, either T+ or T_ is in &ω. Actually we have Γ+uT_ = T and
T+nT_ = 0. This fixes a sign + or — because 0 = T+nR_ e^ω is impossible
when R, T are in &ω.
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Suppose it is + and let TetFω. Thus (α, feα) e T+ and there exists εo(T) such that
(α,fcα + ε) is in the interior of T for ε6]0,εo(T)[. So, for these ε,

) = (α, fax, + ) (χτ).

Similarly for the sign —.

(iii) S(ω) = < ί -, - j > with r e {0,..., q -1}: We assert that in that case, ω e Ω2

plqiS.

F o r j e Z , define the sectors

Sp,q,r,j,+ =\A-rq'-jq,-rp'-jp)n\A-rq'-(j+i)q,-rpf-(j+l)p) •>

Sp,q,r,j, - —(A-rq>-(j+i)q, -rp' -(j+ l)p)n(A-rq> -jq, -rp' - jp)

Recall that pq' = 1 + p ^ .

Note that ( -, - I belongs to none of these sectors.

There exists a unique sector SPtqtrtjfS in J ^ , where jeZ and SG{ + , — }:

Let 7i6ff^ be such that T1r\Iplqtr = 0. Such a set exists, otherwise the
inclusion S(ω)Dlp/qr would contradict the hypothesis. Similarly, there is T2e^ω

satisfying T2r\Ip/qr'_i = 0. So T=T1r\T2 being in J 2^ must be nonempty and

TnIp/qr=TnIp/qr_1 = 0. Since ( - , - ) € 7 ^ T is included in a finite union of

^ qJ UP A)
s e c t o r s , o t h e r w i s e S(ω) w o u l d c o n t a i n o t h e r p o i n t s t h a n < ( — , — )>. T h e s e s e c t o r s

l \ ^ q j )being separated by lines in 3>, one of them is in the filter #"ω. The intersection of
two of these sectors being empty, only one, say Sp>qfrJf+, is i n J ^ .

Define arbitrarily small (for large integers ή) triangles inside the sectors

*p,q,r,j, +,n = Sp,q,r,j,+r>i(Anq,l+np) >

The TPfqtrJfStn

9s are all in 2Γ and actually in <Fω\ If not, the intersection of the
complement of a triangle and its sector would be in &ω9 but this is impossible

because then I -, - I would not be in the closure of the intersection.

Let us now show that if Tε!Fω, then there exists n>0 with the inclusion
Γ D TPtqrJf + f l l : TnTPtqtrJtStn is in lFω9 so is not empty and the assertion is proved
for n large enough.

For Te^m9 we get by this result

) = 1 = lim χτ I ( - H-ε,
0<ε->0 W ^ (

(iv) S(ω)= <-> x - , ^ t _ : We assert that ωeΩ3

p/q.

i T ( ) fLet T in &ω\ thus, TDS(ω)Dlplqir. If Tnlplq,r = 0, then the boundary of T
contains the vertical segment /p / q, r, which is impossible because its boundary must
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be in 2. It follows that TDlp/q>r for Te&ω and if <5e [0,1[ then

Hence ω= l-,-)eΩ3

p/q.\q q)

This concludes the proof of Theorem 5.

Remarks ί. (i) p is not open on Ω:

Let ω be in Ω and let Te^ω. lϊiτ = inf (pr^T)) and sτ = supίpr^T)), then iτ = —t

p" «
and 5Γ= — by construction. There exist ω' in ΩpΊq,>+ and ω" in Ω2

v,,^,t_ with

Γe J V n J V This implies _ n , r ; - | „ „

(ii) Suppose that p is a continuous open map from Ω onto Γ = p(Ω). Then, Γ is a
topological quotient of Ω for an equivalence relation the classes of which are
saturated by p. Then no fiber p~1(y) has a p-isolated point in Ω.
(iii) The map φ has been defined by extension on Ω{$). Actually, one can check
that φ: Ω-+Ω is explicitly defined on each component of Ω by

We now introduce the space Γ of Sect. 2:
Let p be the map from Ω onto the disjoint union

defined by
p(ω) = p(ω) if

p(ω) = (pω),5) if s , { , }

For p(ω) in Γ, let &(p(ω)) be the set of neighborhoods Vp(ω)(ε) of p(ω) given for
ε>0 by

if

l-)} if + ,

) ^ ) } if ωeΩ2_.

