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Abstract. The main object of this paper is the study of a sequence of finite
dimensional algebras, depending on 2 parameters, which appear in connection with
the Kauffman link invariant and with Drinfeld's and Jimbo's q deformation of Lie
algebras of types B, C and D. We determine for which parameters these algebras are
semisimple. Moreover, we classify all unitary representations of the infinite braid
group B^ factoring through the inductive limit of these algebras. This yields new
examples of irreducible subfactors of finite depth, whose indices are squares of q
dimensions of irreducible representations of sympletic and orthogonal groups. In
the combinatorial description of these subfactors one naturally obtains truncated
Weyl chambers (as for loop groups for a given level) and multiplicity coefficients of
fusion rules for Wess-Zumino-Witten models.

We study a sequence of algebras C/-,/e N which depend on 2 complex parameter r
and q. They are obtained as images of representations of the braid groups Bf. One
way of describing them is by pictures indicating equivalence classes with respect to
Kauffman's regular isotopy (see Sect. 3). Algebraically, they are given by generators
0i5 9i-'9f-i which satisfy, besides the braid relations, 2 more relations, namely
the cubic equation (gi — r~1){gi-\-q~1){gi — q) = 0 and the contraction relation
Pi9i-iPi — aPi> where/?; is the spectral idempotent belonging to the characteristic
value r " 1 of g{ and α is a fixed scalar depending on r and q (see Sect. 3 for details).

These algebras naturally appear with a trace functional tr which will be referred
to as Markov trace or as structure trace. It can either be derived from Kauffman's
invariant or one can define it purely algebraically, which gives another proof for the
Kauffman polynomial.

Unitary braid representations play an important role in the study of subfactors
and in quantum field theory (see [W-l], [FRS] or [FFK]). So one of the main goals
of this paper is the complete classification of unitary representations of B^ which
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factor over tr. To do so, let us first briefly describe the structure of Cf in the
semisimple case. One can show that the semisimplicity of Cf is closely connected
with the question whether tr is faithful on Cf_1, i.e. the bilinear form on Cy_l5

defined by (a,b}= tr (ab) is nondegenrate. If this is the case, Cf can be written as the
direct sum of an algebra / / 5 which can be obtained from the inclusion Cf_2 ^ C/-i
by Jones' basic construction and Iwahori's Hecke algebra Hf(q2) of type Af_1. So
the structure of the C/s can be determined inductively by its Bratteli diagram (see
[BW] or the end of Sect. 2 in this paper).

If tr is not faithful, the same strategy can still be applied to determine the
structure of the quotient nir(Cf) of Cf = Cf(r, q) over the annihilator ideal of tr. In
this case one has a direct sum of an algebra πir(If), whose structure can again be
computed from the algebras ntτ(Cf_2)

c πtr(C/~ 1) a n d a quotient ρf(Hf(q2)) of the
Hecke algebra HAq2). So the structure of the πtr(Cfys is known as soon as one
knowns ρf(Hf(q )) for all fe N. All the necessary information can be encoded in a
graph Γ = Γ(r, q). Similar as for a Bratteli diagram, its vertices are labelled by the
simple components of ρf(Hf(q2)) and its edges describe the decomposition of the
restriction of such a representation to Hf_1. Similar methods are used by Ocneanu
and Goodman-de la Harpe-Jones to describe higher relative commutants of
subfactors. So the main technical difficulty consists of determining the structure of
the ρf(Hfys. For this we construct inductively semisimple quotients of Cf which
factor over an ideal which is contained in the annihilator of tr. After that one only
needs to determine all those simple components of that quotient which are not
annihilated by tr. This is equivalent to the fact that tr(/?)4=O for a minimal
idempotent in that component. The computation of tτ(p) is done by using
representations of our algebras by Jimbo's explicit R matrices, WeyPs character
formulas analyticity arguments and inductively defined minimal idempotents.

Our main results are as follows:

(a) Cf(r, q) is semisimple except possibly if q is a root of unity or r — cf for some
«eZ,

(b) πtr is a unitary representation of B^ ifq = e±πiβ and r = qn with nJeZ and \n\ < /.
Moreover, any unitary representation of B^ which factors through C^ (r, q) can be
described by a subgraph of Young's lattice belonging to one of the following 3 cases
[with some exceptions corresponding to 0(2) and 0(3)]: Let λ{ (respectively λj)
denote the number of boxes in the zth row (respectively y'th column) of the Young
diagram λ. Then

(cl) if q is a primitive 2/th root of unity and 2<n<l — 2,

Γ(ί",ί) = {A,A1+λ2g/-ιH-l and λ ί + λ ^ π + l)u{[/-* +1,1""1]} .

