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Abstract. The category of sympletic pseudospaces (analogical to the category of
pseudospaces in the sense of [2]) is introduced and used to define symplectic
pseudogroups (structures analogical to pseudogroups [3] or quantum groups [4]).
It is shown that symplectic pseudogroups are in one-to-one correspondence with
Manin groups, also introduced in this paper. The set-theoretical part of these
structures has been described in [I].

Introduction

Symplectic pseudogroups introduced in this paper (Sect.7) are classical (sym-
plectic) counterparts of quantum (pseudo-) groups ([3,4],...). They play in clas-
sical theory the same role as quantum groups in quantum theory. They also seem
to be useful for constructing quantum groups.

Symplectic pseudogroups are symplectic manifolds with a structure similar to
Hopf (or Kac) algebra, expressed in terms of symplectic relations (multiplication,
unit, inverse, comultiplication, etc.).

If we neglect the symplectic and differential structure of the underlying man-
ifold, our symplectic pseudogroup becomes a union pseudogroup. Union pseu-
dogroups have been introduced in the first part of this paper which we refer to
as to [I]. The study of union pseudogroups in [I] has to be considered as a first
step in our study of symplectic pseudogroups, in which we have separated purely
set-theoretical problems from differential- and symplectic-geometrical ones.

Our definition fits in a general scheme of enlarging the category of groups to
a self-dual category. A passage to new kind of objects consists in replacing the
usual space by a “noncommutative space.” In the case of quantum (pseudo-)
groups, “noncommutative spaces” are quantum (pseudo-) spaces, i.e. objects dual
to C*-algebras. In the case of symplectic pseudogroups, “noncommutative spaces”
are symplectic pseudospaces, i.e. objects dual to S*-algebras defined in Sect.3.
With morphisms defined in Sect.4, S*-algebras form a category which we consider
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as a classical counterpart of the category of C*-algebras with morphisms defined
in [2].

For the sake of clarity, in our presentation we separate also the differential-
geometrical part from the symplectic one. According to this we introduce also
D*-algebras and differential pseudogroups. They also serve as an important source
of S*algebras and symplectic pseudogroups (we obtain symplectic objects by
applying the phase functor to differentiable objects).

There are interesting connections between structures introduced in this paper
and such notions as differential and symplectic groupoids [5], double Lie groups
[6], Main triples [4, 6], Poisson-Lie groups [4, 6] and dressing actions [6].

We show that symplectic pseudogroups are equivalent to Manin groups (in-
troduced in Sect.8), which should be considered as global counterparts of Manin
triples. We indicate that Poisson-Lie groups on which the dressing fields are
incomplete, do not have the corresponding Manin group or symplectic pseudo-
group. In our opinion, this is the reason why some attempts to construct quantum
deformations of such noncompact groups as “ax+5” or SU(1,1) meet serious
difficulties.

Let us point out also that examples of symplectic pseudogroups are provided
by examples of Manin groups (the latter are easier to find, for instance the
quantum S, U(NV) has the symplectic counterpart given by the Manin group SI/(XN),
described in [6]). On the other hand, a symplectic pseudogroup with its structure
formulated in terms of symplectic relations (not the corresponding Manin group)
seems to wait for a (geometric) quantization.

Sections 1, 2, 3, 4, 7 and 8 form a logical sequence, appropriate for introducing
symplectic pseudospaces and symplectic pseudogroups. Remaining sections ex-
plain some important connections between the introduced symplectic objects and
similar objects formulated in terms of Poisson geometry.

Because of the lack of space, we had to push several topics, such as repre-
sentation theory of S*-algebras (with applications) and examples of quantization
of symplectic pseudogroups to separate publications.

1 Differentiable and Symplectic Relations

Throughout the paper, by a manifold we mean a smooth finite-dimensional dif-
ferential manifold having a countable basis of neighbourhoods. By a submanifold
we mean a nonempty embedded submanifold.

A differentiable relation is a triple r=(R; Y, X) such that X, Y are manifolds
and R is a submanifold of Y x X. We shall use the notation introduced in [I]:

r:X—=Y, R=Z(@.

Let r=(R; Y, X) be a differentiable relation. The tangent relation (tangent
lift) of r is a differentiable relation Tr: TX—TY (TX is the tangent bundle of X)
such that &(Tr)=TZ(r). The phase relation (phase lift) of r is a differentiable
relation Pr: PX—PY (PX is the cotangent bundle of X with the bundle projection
T x) such that (n, &) € Z(Pr) if and only if

& uy=(m,v) for @uw)eT, (), x=nx&), y=nyn) .
The tangent-phase relation of r is a differentiable relation Sr:SX—SY (SX is the
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Whitney sum TX@®PX) such that ((v,7),(®,¢)) € Z(Sr) if and only if
(v,u) € Z(Tr) and (n, &) € G(Pr).

Let (X, w,), (X,,w,) be symplectic manifolds. A symplectic relation from
(X, w;) to (X,,w,) is a differentiable relation r: X,—X, such that Z(r) is a
lagrangian submanifold of (X;, w,) X (X{, —w)).

A differentiable (symplectic) reduction (cf. [7], [8]) is a differentiable (sym-
plectic) relation r: X— ¥ of the form r=fi", where i: C— X is the inclusion map
of a submanifold C in X and f: C— Y is a surjective submersion.

Differentiable (symplectic) relations do not form a category (under the com-
position of relations). In order to formulate axioms of union algebras based on
differentiable or symplectic relations, we have to impose some conditions on the
composition of relations occurring in the axioms. In this differentialgeometrical
setting, the relevant conditions are given in terms of the transverse composition
(which replaces the simple composition of binary relations, [I]) introduced in the
next section.

2. Simplicity and Transversality

Definition. Two differentiable relations a: Y— X, f: Z— Y are said to be locally
transverse if Su1SB and aff +0.

Remark. Of course, Sa1Sg if and only if Ta 1TS and Pa 1Pf. Smooth mappings
f:Y—X, g: Z—Y are always locally transverse. In fact, since Tg is a mapping,
we have Tf1Tg. It is easy to check that also Pf1Pg (it follows also from the
fact that Pf and Pg are morphisms of U*-algebras, see Sect.4).

Let A and B be two submanifolds of a manifold Z. We say that A4 intersects
B transversally if AnB+0 and T.A+T.B=T.Z for z€ AN B. 1t is easy to see
that in this case 4 " B is a submanifold and T(4"B)=TANTB.

Proposition 2.1. Two differentiable relations o:Y—=>X,B:Z—Y are locally
transverse if and only if three following conditions are satisfied:

@ alg,

(i) Z(a)x Z(B) intersects transversally X X Ayx Z, where Ay is the diagonal of
YxY,
(iii) the projection map from XX YX Y X Z to X X Z, restricted to

Zup=(F(@)x Z(B)N(XxAyXZ)

is an immersion.

Proof. Set R= Z(a)x Z(B) and A =X x Ay, X Z. We can assume that o 18. The
statement Pa1Pg is then equivalent to each of the following statements:

1) (0, =7)| r2@ =0 and (1, 0) |tz =0 implies 7 =0 (for € PY);

2) (0, =n,7,0)|rr=0 implies #n =0 (for n € PY),

3) A4 =0and A|rx=0 implies 1 =0 (for 1 € P(Xx Yx Yx Z)).

The last condition is equivalent to (ii). Thus Pa1PS is equivalent to (i) and
(it). If we now assume that Pa1P#, then the statement Ta1TS is equivalent to
each of the following statements:

1) (0,v) € TZ(a) and (v,0) € TZ(B) implies v=0 (for v € TY),
2) (0,v,v,0) € TZ, ; implies v=0 (for v € TY),
3) (). O
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Corollary. If a and B are locally transverse, then &(aB) is the image of an injective
immersion (namely, the immersion in condition (iii)).

Definition. Two differentiable relations a: Y— X, #: Z— Y are said to be transverse

(we shall denote it by o M B) if Sw1SB and a B is a differentiable relation (i.e. if
a and B are locally transverse and Z(af) is a submanifold, not only an immersed
submanifold). In this case a and g are said to have a transverse composition.