Naturally we do not take into account (0, —) and (1, +).
$(p(ω)) defines a fundamental basis of neighborhoods of p(ω) giving a

Hausdorff topology 3~v on Γ. Then, p and Γ satisfy the hypothesis of Theorem 3:

L e m m a 1 1 . p is a continuous open map from Ω o n t o Γ such that p o φ = p .

Proof. poφ = p follows from the definitions.
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To prove the continuity of p, it is sufficient, by the metrizability of Ω, to verify
that p(ω)= lim p(ωn) for any ω in Ω and any sequence {ωn}n ^converging to ω.

M-*00

Thanks to Lemma 9, p is a continuous surjection from Ω(β) onto T. Thus p is
clearly continuous at each ωeΛκjΩικjΩ3.

Suppose that ω= (-, -,;, + ) GΩ 2 . The triangles
\q q /

q, 1+mp)

are in J ^ for m>0. Thus p(ωw) is in

for n large enough, so p is continuous on Ω+.
Similar arguments give the continuity on Ωi.
Before proving that p is open, let us observe a useful fact:

Let ω e Ω, Te J ^ and let 7 e Γ be such that its spatial part y(γ = (y, s))9 where
j e T and 5e { + , — }) is in the interval ]/Γ, sτ[ with

Ϊ T = inf (pr^T)) and 5Γ =

There exists ω'eΩ such that S(ω') = (y, x) is in the interior of T (thus ω' e Vτ) and
p{ω') = y.
In particular for convex polygons T in ^ ^

To prove that p is open, we need only show that for ωeΩ and T a convex
polygon in J^, p(Vτ) is open in Γ:

Let ω'6 FΓ. We assert that there is ε>0 such that Vp{ωΊ(ε) is included in p(Vτ).
When p(ω/)G]ϊΓ?sΓ[, the remark gives the assertion.
When p(ω') = iτ, ω'eΩ2 and iτ and sτ are in Q. Write iτ= - and let

( \
-,-,/, + I (note that T is not in
9 0 /

^(p/q.r/qj, -> for a n y r and j). If ε satisfies ε<sτ~iτ, then p(FΓ)D Fp(0/)(ε).

Proo/ 0/ Theorem 2. We assert that ^/q = ̂ (P/q, ±)(fy) for /z as in Proposition 3.
The map: 7 e Γ->σ(ηy(h)) is continuous (Lemma 11, Theorems 3 and 5). Let ocn be

a sequence in T such that - < απ and αw tends to -. Since T is included in Γ, for each

ε,απ is in V^pjq> +)(ε) when n is large enough and

Φl{piq,+{h))= lim φijh)).
an->p(q

By extracting a subsequence, we may assume that the sequence {an}n is in TΓ\Q or
inQ.

In the former case, σ(ηan(h)) = σan (Proposition 3) and the assertion is proved.
Note that this argument is also valid for hamiltonians of type (4).

In the latter case, ccn=pn/qn and

qn
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Again by (6), (7) and Proposition 1, we get

q

6. The Spectrum Around a Rational Number

In the previous sections, we showed that the limits σp/φ σ ~/q exist for the spectrum of

the hamiltonian H ί -, x ). Here we give more details on a general operator in the

algebra s/ = C(Ω) xφZ associated to a "limit" character in Ω^ +.