(c2) If n < — 1, even and / is odd,

Γ(qn,q) = {λ,λί+λ2^-l-n and λίg(

(c3) If n< — 1, odd and / is even,

and λίg(/+#i-

Observe that these are exactly the restrictions for the possible representations of
the classical part of loop groups for level L representations in the orthogonal (cl),
twisted type A case (also referred to as BC case) (c2) and symplectic case (c3)
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(see [Kc]; I would like to thank Nolan Wallach for helping me in finding an
interpretation for case (c2)).

Having these unitary representations available, it is fairly easy to construct
new examples of subfactors of the hyperfinite 1^ factor. They are of the form
M£ m +i,<J" C 7 C

t r (£„)", w h e r e ^m+i,oo i s t h e subgroup of B ̂  generated by σm + 1,
σm+2 •• a n c* ^ e double prime indicates the double commutant. We show that one
can obtain for r and q as above and for λeΓ(r,q) an irreducible subfactor of the
hyperfinite IIX factor and compute their indices. Moreover, if λ=[l], we also
compute their higher relative commutants which shows that they are all of finite
depth. It appears that this can also be done for the subfactors corresponding to
other diagrams extending the ideas of [GW] to these cases. We expect that the
multiplicities can be expressed by classical branching rules for tensor products and
the action of an affine reflection group given by the Weyl group and a reflection
about a hyperplane given by the highest root of the corresponding group as it was
done in [GW]. As in type A, these numbers should be equal to the coefficients of the
fusion rules of the Verlinde algebra for Wess-Zumino-Witten models (see also the
concluding remarks).

Here is a more detailed account of the contents of this paper: The first 2 sections
are of more introductory nature dealing with various algebraic tools needed later as
well as reviewing and extending basic facts about Hecke algebras and Brauer
algebras. Due to the connections of our algebras with several different areas, we
present 3 different ways of introducing them. The first and in many ways simplest
one comes from Kauffman's invariant of regular isotopy which can be used to
define a trace functional tr on the group algebra of Bf. Then Cf is just the quotient
modulo the annihilator ideal of tr and the algebraic relations follow from the skein
relations. This was the original way how a set of defining relations was discovered in
[BW] and [M] and we review this exposition here simplifying various arguments in
[BW].

The second way of defining Cf is purely algebraic by generators and relations.
The structure trace can be defined inductively on these algebras. This method allows
one to determine the structure of the generic algebra Cf (with the parameters viewed
as indeterminates of a field of rational functions) using results about a specialization
of it, Brauer's centralizer algebras.

In the fourth section, the methods of the previous one are extended to the
algebras Cf(r,q), r,qεC. If tr is faithful and q is not a root of unity, also the
algebras Cf(r, q) are semisimple. If tr is not faithful, one can determine the structure
of πtτ(Cf(r, q)) from knowledge of the weight vector of tr in the generic case (i.e.
from evaluating tr at minimal idempotents of the generic algebra). It is also shown
that one can only expect an interesting * structure (by this we mean a representation
on a Hubert space where the images of the standard generators are normal
operators) if either both r and q are real or both are of absolute value 1. If this is the
case, one does indeed obtain a C* structure if the trace is positive at all minimal
idempotents of πiτ(Cf(r, q)).

All the necessary information about this is obtained by our 3 r d approach. It
turns out that special solutions of the quantum Yang-Baxter equation, obtained
from ^-deformations of the enveloping algebra of the Lie algebra son (see [Ji-1]
and [D]), can be used to construct representations of Cf{qn~1,q) (this observa-
tion appeared first in print in [Re]). The structure trace can now be easily obtained
from a so-called product "state" generalizing work of Pimser and Popa who did
this first in the context of subfactors for the Temperley-Lieb algebra (for the general
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case see [Re] or [T]). The method goes as follows. One takes a special dia-
gonal matrix D, closely related to half the sum of positive roots of son and defines
the product "state" φ on the / t h tensor power M®f of nxn matrices by
φ{a1®a2®...®af) = Y\Ίx{Dai)IΊτ{D). We show that the GNS construction