Examples.
1. If @ and B are smooth mappings then o rh .
2. If B is a differentiable reduction then o hg for all « (this property charac-
terizes differentiable reductions, see [8]).

If  h B then the projection map in (iii) is a diffeomorphism of & zand Z(a ).
It follows that the simplicity map

Z(@f) 3 (x,2)>s5(x,2) €Y

such that (x, s,z(x, 2), Su5(x, 2), z) € Z, 4, is smooth.

Proposition 2.2. If a« A g then S(af)=SaSB, Ta ATS, Pa hPB and Sa hSB-
For the proof we refer to Appendix.

Corollary. If o hp then S"(af)=S"aS"B for any natural number n (the tangent
and the cotangent functor can be applied as many times as we wish, like in the case

of mappings).

Let us note that it is easier to check the transversality in the case of symplectic
relations.

Propesition 2.3. If a and f are symplectic relations then
(1) SalSp <PalPfoTalTs,

(i) if a NP then af is symplectic.

Proof. Let us assume that «18. Then Pa 1P is equivalent to each of the following
statements (for p e RN A4):

1) T,R+T,A =T, (XX YXYXZ),

2) (T,R)' N (T4)'= (0},

3) T,RN ({0} xT,, ,,4yx {03)= {0} (here p=(x,,,2)).

The last statement is equivalent to Tar1TS. We have denoted by E® the sub-
space orthogonal to E with respect to the symplectic form (and we have used
symbols R and 4 introduced in the proof of Proposition 2.1).

The second part of the proposition follows from alf, T(¢f)=TaTp and
the fact that linear symplectic relations form a category [9]. O

We end this section by a remark on associativity of the transversality. Let us
note first that for any binary relations «, 8, y,

alf and (af)ly implies ol(fy).

Applying this rule to Sa, SB, Sy, where a, 8,y are differentiable relations, we
obtain the following rule:

ahp, (@B)hy and BAy impliess ah(By).
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Of course, we have also

By, acm(@By) and ahp implies (@B)hy. 1)

3. D*-Algebras, S*-Algebras

Definition. A D*-algebra is a U*-algebra (X, m, e, s) such that X is a manifold,
m, e, s are differentiable relations and

mh(m®I), 2
mh(I®m), (3)
mh(e®I), “4)
mh(I®e). ©®)

Note that s is a diffeomorphism since it is an involutive differentiable relation.
Projections ¢; and ey are smooth, because they are simplicity maps for (4) and

(5).

Proposition 3.1. If (X, m, e, s) is a D *-algebra then the projection map
Z(m) > (z,(x, )—>(x,y) € XXX

is an injective immersion whose image is m” (X).

Proof. Let (v,0) € Z(Tm). There exists a curve t—(z(¢), (x(¢), y(¢)) in Z(m) such
that Z(0) =wv, (x(0), y(0)) =0. We have

((sx(2), 2 (), (sx(0), x (1), y (1)) € E(U® m)
(@), (sx(2), 2(1))) € E(m),

hence (sx(t), Z(t)): m.1®m(y(t)s Sx(t), X(t),y(t)), where S, I®m is the SlmphClty
map for (3). Since this map is smooth we have v=7(0)=0. It follows that the
projection in the proposition is an immersion. Its injectivity follows from Lemma
[.3.2.(iv). O

Proposition 3.2. Let (X,m,e,s) be a D *-algebra. Two following conditions are
equivalent:

and

(i) e,, eg are submersions,
(1) m is a differentiable reduction.

Proof. (i)= (ii). m"(X)={(x, y):exr(x)=e,(y)} is submanifold and from Propo-
sition 3.1 it follows that m =m|,,7x, is a smooth (surjective) map. We shall show
that m is a submersion. If m(x, y)==z and z(¢) is a curve in X such that z(0) =z,
then there exists a curve x(¢) such that x(0)=x and e, (x(¢)) = e, (z(¢)) (because
e, is a submersion). If we set y(¢) =m(sx(2), z(t)), we have m(x(¢), y(¢)) = z(¢).

(ii) = (i) Since f=m| ,,7zy: m" (E)— E is a surjective submersion, also e, =f(I® s)d,
er=f(s®I)d (where d: X— XX X is the diagonal map) are surjective submer-
sions. O

Definition. A D*-algebra (X, m,e, s) is said to be regular if m is a differentiable
reduction. By Proposition 3.2, regular D*-algebras are in one-to-one correspon-
dence with differential groupoids [5].
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Definition. A S*-algebra is a D*-algebra (X, m, e, s) such that X is a symplectic
manifold and m is a symplectic relation.

Propeosition 3.3. If (X, m, e, s) is a S*-algebra then m is a (symplectic) reduction.

Proof. Let p =T,m be the relation tangent to m at a point a € &(m) (see [10]).
By Proposition 3.1, p (0)=0. From the properties of linear symplectic relations
(p is such) it follows that p is onto, hence the map p

Zm) > (z,(x,y)>ze X

is a submersion. This implies that g=p|,-(z: p~ '(E)—E is a surjective sub-
mersion. On the other hand, the projection map in Prop. 3.1 defines a diffeo-
morphism of p~'(E) and Z(s), hence

X 3 xe>(e(x), (x,5%)) € p~ '(E)

is a diffeomorphism. It follows that e, is a submersion. By Proposition 3.2, m is
a symplectic reduction. O

By Proposition 3.3, S*-algebras are automatically “regular” and they coincide
with symplectic groupoids [5]. Standard considerations (see [5]) show that if
(X,m,e,s) is a S*-algebra then e is a symplectic relation and s is an anti-sym-
plectomorphism.

Let ky: SX—SX be a map defined by ky(u, &)= (u, — &) for (v, &) € SX.

Proposition 34. If M=(X,m,e,s) is a regular D*-algebra then TM
=(TX, Tm, Te, Ts), PM = (PX, PmPe, —Ps) and SM = (SX, Sm, Se, k xSs) are reg-
ular D*-algebras.

Proof. By Proposition 2.2, TM, PM and SM are union star algebras with unit
satisfying the transversality conditions (2)-(5). We shall show that they satisfy
the strong positivity (condition (I.8)). Using the notation introduced in Appendix
we obtain, from (1.9),

| Z(s)y=m'e, 6
hence, applying (A3), we have

| Z(S)k) = U® k)| E(Ss) = (Sm)Se.
It follows that for each (1, &) € SX there exists (v,7) € Se(1) such that
(v,m) € Sm((u, &), (Ss)kx(u, £)) =Sm((, &), (Tsu, —Ps)).
Since Sm is simple (as a reduction), the strong positivity condition is satisfied. O

In the sequel we shall be interested in those D*-algebras which are regular.

4. Morphisms of Differential and Symplectic Groupoids

Definition. A morphism from a regular D*-algebra (X, m,e,s) to a regular D*-
algebra (X’,m’,e’,s’) is a differentiable relation #: X— X’ such that

hm=m'(h®h), @)
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hs=s"h, 8)

he=e’ ©)
and m’ A(h®h), hhe.

Remark. Equalities (7), (8), (9) mean that 4 is a morphism of U*-algebras. In this
case we know (I. Lemma 5.2) that all compositions in (7), (8) and (9) are simple.
In the above definition we assume additionally that they are transverse.

From the transversality in (9) it follows that the base map fy=hj: E’—E is
smooth, because fo=s, .. Let us note also that dim Z(h)=dim E’ +dim X, (a-
any point of E) does not depend on A. This is seen from the following lemma.

Lemma 4.1. If h: X— X’ is morphism of regular D*-algebras as above,then Z(h)
is a smooth section of the projection efXI:X'XX—E'XX over Z(hyeg)
={(a’,x) e E' X X: fo(a’) = er(x)}.

Proof. By Lemma 133, Z(h)= |J Z(h,), where Z(h,)=Z(h)
a’eE’
N (X, X Xpary) and h,.: Xz, = X, is a mapping for all a” € E’. It follows that
G(h) can be bijectively mapped onto G(heg). The latter set is a submanifold in
Ex X and the bijective map between &'(h) and Z(hyep) is given by efx I It
suffices to prove that ezXxI| y is an immersion. We have to show that
d d
(v'(0), x(2)) € Z(h) and Z‘ (er(x’ (1)), x(¢))=0 implies & x’(t)=0. We
=0 =0
have (er(x’(1)), (s"x"(2), x' (1)) € Z(m") and ((s"x"(0), x'(1)),
(sx(2), x(1))) € Z(h®h), hence (s'x (1), x" (1)) =S, non(er(x’ (1)), (sx(2), x(1))).