The situation we want to describe now is, typically, the effect of an arbitrarily
large impurity placed somewhere inside a periodic partition of Έ. So we introduce
the

Definition 4. Let A be a bounded operator on 12{Έ). Then A is called eventually
q-periodic if there exists an impurity domain I = {neZ\a<n<b} with b — a = c
modulo q, satisfying for ψ e /2(Z),

T~qAT+qψ = Aψ when [fc, oo[Dsupport (ψ),

T+qAT~qψ = Aψ when ] - oo, a] D support (ψ),

3/co^0 such that Vfe>feθ5 Tkq+cAT-kq-cψ(ή) = Aψ(n) when n>b.

Note that the strong limit of TkqAT kq when k goes to + oo is a g-periodic
operator, which we shall denote by Aper.

Similarly, a bounded function on Z is said to be eventually ^-periodic if the
multiplication by this function is eventually ^-periodic on 12(Έ).

Given ( - , - ) , we define two elements of Ω by
\q q)

Lemma 12. (i) Let

dj, ±{n) = Π ±{Xo)(n)-Πip/q,r/q){χo){ή).
Then,

(iϋ) strong-lim Π ±(χ0) = Π(pMq)(χ0).
j-*cθ

Proof, (i) By definition, dj±(ή) is

+limQ χ { l - { p l q ± ε ) Λ { [n £ + V- ±e(rq'+jq + n)J -χ{1-p/q,H (n ^ + 0 .

We treat only the case + .
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Let us assume first that n- + -eZ. Then n=—rq' + kq for some keZ. Thus,
q q

dJt+(n)= lim χ[i-J,/β-βfi[(βg(fc+/))-<>
0<c->0

0 if k^-j

1 if fc<-;.

If now n- + - e ( Z — I, then n= — ra' + kq — i for some feeZ, and

o if * £ -y
| - l if fe<-;.

Finally, suppose that n- + ^ Z u
« ί

Let£ = l — - — ( n - + - ) (mod 1). Then ί Φθ by hypothesis. Assume that ί>0
9 \ 9 9/

and choose a sufficiently small ε that

0<ε<
rp'+jq + n+ί

Then,

0 < n - + - +ε(rq'+jq + n)Sin- + - +ε\rq'+jq + n+ί\-ε
q q q q

Thus dit+(n) = 0. In the same way, dh+(n) = 0 when ί<0.
(ii) is immediate and (iii) follows from (ii).

Remark 2. Note that the difference between 77ωj. ±(χ0) and Πip/qfr/q)(χ0) is not a
compact operator, so the proof of Theorem 4 is not direct.

Let &0(ω+) denote the algebra of bounded functions on Z generated by
Πω±(χn),neZ.

Lemma 13. Any f in &0(co±) is eventually q-periodic.

Proof. The previous lemma shows that, when j tends to ± infinity, the strong limit
of T~jΠω±(χ0)T+j coincides with some ^-periodic function. Thus, 77ω±(χ0) is
eventually g-periodic. By translation, this is also true for Πω±(χn) = Πφ-niω±)(χ0).
Since the eventually ^-periodic functions form an algebra, the lemma is proved.

Definition 5. A bounded operator A on 12(Z) has a finite interaction range when
there exists r > 0 such that <eπ, Aem} = 0 if \n — m\ > r, where {en}n is the canonical
basis of 12(Z).

Theorem 6. Let A be a self-adjoint bounded operator on 12(Z) with a finite
interaction range and which is eventually q-periodic. Let Aper be its q-periodic part.
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Then,

σess(^) = σeSs(^per) and σac(A) = σac(,4per).

Proof. Let /=]α, b\_ denote the impurity domain of A and P_ (respectively Po, P+)
the projection onto Z2Q —oo,α[) (respectively Z2(]α,6[), Z2([fc, oo[)).

If « means equality modulo a finite rank operator, we have:

Consider the partial isometry Sj on Z2(Z) associated to the impurity domain /:

n<0.