i

with respect to φ maps any subalgebra of the centralizer algebra of the /-fold tensor
product representation of the quantum group onto a semisimple algebra. More-
over, in our case, if q is not a root of unity, and p is a minimal idempotent of
Φ(Cf(qn~\q)) tr(/>) is equal to χiλ)(D)IΎr(D)f, where χ{λ) is the character of a
representation of 0{ή) appearing in the / t h tensor power of its standard representa-
tion. This provides enough information to compute the weight vector also for the
general algebra Cf by an interpolation argument.

In the sixth chapter, this information is exploited to compute all possible
semisimple representations and unitary representations of Cf(r,q) which factor
over tr. Using the methods of [W-l ] one obtains from these unitary representations
examples of subfactors which are constructed in Sect. 7. Moreover, we also com-
pute their indices and higher relative commutants. Finally, we review some of the
connections between Lie algebras and their quantizations, link invariants and
subfactors in the concluding remarks.

A general overview of the results of this paper was given in a talk at the Congress
of the IAMP, Swansea 1988 (see [W-4]) and more details were announced in [W-5].
This is a modified version of a preprint with the same title which has been circulated
since summer 89. Related results have also appeared in [AGS].

1. Preliminaries

We are going to describe several types of finite dimensional algebras. For
convenience we will mean by a semisimple algebra a finite direct sum of full matrix
rings. Let for the moment A: be a field of characteristic 0 and let k{x) denote the field
of rational functions over k. The algebra of all nxn matrices is denoted by Mn(k) or
just Mn. So if A and B are semisimple k algebras, we can write them as A = ®At

and B=®Bj with At^Mai(k) and Bj^Mb.(k) for appropriate natural numbers ax

and by
If A is a subalgebra of B, any simple Bj module is also an A module. Let gtj be the

number of simple At modules in its decomposition into simple A modules. The
matrix G = (g^ ) is called the inclusion matrix for AczB.

The inclusion of A in B is conveniently described by a so-called Bratteli diagram.
This is a graph with vertices arranged in 2 lines. In one line, the vertices are in 1-1
correspondence with the minimal direct summands A{ of A, in the other one with the
summands Bj of B. Then a vertex corresponding to At is joined with a vertex
corresponding to Bj by gtj edges. If A and B have the same identity, there is an easy
way of computing the square root of the dimension bj of By We just add up all the
square roots of the dimensions of A/s to which Bj is joined by edges (with
multiplicities).

We can also interpret the numbers gtj in the following way: Let p{ be a minimal
idempotent of At and letpx = Σqm, where the #m's are mutually orthogonal minimal
idempotents of B. This decomposition is not unique in general. But for any such
decomposition there will be exactly gtj idempotents in Bj. As an easy consequence
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we obtain that
PiBPi=@Mgir (1.1)

We will describe, as an example, the inclusion of kSf_ x in kSf, where kSf,1 and
kSf are the group algebras of the corresponding symmetric groups. Let for f^0Λf

be the set of all Young diagrams (or Ferrer's diagrams) with / nodes. We will write
a specific diagram λ as an m-tupel [λx,..., λm], where λt is the number of boxes in the
/th row. The empty Young diagram in Λo is denoted by [0]. We will mean here by the
Young lattice the infinite graph whose vertices are labelled by all Young diagrams
such that 2 vertices are connected by an edge if and only if the corresponding
diagrams differ by exactly one box (i.e. one of them can be obtained by adding a box
to the other one). It is well-known that the simple components kSfλ of Sf are
labeled by diagrams λ with / boxes. So the Bratteli diagram for kSf_1<^kSf is the
subgraph of the Young lattice with the vertices labelled by diagrams with /— 1 and
/ boxes (and the edges between these vertices). The inclusion diagram for kS2 <= kS3

is shown in the upper half of Fig. 1 (with [lm] = [1,..., 1] (m times)).