Since the simplicity map s,,- 5 1S smooth, it follows that a x'(t)=0. O
=0

In the proof of our next proposition we shall use the following interesting fact,
casily seen from the definition. If /4 is a morphism of regular D*-algebras then
Th, Ph and Sh are morphisms of the corresponding lifts of D*-algebras.

Proposition 4.2. Let M=(X,m,e,s), M =X’ ,m',e’,s") and
M"=(X",m",e",s") be regular D*-algebras. If h:X—X' (k:X'—=X") is a
morphism from M to M'(M’ to M") then khh and kh is a morphism from M to
M”.
Proof. By Lemma 4.1, Z(h)={(x",x)e X' xX:x'=¥(a’,x), h}(a’)=er(x)}
and  Zk)={(x",x)eX"xX":x"=®(a",x"), ki(@")=ei(x")}, where
Y:Z(hger)— X', D: Z(koer— X" are smooth maps satisfying ex(¥(a’, x))=
a’ and eg(®(a”,x’))=a” fora’€e E’,a” e E”, xe X, x’ € X’. It follows that
Zkh)={(x",x)eX"xXX:x"=®@”,¥(a’,x),a’
=ex(x")=kq(a"),hg(a’) = er(x)}
={(x". 0 e X" XX:x"=® (", ¥(ks(@"),x)), hoks(a”) =er(x)} .

hence Z(kh) is the image of a section of the projection ez x I over ZL(kohyer).
This shows that k4 is a differentiable relation. Since Sk and S4 are morphisms
of U*-algebras, we have Sk1Sh, hence k A h. It remains to show that kh e and
m” A (kh® kh).
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Since he=e’, we have hhe, khhe and kh h. 1t follows by the associativity
rule (1) that ki che. Since m is a reduction, Achm and khchm. Using kA, this
implies & Am, hence (by associativity)

kchm' (h®h).

This result implies km’ A (h® h), since kchm’ and m’ ch (h® h). 1t follows that
m”(k®k)yh(h®h), hence m” h(k®k)(h®h), because m” h(k®k) and
k®k)YNH®h).

Corollary. Morphisms of regular D*-algebras form a category.

Definition. A morphism from a S*-algebra (X,m,e,s) to a S*algebra
(X’,m’,e’,s’) is a symplectic relation 4: X— X’ which is a morphism of the
underlying regular D *-algebras.

Proposition 4.2 and the corollary remain true for mosphisms of S*-algebras.

Remark. 1t is striking that using differentiable (symplectic) relations which do not
form a category (they form a WP-category in the sense of [11, 12]), we have
defined (imposing some “algebraic” conditions) a class of a differentiable (sym-
plectic) relations which is already a true category. Note that T, P and S act as
true functors on this category. Functor P even acts from regular D*-algebras to
S*-algebras, so it produces examples of S*-algebras.

Basic examples of regular D*-algebras M =(X,m,e,s) are the following (cf.
examples of U*-algebras in [I}):

1. Manifold algebra: M = D%(cf. [I]), where X is a manifold. All D*-algebras such
that m” is a map are of this type.
2. Algebra of endomorphisms of a manifold: M =End Z, where Z is a manifold
(see 1.3).
3. Differential group algebra is a Lie group (G, m, e, s). All D*-algebras such that
m is a map are of this type.

Basic examples of S*-algebras M = (X, m, e, s) are as follows:
1. Cotangent bundle: M =P (D 5) =T*(Dy), where Q is a manifold. )
2. Algebra of endomorphisms of a symplectic manifold: M =End Z=Z® Z, where
Z is a symplectic manifold. By Z we have denoted the manifold Z equipped with
the symplectic form opposite to the original symplectic form on Z.
3. Symplectic group algebra M =P(G,m,e,s). This algebra is useful for a study
of hamiltonian actions of (G, m, e, s), sce Example 6.4.

If M=(X,m,e,s) is a regular D*-algebra then M T=X,m",e”,s") is said to
be a D*-coalgebra or D*-space or differential pseudospace. Morphisms of D*-
spaces are relations transposed to morphisms of the corresponding regular D*-
algebras.

If M=(X,m,e,s) is a S*-algebra then MT=(X,m",e",s") is said to be a S*-
coalgebra or S*-space or symplectic pseudospace. Morphisms of S*-spaces are
relations transposed to morphisms of the corresponding S*-algebras.

Products of regular D*-algebras and S*-algebras as well as products of D*-
spaces and S*-spaces are naturally defined (cf. [1].6).
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5. Symplectic groupoids and Poisson Manifolds

A Poisson manifold (cf. [13]) is a pair (P, II), where P is a manifold and I7 is a
bi-vector field on P such that the bracket

.8 =11(df,dg)

defined for smooth functions on P, satisfies the Jacobi identity. In this case the
above bracket is said to be a Poisson bracket and IT is said to be a Poisson bi-
vector field on P. If (P, I1)), (P,,II,) are two Poisson manifolds then a smooth
map ¢:P,—P, is a Poisson map if ¢, JI,=1II, (i.e. ¢ preserves the Poisson
bracket).

Let (X, w) be a symplectic manifold. We denote by b the vector bundle iso-
morphism from TX to T*X defined by

W, vy=w @),

where u,v are vectors tangent to X at the same point. In another notation,
b . . . .
uw =ulw. The inverse isomorphism is denoted by #. Formula

1, 0") = @ (u,0)

defines a bi-vector field I7, on X which corresponds to the standard Poisson
bracket on X:

{f, g} =11, (df, dg) = (dg, — (df )= — (df)'g.

Lemma 5.1. If (X, m,e,s) is a S*-algebra then foliations of X defined by the left
and right projections are symplectically orthogonal.

Proof. If t—a(t), t—-b(t) are curves in X such that a(0) = x = b(0), e, (a(?)) = e, (x)
and ex(b(1)) = ex(x), then (a(¢), sa(r)) € m” (e, (x)) and (b(¢), ex(x)) € m” (X). Since
m” (e, (x)) coincides (locally) with a characteristic submanifold of m” (X) (because
m is a symplectic reduction), (u, Ts(«)) is symplectically orthogonal to (v, 0), where
da db
aa 0=

Uu= =
dt|,_, dt

. It follows that u and v are symplectically orthogonal. O
t=0

From Lemma 5.1 it follows that the Poisson bracket {f, g} =11, (df,dg) of
two functions which are constant on right fibers X,, a € E, is locally constant on
these fibers, because in this case

@n)'if, e} =({f,8. M ={{f;h}. 8+ (g h}} =0

for each function % constant on left fibers. In fact {f] g} is globally constant on
right fibers. In order to see this we shall use the following lemma.

Lemma 5.2. Let M =(X,m,e,s) be a regular D *-algebra and let : {13 >X be a
differentiable relation. If we set I, =m(ag ® I) and X =0 (1), then

() mh(@®I), I(X)=e. 'ex(Z) and I,(X)=e; ‘e, (D),

(ii) if extho (i.e. X is the image of a local section of the right projection), then
ls | e 1ercs) is @ smooth map,
(i) if egxha and e ho then I, |€L_|6R(Z) is a diffeomorphism from
er 'er(D) toer e (2).
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Proof. Using

m(x,y)=zem(z,sp)=x, (10)
we obtain Z(I,)=(I® s)m"(Z), hence 1, is differentiable. From (10) it follows
that m1(g ® I). Since SM is a regular D*-algebra, we have also Sm1(So ®I), or
Sm1S(c ®I). It follows that m (o ® I).The remaining part is easy to prove. O

Now let f, g be constant on right fibers X, a € E, as before. For each xe X
we can find a symplectic relation ¢ : {1}— X such that x € X and exrho, e, ho.
By Lemma 5.2, /; is a local symplectomorphism such that egxl,(y)=-ex(y) for
y€er lex(X) and I, (ex(x)) = x, hence

U8 (x) =31, 1583 (er(x)) = {f, g} (er(x)) .