Then SfS^i, 8^ = 1-Po. Clearly, the operator

consists in chopping off the impurity and gluing together the periodic parts on the
left and on the right. B is not yet a periodic operator because the P+ and P_ parts
are disconnected, but SfBSj^Aper. The theorem is now a consequence of the
classical Weyl and Birman-Kato-Rosenblum theorems [K.].

Note that if A is an eventually periodic self-adjoint operator, the strong limit
Apeτ of TjAT~j when j goes to ± infinity exists and satisfies σ(A)Dσ(Aper).
Using this result, together with Lemmas 12 and 13, we obtain the

Corollary2. Let he$i0. Then Πω. ±(h)ttΠ(p/qr/q)(h) up to a partial isometry S7

associated to the impurity domain of Πω. ±(h) and

Now Corollary 1 is immediate.

Proof of Theorem 4. Let h e si and ε > 0. There exists hε e st0 such that || h — hε \\ < ε.
So

(i) The strong limit of 77 ±(hε) = Tjqnip/q,r/qf 0> ±)(hε)T-jq when j-> ± oo is equal
to Πip/q>r/q)(hε) (see proof of Lemma 13). Thus,

s-limΠ

and

Thus, σ(Πωj ±(Λ)) contains σ{Π(plq<rjq)(h)).
(ii) Let G be an open gap in σ(Π(plqrlq}(h)), d be the length of G and choose

4
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By perturbation theory, σ(Π{p/qr/q)(hε)) does not intersect Gε° for ε<ε0, where
X ε = [inf(X) + ε, suρ(X)-ε]. Corollary 1 implies that

σess(Πωjf ±(K)) = σac(Πω. ±(hε)) = σ(Π(p/q>r/q)(hε)).

We avoid the accumulation points of σess(Πω. ±(hε)) if we restrict to G2ε°. Now the
number of eigenvalues (with multiplicity) of Πω. Jhε) contained in G 4 ε o is
uniformly bounded by the number of eigenvalues (with multiplicity) oϊΠωj ±(hεo)
contained in G 2 ε o for

\\Πωj,±(hε)-Πωj±(hεo)\\<2εo.

Thus, σ(Πω. ±(h))nG5ε° is a set of isolated eigenvalues with finite multiplicity.
Taking ε o ^ Ό , one concludes that σ(77ωj. ±(h))nG is in σdiscrete(77ωj. ±{h)).

In the case of the Kohmoto model H(oc, x) of type (1), one can give a more precise
result. The associated operator h in C(Ω) x φZ has the form

h=U+U* + λχ0. (9)

We suppose in what follows the coupling constant λ to be non-zero:

σm = ^(P/q, ± β)) (proof of Theorem 2)

= ω e β U ^{ΠJh)) [cf (6)]

= σ(Π{p/qf Ot Ot ± }(/i)) (Lemma 12).

The impurity domains are of different sizes for Πip/q 0 Os +)(/z) and Π{p/qtOtOt _)(/i): if
the continued fraction expansion of p/# contains an even (respectively odd)
number of quotients, the first (respectively second) one has size q' and the other
q-qf.

Let us first recall notations and the transfer matrix technique (for more details,
see [B.I.S.T.]). In order to find a generalized (not normalized a priori) eigenvector
ψn(n e N) of the hamiltonian (1), corresponding to the eigenvalue £, it is equivalent
to solve, up to a common scalar multiple, for (Φn(n e N)) Φ 0 (Φn e (C2), the following
set of equations:

Φn+ί = Tn(E)Φn,

where

Φ =
ψ{n)

and

We also introduce the "resonant transfer matrices":

Mq(E)= Tq(E)Tq_ί(E)...Tί(E)T0(E),

Mq{E) = Tq{E)Tq, _ ,(£)... UE)T0{E).