Fig. 1

An important role will be played by traces, i.e. functionals tr: B->k such that
tr(ab) = tv(ba) for all a.beB. As there is up to scalar multiples only one trace on
Mn(k), any trace tr on B= ®Bj is completely determined by a vector (tj), where tj
= tr (pj) and/?j is a minimal idempotent of By The annihilator ideal /of tr is defined
to be

J={beB,tτ(ab) = 0 for all aeB). (1.2)

A trace tr on B is called nondegenerate it / = 0, or, equivalently, if for any b e B there
is a b' e B such that tr (bb') Φ 0. It is easy to check that tr is nondegenrate if and only if
•̂ΦO for each/ The representation π t r of B is defined on B/J by left multiplication.

Because of the trace property, it is easy to check that

πtτ(B)^B/J. (1.3)

Let us recall that if tr is a nondegenrate trace on B, the map b e 2?ι—>tr (b.) e B* is
an isomorphism between B and its dual B* (where as usual tr(b.) denotes the map
χι->tr (bx)). Let tr be nondegenerate on both A and B. Using the isomorphism above
for A and A*, we obtain for every beB a necessarily unique εA(b)eA such that
tr(6.)μ = tr(ε i 4(i).)μ. The linear map εA:B-+A, b\->εA(b) is called the trace
preserving conditional expectation from B onto A, where the element εA(b)eA is
uniquely determined by the equation

tτ(εA(b)a) = tτ(ba) for all aeA. (1.4)
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We obtain from this equation and the faithfulness of tr the following properties of

(a) εA(a1ba2) = fli εAφ)a2 f° r a ^ αi? a i e A and 6 e 5 and in particular εA(a) — a for all
aeA.
(b) ε^ is nondegenerate, i.e. for all 0 # 6 e 5 there is 6 r, ό2 e 5 such that εAφi^) * 0
and ε̂ ίft

Later on, we shall also consider the case when both A and B are C* algebras, i.e.
there exists a faithful representation of B on a Hubert space such that both B and ̂ 4
are closed under the * operation which assigns to a linear operator its adjoint. A
trace tr is called positive if tr (b*b) ̂  0 for all b e B. In the finite dimensional case one
has

tr is positive if and only if all components of the weight vector are (1.5)
nonnegative.

If all components of the weight vector of the trace are positive, one has an inner
product on B defined by

(a,b} = tr(b*a). (1.6)

In this case, the conditional expectation εA can be interpreted as the orthogonal
projection onto the subspace AczB. It has the following additional properties:

and
εAφ*b)^0 for all beB.

Let again A and B be arbitrary finite dimensional semisimple algebras and let tr
be a nondegenerate trace on both A and B. We will moreover assume that B is
contained in an algebra C and that there is an element eeC such that

(a) e2 = e,

(b) ebe = eεAφ) = εAφ)e for all beB, (1.7)

(c) The map aeA\-*ae is an injective homomorphism with le = e.

A important example for such a situation is Jones' basic construction (see [Jo-1,
Sect. 3.1]): Let B be represented via left regular representation on itself. For
convenience, the isomorphic image of B in this representation will also be denoted
by B. If B is regarded as representation space, it will be denoted by Bξ and its
elements by bξ with beB. We take as C the set L(Bξ) of all linear maps on Bξ. As in
[Jo-1] we define an idempotent eA on Bξ by eΛbξ = εΛφ)ξ. It follows from this
definition that

{eAbeA)b'ξ^{eAb)EAφ\ = {εAφ)eA)bf

ξ = {eAεAφ))b^ for all b'eB.

Using again (1.7), (a) we show that eA is an idempotent and that (aeA)bξ = (eAa)bξ

for all aeA and beB. Finally, the equation (aeA)lξ = aξ shows that the map
aeAh->aeA is injective. The algebra (B,eA) will be referred to as Jones' basic
construction for AczB.

We have the following results for the set-up in (1.7) (see [J-l] and [W-2,
Proposition (1.2) and Theorem (1.3)]):
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Theorem 1.1. Let A, B, e, eA, tr and εA be as above. Then

(a) The algebra (B, eA} is isomorphic to the centralίzer of A on Bξ, which is denoted by
End^i?. In particular, it is semisimple.

(b) There is a 1-1 correspondence between the simple components of A and (B, eAy
such that ifpeA{ is a minimal idempotent, peA is a minimal idempotent of (B, eA}.
Under this correspondence, the inclusion matrix for B a (B, eAy is the transposedG* of
the inclusion matrix for A^B.

(c) <B,eA} = BeAB.