The above considerations show that there is a unique Poisson bi-vector field
IT; on E such that ez, X—E is a Poisson map. There is also a unique Poisson
bi-vector field I7, on E such that e; . X— E is a Poisson map. We have [Tz + I1, =0,
since for a € E,

ITg(a)=er, (I, (@) =eL s, (I, (@) =e. (— I, (@)= —II.(a) .

In order to study the connection between S *-algebras and Poisson manifolds
in a more detail, we consider first the linear case.

A S*-algebra (X, m,e,s) is said to be linear if X is a symplectic vector space
and m, e are linear relations (relations with linear graphs, see [9]).

A Poisson vector space is a pair (E, IT), where E is a vector space and IT is
a bi-vector on E (Il € E A E).

In order to relate the notions introduced above we need several lemmas
concerning linear symplectic geometry.

Lemma 5.3. Linear involutive antisymplectomorphisms s in a symplectic vector space
X are in one-to-one correspondence with pairs (L +, L_) of lagrangian subspaces in
X such that X=L,®L_. The correspondence is given by L, =ker (sF1).

Proof. If s is a linear map such that s> =7 and w (sx, sy)= — (x,y) for x,y e X
then L, are isotropic and dimX=dim L, +dimL_.

Corollary. If (X, m, e, s) is a linear S *-algebra then X is canonically isomorphic (as
a symplectic space) to E@ E*.

Proof. We have L, =F and L_ is identified with E* using the symplectic form
w on X:

¢, d)=w(,a) for ¢e€l_,aeE
(see also [9]). O
If C is a subspace in a vector space E then the annihilator of C is defined by
C'={eE*:(¢,uy=0forueCy .
Lemma 5.4. Let (X, w) be a symplectic vector space. Let y : X— E be a linear map
and IT =y I1,,. Then for any subspace Cc E,

w ~(C) is coisotropiceIT1C°=C .
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Proof. Let K=y ~'(C). We have
w(K)=y(T,lK°) =y {1,y *C°) =y (I1,)IC°=1T1C° ,

hence
K cK=IT1C°=y (K)cy (K)=C
and
IHIC°cC=Kcy 'w( K=y '(IT1C" cy "' (C)=K .

Lemma 5.5. Let E be a vector space and let E,, E, be its two subspaces such that
E=E1®E2.L61H1 EE] /\El,HzeEz/\Ez,H=H1_H2€E/\EandC: g(f),
where f:E,—E, is a linear map. Then IT1C°= C if and only if f is a Poisson
map.

Proof. From
G =& n) e EF®ESF: (&, (b)) +(n,b)=0, b € E}
={¢, —f*): L€k},
we have IT1Z(f)° = {(IT,1¢ , IT,1 f*¢) : £ € E}}, hence
OZ(f’cZ(f)yell &= fUL1f*¢) for ¢eEfell =fI,. O
Now with each linear S*-algebra (X,m,e,s) we associate a Poisson vector

space (E,II,), where E=e(l), I, =e; II,. By Corollary after Lemma 5.3 we
can always assume that X=E® E* and

s(a,&)=(a, —&¢) for uekE ¢ e€E*. (11)
Let us note that the projections e; and e are determined by the Poisson bi-vector:
er(&)=311,& = —ex(¢) for &eE*. (12)

In fact, if A =e; | z~then, by Lemma 5.1,
Z(—A)=kere, = (kereg)= Z(4) = Z(4*) ,

hence 4*= — A and
AE =3(AE — A*E)=5(A4d" ¢, a) — (&, Ad")a,)

=3(4d" na)IE=3e, (@ na)llE
where (a;);,—,. ., 1s a basis in E and (@)= 1.....n is the dual basis in E*.

Lemma 5.6. Let (X, m, e, s) be a linear S*-algebra. We identifoy X with E® E* and
s& = —E& for & € E* For any subspace Cc E such that I1; 1C" < C there is exactly
one lagrangian subspace A of X such that CcAcK, where
K=e; '(C), namely A = COK = C® C°.

Proof. By Lemma 5.4, K is coisotropic. We shall find K*. We have
K={(a,¢()e EQE*:a+ Al € Cl=(c— A, E): (e EX ce C} ,
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hence K¥={(b,7): (n,c)=(&,b+A*n)for & € E*,ce C}={(4n,n):n e C°}. It
follows that Cn K*= {0}. We have dim C+ dim K¥=dim C+2dim E—dim K=
dim C+2dim E — (dim C + dim £) =dim FE, hence

A=COK={(c+An,n):ceCneCl=COC’ . O

Let M =(X,m,e,s) be a linear S*-algebra and let /: X—> X x X be a relation
such that
(z;x,y) € Fm)e(z,y;x) € Z()

(it is easy to see that / is a morphism from M to End X; / is said to be the left
regular representation of M). We shall use Lemma 5.6 in order to prove that 17,
determines / (hence also m). In fact, £(/) is a lagrangian subspace of (X x X)x X
and the latter space carries the structure of a product of two linear S*-algebras,
End X and (X,m,e,s). The base map of / is given by A3 (x,x)—f(x,x)=
e, (x) € E and this is a Poisson map (on 4 y we choose the left Poisson bi-vector).
By Lemma 5.5, C= Z(f7) satisfies [(ITgnq x)r —IT,]1C° = C. We have also

CcZ()cK=[(epnax)Lxer]” 1(C) ={zy;x)ie(2)=e.(x)} .

From Lemma 5.6 it follows that & (/)= C® K?®. Using this we can calculate & (m)
explicity:

Fmy={w,+nse.w,&),n,exw,n),&):weE L, neE* .  (13)

It is easy to see that for arbitrary IT € E A E, formulae (12) and (13) (with I7, = IT)
define a relation m satisfying the associativity and other axioms of a linear S*-
algebra. Thus we have proved the following lemma.

Lemma 5.7. For each bi-vector IT € E A E there is exactly one structure of a linear
*-algebra on E®@ E* such that I, =11 (and s is given by (11)).

Proposition 5.8. Let M=(X,m,e,s), M'=(X’',m’,e’,s") be two linear S*-alge-
bras and let (E,Il,), (E',II]) be the corresponding Poisson vector spaces. If
h:X—X' is a linear relation which is a morphism from M to M’, then h]:
E’— E is a Poisson map. The assignments

(Xa m,e, S)H(E) HL) s hth

define a bijective contravariant functor from the category of (linear) morphisms of
linear S*-algebras to the category of linear Poisson maps.

Proof. Since
G(ho)= (et xer)Z(h)c Z(h)c(etxer) ' Zlh) ,

hence (e; X e;) ' Z(hy) is coisotropic (because it contains a lagrangian subspace)
and by Lemmas 5.4 and 5.5, 4] is a Poisson map. Conversely, if f: E’—Eis a
linear Poisson map then, by Lemma 5.6, there is exactly one linear symplectic
relation s: X— X’ such that Z(f ") Z(h)c(ef xe;)” ' Z(f7). It is easy to see
that 4 is a morphism of S*-algebras and f=h, O

Now let (X, m, e, s) be a S*-algebra. For each point a € E the tangent space
T,X has a structure of a linear S*-algebra and (T,E,II,(a)), where I1,(a)=
e, I1,,(a), is the corresponding Poisson vector space. It follows immediately from
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Prop. 5.8 that the base map of a morphism of S*-algebras is a Poisson map. The
assignment A+ h{ is a contravariant functor from the category of S*-algebras to
the category of Poisson manifolds.

6. Symplectization and Completeness

In the preceding section we have associated with each morphism of S*-algebras
a Poisson map — the base map of the morphism. In this section we study the
inverse problem: given a Poisson map, is it possible to construct a morphism of
S*-algebras whose base map is the original Poisson map?

We begin with the problem of uniqueness of such a symplectization.

Proposition 6.1. Let M= (X, m,e,s)and M'=(X",m’,e’,s") be two S*-algebras.
If the fibers X,, a € E are connected, then any morphism h from M to M’ is uniquely
determined by its base map.