Considering the case that the continued fraction expansion of p/q contains an
even number of quotients (the other case can be treated similarly), we consider now
the problem of finding a generalized eigenvalue for the hamiltonian Π(p/qfOOt _}(/z)
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[respectively Π ( p / 4 0 0 + ) ( / J ) ] . On writing Φ = Φ0 and Φ' = Φq, (respectively
Φ' = Φq-q), it is immediate to verify that this problem is equivalent to solving, up to
a common scalar multiple, the following set of equations for a non-zero ξn (ξn e <C2,
neN):

(10)

Mq,(E)ξo = ί i (respectively Mq,(E)' 1Mq(E)ξ0 = ξί).

We can now state the following:

Lemma 14. The following conditions are equivalent:

(i)

(ii) The spectrum of Mq(E) has multiplicity 1 and Φ and Φ' are eigenvectors of Mq(E)
with different eigenvalues. Moreover, Mq{E)Φ is a multiple of Φ' or Mq{E)Φ' is a
multiple of Φ.

(iii) Ύr(Mq(E))=±]/4 + λ2.

Moreover, if Ee σdiscrete(Π(p/qf 0> 0> _}(/i)), then the operator {Π(p/qf 0> 0> +){h)) admits
a generalized eigenvector with eigenvalue E which increases at both n-+ + co. The
same statement holds on replacing + by —.

Before going to the proof of this lemma, let us show that it implies Theorem 7:
First, we remark that any (possibly complex) solution E of the equations (iii)

appears as an element of the spectrum of a selfadjoint operator and consequently is
real. So, the equations (iii) have 2q real solutions. By the remark at the end of
Lemma 14, the discrete spectra of the operators Πip/q 0>0> _}(/z) and Π{pjqOOf +)(h)
are disjoint and the result follows.

Proof of Lemma 14. A general solution of Eqs. (10) is a superposition of solutions
for which Φ and Φf are eigenvectors of Mq(E). Assume (i) and suppose that Mq(E)
has its spectrum contained in the unit complex circle. Then ξn cannot tend to 0 at

infinity. It follows that σ(Mq(E))= < (β, -) > with |)8| < 1, since det(M^(£)) = 1. For

the same reason, Φ (respectively Φ') must be an eigenvector of Mq(E) correspond-

ing to the eigenvalue — (respectively β) and (ii) follows. The converse is trivial. The
β

remark at the end of the statement follows easily from the same argument: an
exchange of Φ and Φ' allows to transform the set of equations for the operator
Π(p/q,O,O, +)(Ό i n t 0 t h θ S e f 0 Γ Π(p/q, 0,0, -)(Λ)

Using Lagrange polynomials in order to express the eigenprojections of Mq(E),
we get that (ii) is equivalent to

(Mq(E) - β)Mq{E) (Mq(E) -β) = 0

Mq(E)- i ) Mq,(E) (Mq{E)- i ) = 0 .

q(E) β)Mq{E) (Mq

or
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Since both operators on the left-hand side have one dimensional kernel and range,
one has equivalently:

Tr (Mq(E)Mq,(E)) = β Tr\Mq{E))

or

Tr(Me(£)M i,(£))=-Tr(M4,(£)).

Using the fundamental invariant (see [B.I.S.T.])

(Ίτ(Mq(E)ψ+(Tr(M,,(£)))2+(Tr(Mq(E)Mq.(E)))2

-Tr(M,(£)) Tr(Mβ,(£)) Tr(Mq(E)Mq{E))=4 + λ2,

one gets the equivalence of (ii) and (iii) easily and this ends the proof.

Remark 3. The method of proof does not allow to decide simply, amongst the
whole set of solutions of Lemma 14 (iii), what are the eigenvalues of the operators
Π{p/q,o,o,-)(h) or Π{PlqOtOf+)(h). Numerically, it seems that all but one of the
eigenvalues appear in one gap of their common periodic part, and each gap of each
operator contains one eigenvalue, the last eigenvalue can appear as either the least
upper bound or the greatest lower bound of the spectrum, these two situations
being mutually exclusive with respect to the exchange of + and —.
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