(d) (B, e} is a direct sum of full matrix rings which decomposes as

where B is an algebra isomorphic to a subalgebra of B. In particular, the ideal
generated by e is isomorphic to the semisimple algebra (B, eA}.

Observe that statement (b) of the last theorem can be used to compute the
structure of EnάAB by reflecting the Bratteli diagram for A czB about the line of B
(see Fig. 1 for our example kS2<^kS3).

One of the main problems dealt with later is the question whether certain
representations can be unitarized. For this, we assume A and B to be finite
dimensional C* algebras. The question is under which conditions can one find a C*
structure on (B, e} compatible with the one of B such that e is a selfadjoint
projection. In such a case we shall just say that there exists a C* representation of e.
By the theorem above, it is enough to consider the case e = eA.

Lemma 1.2. Let AaB be finite dimensional C* algebras and let ίr be a trace which is
faithful on both A and B. Let zf be the minimal central projection of <i?, eA}
corresponding to the minimal central idempotent zteA. Then there exists a C*
representation ofzieA if and only if\x{zy)ίτ{z^) > 0for allminimalcentralprojections zj
of B for which ZjZt ΦO.

In particular, if the inclusion matrix for AczBis connectedandiftr (1) > 0, tr has to
be positive.

Proof Assume that for a given minimal central projection zf e (B, eA} we have
tr(zV) tr (zf) > 0 for all minimal central projections ίj of B for which zjzi φ 0. By part
(b) of Theorem (1.1) we have ^Bcz £ zβ. Hence by replacing tr by - t r if

necessary, we can assume that tr induces a positive definite inner product on ztB.
Now zieA is just the orthogonal projection with respect to this inner product onto
the subspace ztA of ztB by the remark after (1.6).

On the other hand assume that there exists a central projection Zj in B such
that t r ί z ^ t r ί z ^ O and zjziΦO. Let q be a minimal projection in ztA and let p
be a minimal projection in ztZjB which is majorized by q. Let εA be the trace
preserving conditional expectation onto A. It follows easily that sA(p) = ocq where
α = tr(p)/tr(q) > 0. But then eApeA = eA(p)eA = ccqeA. Obviously, the element on the
right-hand side is not positive wich it would be if eA were so. Π

In the following complex algebras will be considered which depend on one or 2
complex parameters. It is sometimes more convenient to view these algebras as
algebras over a field of rational functions with the parameters replaced by the
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indeterminates of the field. The following statements relate the "polynomial
algebras" [i.e. the algebras over C(x)] to the "concrete algebras" (i.e. the algebras
over C).

Let more generally A be a finite dimensional k(x) algebra, where A: is a field of
characteristic 0, with a given basis bl9 b2,.. bd. Let the multiplication of 2 basis
elements be given by

d

>A

where αr s t are rational functions over k for r, s, i = 1,2,... d. If q e k is such that q is
not a pole for any of these rational functions, we can define a d dimensional k
algebra A(q) with basis b1(q),...bd(q) and multiplication

Let k[x]q be the localization of the polynomial ring k[x] at (x — q), i.e. k[x]q

consists of all those rational functions whose denominators do not have a zero at q
and let Aq be the k[xj^-linear span of {b1,b2, >>bd}. Then one can define for each
aeAq the element a(q) = Yjβi(4)bi{q)eA{q). It is easy to see that the map

Φ: a e Aq\-±a{q) e A (q)

defines a surjective ring homomorphism from Aq onto A(q).
The following presumably well-known facts show some of the connections

between A and A(q) (see [W-2, Lemma 2.3] and [W-3, Lemmas 5 and 6])

Proposition 1.3. Letp e A be an idempotent and let qekbe such that A (q) andp(q) are
well-defined.
(a) dimkp(q)A(q)p(q) = dimk{x)pAp.
(b) Let BczA be a subalgebra and let B{q) = Φ(B n Aq). Ifthere exists qek such that
dimkB(q) = dimk(x)B and B(q) is semisimple, then also B is semisimple. In this case
B^B(q) <g)k(x) and z(q) is well-defined for any central idempotent zeB.