Proof. By Lemmas 5.4 and 5.5, K, =(e;xe,)” ' Z(hy) is a coisotropic subman-
ifold and we have

Letz=(x",x)e Z(h),b’ =er(x") anb=er(x). Since (e X er) | zu has a constant
rank equal to dim (k) (by Lemma 4.1), we have

T.ZMNT.(X5 x X,) =TAZ (M) (X, X X)) =T.Z(h;) .
On the other hand, T.K,oT,Z(h)+T.(,. X' x,X), where a’=e/(x’),
a=e¢;(x), hence
(T.K) cT.ZW)NT.(X ;. X X)) =T.Z(hy) .
Counting dimensions yields
codim K, =codim Z(hy) =dim E=dim X —dim E=dim T. Z(h,.) .

hence (T.K,)* = T. Z(h,) is connected (as a graph of a smooth map with connected
domain), it coincides with the characteristic of K, passing through z. This char-
acteristic contains (b’, b) € Z(hy). We have proved that Z(4) is the union of those
characteristics of K, which pass through £(h,). O

Now we shall formulate a condition which is essential for a Poisson map to
be a base map. If (E, IT) is a Poisson manifold, then for each (smooth) function
H on E we denote by #; the hamiltonian vector field corresponding to H:

Definition. Let (E, IT) and (E’,I1’) be two Poisson manifolds. A Poisson map
JE'—E is said to be complete if 25y is complete whenever 27 is complete,
for any smooth function H on E.

Proposition 6.2 Base maps of morphisms of S*-algebras are complete.

The proof will be given after the following lemma.
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Lemma 6.3. Let M= (X,m,e,s), M'=(X",m’,e’,s’) be two S*-algebras and let
f+E'=E be a Poisson map. Then the characteristic distribution on
K, =(e;xer)” "(Z(f)") is spanned by vector fields &g, where

H=e}**H—e, *H (14)
and H is a smooth function on E.
Proof. A covector (,&) e T.(X’x X) annihilates T, if and only if
0+, uy=0 (15)

for ue T.X, ve T, X’ such that e, u= f,e; v. Using (15) with u,v such that
e; u=0,e; v=0 we obtain that (7,¢) (T.K,)° implies & = e}(a), 7 = e/ *(B) for
some covectors a € TH E, B € T% . E’. It follows that (7,¢) e (T.K,)" if and
only if

(a, freir )+ (B, e vy=C(a, e, u)+(B,e/v)=0

for veT.X’, or, equivalently, if f=—f*a. It follows that (T.K,)°
={(et* *a, —e *a):a € TE (E}. If we substitute o =dH(e.(x)), where H is a
function on E, we obtain (e *f *a, — e, *a)=d(e; *f *H — e, *H), hence (T.K,)’
is spanned by Zz(z). O

Proof of 6.2. Let the Poisson map f in Lemma 6.3 be the base map of a morphism
hfrom M to M’. Let H be a function on E. If z=(x’, x) € £(h,-) then, by Lemma
6.3, Z%(2) is tangent to Z(h,.), hence

Zr(x")= hb'*%F(x) >

where F= — e, *H, F’ =e/*f *H. Therefore the integral curve of 2%, starting from
b’ is given by x'(¢) = hy x(t), where t—x(t) is the integral curve of 27 starting
from b= f(b’). If 2y is complete then 2, .4 is also complete ([5],
Chap. I1I. Sect. 1) and ¢—x’(¢) is defined for all values of 7. But t—e, x(t) is the
integral curve of 27 starting from b, since e/ 2., +x = Zx for any function K
on E’. It follows that Z7; is complete.

Proposition 6.4. Let M =(X,m,e,s), M'=(X',m’,e’,s’) be two S*-algebras and
let fibers X, be connected and simply connected for b€ E. Then any complete
Poisson map f:E’—E is a base map of a (unique) morphism h from M to M".

Proof. Define h:X—X’ as a relation whose graph is the union of those
characteristics of K, =(e;xe;)” '(£(f)"), which pass through Z(f)". For
z=(x",x) € K; we have

T.K;oT,(, X' %X, X) for a’=ej(x’),a=e,(x)
and
(T.K) T, (X5 % X,) for b’ =ex(x), ba(x) ,

hence the characteristic passing through z is an immersed submanifold of
X X X,. If ze Z(h), then this characteristic passes through (b’,b) and is
equal £(h) (X} . xX,)= Z(h,.). By the completeness of f, # is complete for
each function H on E such that 27, is complete (H is defined in (14)). By Lemma
6.3, the flows of vector fields 25 preserve Z(h,.). This implies that the flows of
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vector fields Z,,+, preserve the projection of &(h,.) on X,. Since subsets of X,
invariant under these flows are open and X, is connected it follows that the
projection of Z(h,.) on X, is equal X,,. Since dim Z(h,.) = codim K, = dim X, and
(v,0) € T-Z(h,) implies v=0 (by Lemma 6.3), £(h,.) is a connected covering of
X,. Since X, is simply connected, this covering is in fact one-fold only, hence
hyo s X=X}, is a smooth map. It follows that Z(k) is the image of the map

Z(fTer)a (b, x)—>(hy (x),x) € X' X X . (16)

This map is a section of the projection ejx I over Z(f7ez) (as in Lemma 4.1).

We shall show that this section is smooth. Let (57, x) € £(f"ex) (i.e. ex(x) =1 (b")).

Then x= & (b), where @ is a product of flows of complete vector fields of the

form Z,,«yandb=f(b’). Let H,,k=1,...,n=dim E be a collection of compactly

supported functions on E such that dH, form a basis in TFE,a=e,(x). We set

H, =Z A*H, for A € R"and let @, be the flow corresponding to e, *H, (at time
k

t=1). Then
R'XE’ 5@ (A, 6")—(D,®(5"),6") e Z(fTex)

provides a local chart of Z(F’ez) (Zis a suitable neighbourhood of (0,5") in
IR" < E’). We have

hs (DD (f (b)) =259°(6") ,

where @; is the flow corresponding to e; *f*H, and @’ is the product of flows
corresponding to e; */ *H (with the same H'’s as before). Since the right-hand side
of the above equality depends smoothly on (1,4"), it follows that the section in
(16) is smooth, hence 4 is a symplectic relation.

Now we shall prove (7) and (8) ((9) is rather trivial). Formula (7) is equivalent
to the following equality:

hb'm(x’y):ml(hei}th'(y)(x)a hb‘(y)) (17)

for (x, y) such that ex(y)=f(b"), ex(x)=¢.(y) and b’ € E’. To prove (17) let us
fix b’ and y such that ex(y)=f(b’). We have to show that (17) holds for
x € X,,(,. It holds for x = e, (y). We shall show that if it holds for x, and #—x(¢)
is the integral curve of Z,, .y (for some H) such that x(0) = x,, then (17) holds
for all points of the curve. Indeed, if we set I(t) = h, - m(x(2),y), we have

d
7 (1) =hy ;m (2o (x(2)), 0) = by 2, s (m(x(2), ¥))
because Z,,.y is right-invariant [5]. It follows that
d
?‘T[ I(t)y=Zopepeu (D)) .
On the other hand, if we set r(¢) =m’ (h,in,.)(x(2)), hy-(y)), then
d
g =m, (Peiny 0y er+u(x(2)), 0)

=my (Lo ert(Peing.y(X(2)),0) = 2, epsp(r (1))
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hence /() and r(z) are integral curves of the same vector field with the same
starting point. This ends the proof of (17).

Now we prove that G(k) is star-invariant (formula (8)). Substituting x = sy
in (17) we obtain

b’ =hy (er(¥))= hy-m(sy,y)=m'(he:pp, (), Bp (3))

heihb'(y)(sy)=s’hb’(y) . (18)

Now, if (h(y),y)€ Z(h) then er(sy)=er(y)=f(eihy (), hence
(Peiny -y (sY), sy) € Z(h) and from (18) we obtain (s'h,.(y), sy) € Z(h).

Transversality conditions Ache, m’ th (h® h) are proved as follows. To prove
the first condition, let us note that (x’(¢),x(t)) € Z(h),x(0) e TE implies
x(O)~eR*x(0) Jser X' (0) Z(h) is the image of a smooth section of the pro-
jection ejx Iover Z(f"er), hence Z(Th)=TZ(h) is the image of a smooth
section of the projection ez, X I over Z( f* er, ). Therefore, if (u’,u) e Z(Th),
(v’,v) € &(Th) and w=Tm’ (u’v')then er, V' =eg wand (v',v) e ?(Th) hence
w and v determine »’. Similarly, w and u determine u’. O

hence

Example 6.1. Given a Poisson manifold (P, IT), one can try to find a S*-algebra
M = (X, m,e, s)such that (P, IT)=(E, II,). By Proposition 6.4, any two such S*-
algebras with connected and simply connected fibers are canonically isomorphic
(the identity of E is complete). In particular, any S*-algebra (X, m,e,s) with
connected and simply connected fibers and such that /7, =0 is canonically iso-
morphic to T*D;. Any S*-algebra (X, m, e, s) with connected and simply con-
nected fibers and such that E is isomorphic (as a Poisson manifold) with the dual
of a Lie algebra g is isomorphic to the symplectic group algebra P(G), where G
is the connected and simply connected Lie group corresponding to g.

Example 6.2. Let M =(X,m,e,s) be a S*algebra. Any function f: E~>R is a
Poisson map (the real line is considered with its unique Poisson bracket equal to
zero). This function is complete if and only if 27 is complete. If it is complete,
it defines a morphism /4 from T*R = IR X R* to M. Images under /4 of bi-sections
{(e,?) e RxR*: t=const} form a one-parameter family of lagrangian bi-sections
of M (see [5] for a definition of a bi-section; from Lemma 4.1 it follows that
images of smooth bi-sections under morphisms of regular D *-algebras are smooth
bi-sections). If M =T*E then the bi-section corresponding to t=1 is known as
the lagrangian submanifold of T*E generated by f (in this case each f is com-
plete).

Example 6.3. Symplectic Gelfand-Naimark duality.

To each manifold Q there corresponds a commutative S*-algebra with con-
nected and simply connected fibers, namely T*(D,). Conversely, each commu-
tative S*-algebra (X, m, e, s) with connected and simply connected fibers is ca-
nonically isomorphic to T*(Dg). If f£:Q’—(Q is a smooth map then /" is a
morphism from Dy to Dy and (Pf Y'=T*f is a morphism from T*(Dy) to
T*(Dy/). By Proposition 6.1, each morphism of contangent bundles is of this
type.

Example 6.4 A representation of a S*algebra M= (X, m,e,s) in a symplectic

manifold Z is a morphism 4 from M to End Z. The base map f:4,— E is said
to be the moment map of the representation. Under the natural identification of
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A yand Z, the moment map is a Poisson map from Z to (E,IT,). If M=PG is
the symplectic group algebra of a connected and simply connected Lie group G,
then a Poisson map f: Z— E=g* is complete (and defines a representation of
P(G)in Z) if and only if the local action u—2, ,, of g on Z gives rise to a global
action of G on Z (see also [14]).

7. D*-Groups and Double Lie Groups

Definition. A D*-group is a U*-group K= (D, m) such that D=(X,d,c,r) is a
D*-space, m and e are morphisms of D*-spaces and mh (k® I)d (e and k are the
neutral element and the inverse in X).

It follows directly from the definition that the pairs TK=(TD,Tm),
PK=(PD,Pm) and SK=(SD, Sm) obtained by applying functors T, P, S to a
D*-group K= (D, m) are again D*-groups.

Definition (cf. [6]). A double Lie group is a double group (G; 4, B), where G is a
Lie group and A4, B are closed subgroups in G.

Proposition 7.1. Let K=(D,m) be a D*-group and D= (X, d,c,r). Then the cor-
responding double group (X; C, E) is a double Lie group. The U*-algebra of K,
(X, m,e,s), is a regular D*-algebra.

Proof. From mh (k ® I) d it follows that the map (¢, X e,)” ' : Cx E— X is smooth,
hence ¢; x e, is a diffeomorphism. In particular, e is a submersion. It follows
that (X, m, e, s) is a regular D*-algebra. Since m| ¢« cand dTI Ex g are smooth, C
and E are Lie groups and bijections ¢; X eg, crX €y, CgX eg are diffeomorphisms
(cf. beginning of 1.10). It follows that the multiplication in X is smooth, hence
X is a Lie group and C, E are closed subgroups in X.

Example 7.1. Let K=(D,m) be a D*group such that D= Dy, where X is a
manifold. Then X with the multiplication map m: XX X— X is a Lie group. The
corresponding double Lie group is (X; X, {e}), where e is the neutral element in
X. Let us consider the tangent and the phase lift of K.

a) The tangent D*group of K, TK=(TDy, Tm), is again an ordinary Lie
group, because TDy= Dry. The multiplication Tm is a map, which in explicit
terms is given by

Tm(u,v)y=uh+gv , (19)

where u € T, X, v € T, X. The corresponding double Lie group equals (T.X; TX, {e}).
We have used the following notational convention: we denote by g (Q2g) the left
(right) translation by g€ G of an element Q of any tensor bundle over a Lie
group G.

b) The phase D*-group of K, PK= (PDy, Pm), is not an ordinary group. One
can check easily that the corresponding double Lie group is (PX; X, T¥ X), where
the cotangent bundle PX is viewed as a group under the following multiplication:

E-n=Ehtegn ,
where &£ e TF X, n € T X (cf. (19) and the convention).
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Proposition 7.2. Let (G; A, B) be a double Lie group. Then &/ =(G,a, A,s,) and
B =(G,pB,B,sp) (notation as in 1.9) are regular D*-algebras and (Z7,p) is a
D*-group.

Proof. Set g=TyG, a=TyA, b=TyB (here 0 is the neutral element of G). Since
g=a®b, we have T,G=ga®gb=ag®bg for each ge G. We have also
T,G=ga®bg =ag®gh. This is true because if uea and gug ' = Ad,u b then
Ad,ueb, where a=axp(g), hence Ad,u=0 and u=0. It follows that the smooth
bijection A X B> (a,b)—>®P (a,b)=ab € G is a submersion:

T®(T,AXT,B)={db+ab:deT,A,beT,B}=aab+abb=T,kG .

This implies that a; X by is a diffeomorphism. Using the map (a, b)—ba we can
prove that ag X b, is a diffeomorphism. In particular, projections a;, ar, b, and
br are smooth submersions. It follows that a”(G)={(g,h):axr(g)=a.(h)} is a
submanifold. Since

Z(a) = {(b\ab,; ba,ab,):ae€ A,b,b, € B} , (20)

it is easy to see that « is a differentiable reduction. Formula (6) implies that s,
is a differentiable relation. It remains to prove that a h(4®I)and g A (k® Na”,
where k is the inverse in G.

To this end let us consider first the tangent group TG (Example 7.1). Since
each w € T,,G has a unique decomposition

w=db=db+ab(ieT,A,beT,B) ,

(TG;TA, TB) is a double Lie group. We denote the corresponding projections
by d,, etc., hence we have w=d, (w)bg(w)=b,(w)dz(w). Since Ta,(gh) =0, we
have

TaL(w)=TaL(db+ab')=TaL(db)=% aL(a(t)b)=% a(t)y=a ,

t=0 =0

where t+—a(t) is a curve representing a. It follows that Ta, =d, and, similarly,
Tag=dpg. Let a,f:TG®TG—-TG be the differentiable reductions associated
with the double Lie group (TG; TA, TB). From (20) we have

g(TO() = {(Elabz + bldbz + b,ab}; 51a + b]d, abz

@21
+aby):deT,A4,b, €T, B,b,eT,,B} .
Since
Elabz + bldbz + b1a52 == (51a + bla)b2 + (bla)b.z = (5|a + b,a)b2 = blab2 N
Ela + bld = 51a
and

dbz + a52 = d52 N
it follows that To =c. In the same way we obtain TS =pf. It follows that
Tal(TA®I) and TAIT((k® a”). Note that the multiplication in TG defined
by Ta and TS coincides with Tm, where m is the multiplication in G.