Let φ be a k(x) valued functional on A. If φ(bι)ek[x]q for i = l,2,...d, one
obtains a well-defined functional on A(q), also denoted by φ, by

φ(a(q)) = φ(a)(q).
r

Lemma 1.4. Assume that A has a decomposition A= © A} with A^Ma.{k{x)). Let
7 = 1

tr be a k(x) valued trace on A given by the weight vector (Pj)j9 Pjek(x).
(a) If Pj(q) is well-defined for j= 1,2,.. .r, then πtr(A(q)) is semisimple.
(b) Let eeAbean idempotent which can be written as a sum of minimal idempotents et

all of which are in simple components Aj of A for which Pj(q) = 0. If e(q) is well-
defined, then πtr(e(q)) — 0.
(c) Let Aj be a direct summand of A with corresponding central idempotent z7-. A j (q) is
a well-defined simple direct summand of A(q) with central idempotent Zj(q) if

(α) there exists a minimal idempotent peAj such that p(q) is well-defined and
(β) there exists a matrix representation π of A^ such that also its evaluation at x = q is
well-defined and simple.
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Proof, (a) We identify A with a faithful matrix representation over k(x). Let a,beA
such that a(q) is in the radical of A(q).

As ab{q) is nilpotent, all eigenvalues of the matrix representing ab have to be
divisible by (x — q). Let (ab)j be the matrix for ab in Aj and let Tr be the usual trace
for matrices, i.e. the sum of the diagonal elements. By the remarks above (x — q)

divides Tr((ab)j). But as tr(Λ*) = J]i>jTr((αft) j), and as Pjek[x]q9 (x-q) also

divides tr(ab). Hence tr(a(q)b(q)) = 0 for allbeAq. As Ψ is surjective, this implies
fl(#)eker(πtr).

The proof of (b) uses basically the same technique as the one of (a). If a(q) is
well-defined for some a e A, then so is (eae)(q) and its eigenvalues. Hence the eigen-
values of eae do not have poles at x = q. It follows from this and the given
assumptions that

tr(fle)(?) = Σ (PjTr((ae)j))(q) = O.
j

(c) By (α) and (/?) there exist elements ar, bseAq such that {π(arpbs} forms a set of
matrix units. Asp e Aj so is arpbs and it is well-defined at x = q by assumption for all
choices of r and s. So having enough matrix units, one sees that Aj(q) is well-defined
and semisimple and, in particular, zj(q) = Yjarpbr(q) is well-defined.

Corollary 1.5. The statements above also hold if A is an algebra over C(x1,x2,.. * m ) .

Proof The proofs go by induction on m with m = 1 already shown. The step m — 1 -*m
follows similarly from the lemmas above by setting k = C(xί,x2, .xm-i).

2. Hecke Algebras and Brauer Algebras

The main subject of this paper are algebras which are homomorphic images of the
braid groups. The braid group Bf can be defined topologically (see e.g. [Bi] or
Sect. 3) or algebraically by generators σ1 ? σ 2,. . .σ /_ 1 and relations

(Bl) σiσi+1σi = σi + 1σiσi+1 for / = l ,2 , . . . /-2 and

(B2) σiσj = σjσi for \i—j\^2.

We will also need the fact that the map vf given by v ^ σ ^ σ y . ^ for
/=1,2,.. ./—1 extends to an inner automorphism of Bf which is denoted by the
same symbol (see e.g. [Bi, Lemma 2.5.1]).

Let Hf be the Hecke algebra of type A over C(x), the field of rational functions
over C, given by generators 0i,#2> 0/-i which satisfy the relations (Bl), (B2)
(with gt for σ{) and

(H) gi = (χ-l)gi + χ for /=1,2, . . . .

If q is a complex number, we denote by H^ (q) the complex Hecke algebra
generated by generators and relations as above where the variable x is replaced by q.
It can be shown in both cases (see e.g. [Bk], p 54-56, [H] or [W-l]) that Hf is
spanned linearly by the n! elements of the form

bγb2...bf, where ^ = ̂ , ^ + 1 . . .^- ! , l ^ / ^ z - l , or bt = l. (2.1)
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If q — 1, gt, Q2 "9f-i satisfy the relations of a set of simple reflections of Sf.
Hence it follows from the results of the previous section that Hf and Hf(q) for all
but finitely many values of q are semisimple and have the same decomposition into
full matrix rings as CSf. It is shown explicitly in [W-1 ] that Hf(q) is not semisimple
only for q a primitive kth root of unity with k = 2,3,.../or for q = 0.