Now let us consider the phase space PG. Since each { € P,,G has a unique
decomposition

(=¢n=¢btan (€ e(T,A) ", ne(TB)),
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(PG; (TA)°,(TB)") is a double Lie group. However, as we shall see, the corre-
sponding differentiable reductions do not coincide (in general) with Pa and PS.
In fact, (21) implies that ({;¢,n)e £(Pa) if and only if (¢, b,ab,+bdb, +
biaby)y=(¢,ba+ ba)y+{n,db,+ab,) for d € T,A, b, € T,,B, b, € T,,B. 1t follows
that ({;¢,n) € £(Pa) if and only if

by '¢by ' —by ' eba (22)
by '¢hy ' —nby ' eat’ (23)

and
by 'Cby ' —by 'E—nb, ' ed’a=ad’ . (24)

In particular, if ({;&,n) e £(Pa) and & € (TA)° then b, =0 and
(by ' —nb; ' eab’naa® ,
hence { =7 and ¢ is uniquely determined by
E—nb, 'eb’a and ¢ ead’ . (25)

It follows that Pa1(P4A® I). Note that the left projection of n associated with
Pa given by ¢ in (25) is different (in general) from the left projection £ * of # on
(TA)® in the double Lie group (PG;(TA)°, (TB)"), which is given by

E"—nby'eat’ and ¢’ e€ad .
We shall show now that P8 (i (Pk® I)Pa”. From [I] we know that
(b;x,y)e Z(B(ss®1) and (x,y;a’)e F(s.®Na’)
if and only if x=y=ab="5b"a’ for some a € 4, b’ € B. In this case we have
(b;a”'b’',b’a’)e Z(B) and (b’ 'a,ab;a’)e F(a”) . (26)

If (0;¢,,n7) € Z(PB) and (£,,7;0) € Z£(Pa”), where all covectors are attached to
the corresponding points in (26), then na’ "' € b’a® and b~ "' <ab’ (from (23)),
hence

neba®a’ Nnabt’b=>b’a’a’ Nab¥’ ,

i.e. 7 =0. By (22) and (24) also &, =0 and £,=0. O

8. S*-Groups and Manin Groups

Definition. A S*-group is a D*-group (D, m) such that D is a S*-space and m, e
are symplectic relations.
The phase lift of a D*-group is a S*-group.

Definition. A Manin group is a double Lie group (G; 4, B), where G is equipped
with an invariant non-degenerate scalar product, vanishing on T4 and TB.

The notion of a Manin group is a global version of the notion of a Manin
triple ([4, 6],...). Interesting examples of Manin groups are given in [6].

Theorem. There is a one-to-one correspondence between S*-groups and Manin
groups.

The rest of this section is devoted to a proof of this theorem.



390 S. Zakrzewski
Let (D, m) be a S*group. By Proposition 7.1 we can assume that (D, m) is
associated with a double Lie group (G; 4, B), i.e. (D, m)= (£, B). Let
I=P +P,, I=0,10,

be the decomposition of the identity of T,G on projectors, corresponding to
decompositions

T,G=ga®gb, T,G=ag@bg ,

for each fixed g € G (the notation here is as in the proof of Proposition 7.2). We

set
n(u,v) =@ (P, — Q2)u,v) @7
for u,v € T,G, where w is the symplectic form.

Lemma 8.1. The bilinear form n is symmetric, non-degenerate and G-invariant.
Subspaces ga, ag, gb and bg are all isotropic with respect to n.

Proof. Since (ga)’=ag and (gb)*=bg, we have w(Q,u,v)=w (Q,u, P,v+ P,v)
=w(Q,u, P,v)=w (u, P,v), hence

n(u,v)=w(Pyu,v)+ w (Pv,u) (28)
and #n is symmetric. We have also
n(u,v)=w(Qiu,v) + w(Qiv,u)=w(u, P,v) +w, Pu)

=w(u, Qv) tw (@, Qu) .

It follows that ker P, ker P,, ker O, and ker Q, are isotropic with respect to 7.
The non-degeneracy follows from the fact that (P,— Q,) is invertible: if
(P,— Q>)u=0then P,u= Q,u, hence u € gbag and therefore u=0.

We have n(u,v) = w (u,v) for u € ga, v € gb. This condition together with the
isotropy of ga and gb fully characterizes n. It follows that » is left-invariant if
and only if

w(gd,gh)=w (d,b) for dea,beb, geCG . (29)
For each ae€ A4, b € B and any curve a(¢) in 4 and b(¢) in B we have
(aba(t); ab,ba(t)) e E(B) , (ab,ba(t); ab,ba(t),a(t)) € Z(I®a)
and
(abb(t); abb(1),bb(t)) € Z(B) , (abb(1),bb(t);abb(t),b,b(t)) e £(I®w)) ,

hence

(aba(t); ab, ba(t),a(t)) € Z(B(IBa))
and

(abb(1); abb(t),b,b()) € (BB )).

This implies that vectors (abd; 0, bd,d) and (abb; abb, 0, b) are symplectically or-
thogonal (B(I®«) is a symplectic relation), hence w (abd, abb) = w (d, b). It fol-
lows that n is left-invariant. A similar argument shows that it is also right-
invariant. O

It is clear (by Lemma 8.1) that (G; 4, B) is a Manin group, where G is con-
sidered as being equipped with the scalar product » defined in (27).
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Now we shall show that any Manin group carries the structure of a
S*-group. Let (G; 4, B) be a Manin group and let » be the scalar product on G.
Since n(P,u,v)=n(P,u, P,v)=n(u, P,v) and n(Q,u,v)=n(u, Q,v), we have
n((Py— Q)u,v)=n(u, (P, — Q,)v)= —n(u, (P, — 0»)v), hence P,— (@, is anti-
symmetric with respect to n. Therefore the inverse, (P, —Q,)” ', is also anti-
symmetric. We set

wu,v)=n((P,— Q) 'u,v) .
Then w is the 2-form such that
n(u,v)=w (P, — Q)u,v) . (30)

If we denote again by » the symmetric map from T,G to T} G associated with #,
then

n=»H(P,— Q)
(b defined by w). We have

Pi= 0y =3[(P\=P>) + (21— Q)= (gR+ Rg) ,

where R is the reflection in a parallel to b in g. It follows that

#n =§ gR+ Rg)
and

f=3lgRn™ )+ (Rn" gl ,
where § =b"'. Therefore we have

I1,(g)=3(gll,+1,g) ,

where I7 is the canonical [4] bi-vector on g. By the results of [15], 7, is a Poisson
bi-vector field, hence w is a symplectic form (i.e. it is closed).

It remains to prove that o (and B) is a symplectic relation. Since » is non-
degenerate and a, b are n-isotorpic, then dim 4 = dim B=1dim G. From (20) we
have

dim ¥(a¢)=dim 4 +2dim B=2dim G=1dim (GX GX G) .

We have to show that Z(«) is isotropic with respect to the symplectic form. By
(21), we have to show that

w(51ab2 + b‘dbz"_blab'z, B{abz'i"bld/bz"—blab‘z,)
=w(51a+bld,5{a+bld')+w(db2+a52,d'b2+a5£)

ford,d’ € T, A4, b,,b{ € T, B, b,,b; € T,,B, and this is equivalent to nine follow-
ing conditions

1° w (byaby, b{ab,)=w (b,a,b{a),

2° w(baby,bid’by)=w (bya,ba’),

30 w(b.labz,blaﬁzl)zo,

4° @ (b,ab,,b{aby)=w (b,d,b{a),

5° w(bdby,bia’by)=w(bid,bia’ )+ w(ab,,d’b,),
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60 W(bldb2,bla52/)=w(db2,a62,),
7° w(byab,, b’ aby)=0,

8° w(b,abz,bla b,)= w(abz,a ,by),
9°  w(b,ab,,b,ab; )= w(ab,,abs).

Since ga, gb, ag and bg are all isotropic with respect to n, hence by (30) we
have

(ga)§ =(P,—Q,)(ga)=0ag ,
(gb)*=(P,— Q,)(gb)=byg .

This implies 3° and 4°. Conditions 1°, 2° and 4° are contained in the following
statement:

@ | g1 18 right B-invariant .

This statement is in fact true. Let uebg, veT,G and be B Then
u=(P,— Q,)w= — Q,w for some w € gb. We have

w (u,0)=w (P, = Qx)w,v) =n(w,v) =n(wb,vb) = (P, — Q) (wb),vb) .
Since Q, is right-invariant and wb € gbb, we have
wW,v)=w(— Q,(wb),vb)=w(— (Q,w)b,vb) = w (ub,vb) .

Similarly, conditions 6°, 8° and 9° hold, because w | o1 is left B-invariant.
Up to now we have proved that V< (T Z(«))’, where

V= {(blab2 + blabz; la, ab2) : bl € TblB’ b2 € szB} .
It remains to prove condition 5° which says that
W=1{(b,db,; b,d,db,):deT,A}

is isotropic. We are not able to prove it directly. However it follows immediately
from the fact we have

T ()=VOW=VOW,=V® W,
and W, c W5, where
W, = {(ub,ab,; ub,a, W’ )ab,):uecal ,
We={(byab,; b,a("), ab,v) v € a}

(in order to see that W, c TZ(«) note that (xb,ab,; xb,a, (x"")ab,) € Z(a) for
x € A).

9. §*-Groups and Poisson-Lie Groups

If (D,m) is a S*-group, then the base map of m,m|cxc, is both the group
multiplication in C and a Poisson map. Therefore C is a Poisson-Lie group
([4,6],...). With sensibly defined morphisms of S *-groups (cf. the definition of
a morphism of union pseudogroups in [1]), the passage from S *-groups to the
corresponding Poisson-Lie groups is a (covariant) functor. Working with S*-
groups rather than Poisson-Lie groups has the following advantages:
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- The symmetry between algebraic and space structure of a pseudogroup is
evident.

- The structure of a S *-group is well prepared for quantization which consists
in replacing certain symplectic relations by operators; we can expect that there
exist distinguished “invariant” polarizations which are necessary for the quan-
tization (in the case of ordinary groups it often happens; while passing from an
ordinary group to a pseudogroup the number of symmetries does not change).
A class of quantum deformations of the Heisenberg has been already obtained
by this method in [16]. The quantization assigns to one classical object only one
quantum object.

~ A passage from (D,m) to C may cause a lost of information (the case
disconnected fibers, union pseudogroups, multiply-connected fibers).

- Some Poisson-Lie groups do not have the corresponding S *-group. If such
S *-group exists, the Manin triple corresponding to a given Poisson-Lie group is
the Lie algebra of the Manin group. But in general a Manin triple need not give
rise to a Manin group (like a double Lie algebra [6] need not give rise to a double
Lie group). Of course, a necessary condition is the completeness of the dressing
fields [6]. Another necessary condition is the completeness of the group multi-
plication in a Poisson-Lie group (cf. Proposition 6.2). These conditions seem to
be closely related each to other (and they seem to be essentially sufficient).

What really happens if a Manin triple (g;a,b) does not give rise to a Manin
group? Let G be the connected and simply connected Lie group corresponding
to ¢ and let 4, B be the subgroups corresponding to a and b. Suppose that 4, B
are closed and 4N B={0}. Then the first statement of Proposition 7.2 remains
true provided we replace G by P=4 - BN B - 4 (cf. 1.9). Moreover, arguments
of Sect. 8 show that P is a symplectic manifold and the algebras in Proposition 7.2
are S *-algebras. But, unless P=G, we do not have equalities in (1.29), (1.30),
(1.31).

10. Appendix: Proof of Proposition 2.2

Let a A B. We shall show that S(af)=S(@)S(B). If y(¢)=(x(¢), z(¢)) is a curve
in Z(apf), then (x(r),s,5(y(2)) is a curve in Z(a) and (s,5(y(?)), z(¢)) is a curve
in Z(B). It follows that T(afB)cTaTB. Conversely, if (u,v)e Z(Ta),
(v,w) € Z(TB), then (u,v,v,w) e TRNTA =T(RNA). It follows that there ex-
ists a curve of the form (x(z),y(¢),z(¢t)) representing (u,v,w) such that
(x(0),z(1)) € Z(ap), hence (u,v) e Z(T(aB)). The equality P(a8)=PaPB fol-
lows from T(a¢f)=TaTB by applying the duality functor (taking into account
that o 18, cf. [10]).

In the proof of the first part we have used the notation introduced in the
proof of Proposition 2.1 (R and 4). In the second part we shall use also the
following convention. If 4 is a submanifold of B, we shall denote by |A4) a
differentiable relation from {13 to B whose image is 4 (we shall use this convention
only in such cases when it is clear what is B). We set also (4| = | 4)”. We have
the following lemmas.

Lemma A.1. o g if and only if I®(Ay|®) (] Z(@)® | Z(B))).

Lemma A.2. If p ch A, where p is a differential reduction and the domain of A is
{13, then Sp M SA.
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These lemmas will be proved later in this section.
From the lemmas it follows that « h g implies

SISy |®DMS(| Z(@)® | Z(B)) - (A1)
We shall show that (A.1) implies
I®Usy| @D AN(| Z(Sa)® | Z(SB)) - (A2)

We have
S(A Y| =<ASY| (ky@l) P

where ky: SY—SY is defined by ky(v,7)=(v, —n). We have also
S| Z(@)=U®ky)| Z(S() ,
S| ZBN=U®k2)|Z[S(B) -
It follows from (A1) that
(I®{Asy| ®D(IRky®I®I)

(A.3)

ANIRky®I®k,)(| Z(Sa))® | Z(SB)))
and we have

(I®I®I®k)(I®(Usy| ®NUOk,®I®ky)

AI®ky®I®k,)(| T(Sa))® | Z(SB))) .

hence (A2). By Lemma A.1, (A2) implies Sa (hSB. If we use functor T or P
instead of S, we obtain Tarh TS and Pa hPS.

Proof of Lemma A.1. We set p =I®{A4 4| ® LA = | Z(a))® | Z(B)). It is easy to
see that a1 if and only if p1A and

af is differentiable = p 4 is differentiable .

Assume that a1, then Pa 1Pg, is equivalent to each of the following statements:
1) (0,n) € &(Pa) and (1,0) € Z(PB) implies n =0 (for € PY),
2) ((0,0),(0,—1,n,0)) e Z(Pp) and ((0, —1,7,0) € F(PA) implies # =0.
3) ((0,0), k) e Z(Pp) and (x,0)e Z(PL) implies k=0 (for
K e PXXPYXPYxPZ),
4) Pp1PA.

If we assume Pa1Pg, then Ta 1TS is equivalent to each of the following
statements:
1) (0,v) € £(Ta) and (v,0) € Z(TB) implies v=0 (for v € TY),
2) (0,u) e £(Tp) and (u,0) € L(TA) implies u=0 (for ue T(XX YX Y Z)),
3) TplTA. O

Proof of Lemma A.2. Let p= f1’,1:C—X, f:C—Y be the canonical decom-
position of p (by the definition of a reduction), L= A (1). We shall prove first
the following lemma.

Lemma A.3. p A if and only if p A is differentiable and
1) pla,

(it) L intersects C transversally,

(i) f|LAc is an immersion.
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Proof. Assume p 14, then Pp 1PA is equivalent to each of the following state-
ments:

1) (0,7)e Z(Pp) and (1,0) € £(PA) implies n =0,

2) 7]1e=0 and |+, =0 implies n =0,

3) ().

Assume Pp 1PA, then Tp 1TA is equivalent to each of the following statements:
1) (0,v) € Z(Tp) and (v,0) € Z(TA) implies v=0,

2) vekerdf and v € TL implies v =0,

3) (). O
From Lemma A.3 it follows the following local “normal form” of p and A:
Y=A®B ,
X=A®BR®E®D ,

A=A |N® |EY® [{d}) ,
p=IRI®({e}| ®(D| (i.e. C=A®B®{}®D) ,

where b, e, d - certain points of B, E, D, respectively. Since the product preserves
the transversality, it is sufficient to prove the transversality of the corresponding

factors, for instance (D| i | {d}), and this is easy.
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