So whenever Hf(q) is semisimple, all its irreducible representations up to
conjugacy are labelled by the elements of the set Af of all Young diagrams with /
boxes and the Bratteli diagram of the sequence of Hecke algebras is the same as the
one of the group algebras of the symmetric groups.

For λeΛj , let Tλ denote the set of standard tableaux of shape λ, and 7} the set of
all standard tableaux of size /. Observe that t e Tλ may be identified with a path on
Young's lattice (the Bratteli diagram for the sequence of CSk) from [1] to λ, i.e. an
increasing sequence of Young diagrams

where λ{i) is the diagram which consists of the boxes of t containing the numbers
1,2,.../.

The irreducible representation πλ of Hf is defined on the vector space Vλ with
(orthonormal) basis labelled by Tλ. We will here use the representations of [W-1]
which have the disadvantage that one has to adjoin square roots of certain
polynomials. The main reason for doing so is that one obtains unitary matrices for
special values of x. If one is not interested in unitarity questions, it is better to use
Hoefsmit's representations (see [H]). His representations can be considered as a q
deformation of Young's semiorthogonal representations of the symmetric groups,
while ours are deformations of Young's orthogonal representations.

Let gt(t) be the standard tableau obtained by interchanging the numbers i and
/+1 in the standard tableau t (if gt(t) is not a standard tableau, one sets the
corresponding vector equal to 0). Then nx(gt) is defined by

^ J-gt(t)9 (2.2)

where

with c(j) and r(j) denoting column and row of the box containing the number j and
where

(These differ slightly from corresponding quantities in [W-1] in order to get the
usual standard notation for the symmetric group in the case q = 1 one obtains
these coefficients by using the elements et in [W-1] as spectral projections belonging
to the eigenvalue q of gt. Then d here is the negative of the dt in [W-1] and
bd = x-(l+x)a_d, with ad as in [W-1].)

One can check quite directly that

^ 1 / ^ = θ πμ, (2.3)

where the sum runs over all Young diagrams which can be obtained by removing
exactly one box from λ. (In particular, the Bratteli diagram for the sequence of
Hf(q) is the same as that for the sequence of C(x)Sf.)
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One can define a family of idempotents {pt: t e 7}} in Hf inductively as follows.
First, p{1] = 1. Fix t e 7}, and let r be the tableau obtained by removing from / the box
containing the number /. Then define

Pt = ll ~r 7 —•> (2.4)
s °d(t,f-l)~Dd(s,f-l)

where the product is over all se 7} such that sή=t but removing from s the box
containing the number / also yields the tableau r. The family {pt:teTn} is a
partition of unity consisting of minimal idempotents in Hn (see [W-l,
Corollary 2.3]).

Observe that the construction of the representations and idempotents also
works for the complex algebras Hf(q), as long as q is not a primitive Ith root of unity
with / = 2, 3,.../. This follows from the fact that all the rational functions occurring
above only have poles at such roots of unity.

If q is a primitive Ith root of unity one can still define semisimple representations
of Hf(q) for special diagrams:
(a) The diagram λ will be called / regular if its largest hook contains less than / boxes
or equivalently, if

A(1,1) = A1 + X 1 - 1 < / . (2.5)

A standard tableau is called / regular if it belongs to an / regular diagram. Note that
we have for any / regular tableau t that d(t,i)<l—l for l^i<f
(b) Let k e N with 1 ̂  k < I. The diagram λ is called a (k, I) diagram if it has k rows at
the most and if

λ.-λ^l-k. (2.6)

The set of diagrams satisfying the conditions above is denoted by Λ(kJ).
Observe that any / regular diagram with k rows is a (k, I) diagram.

Proposition 2.1. Let q be a primitive Ith root of unity.
(a) Let λeΛfbe I regular and let zλ be the central idempotent in Hf corresponding to
πλ(Hf). Then zλ(q) is well-defined and zλ(q)Hf(q) is semisimple (and isomorphic to
πλ(Hf(q))). In particular, Hf(q) has a direct summand Hr

f(q) whose simple
components are labelled by l-regular diagrams.
(b) Let Q be a representation of Hf+1(q) whose kernel contains Hr

f+ι(q). Then its
restriction to Hf(q) does not contain any subrepresentation belonging to an /—I
regular diagram.
(c) Let λ e Λf'l). There exists a semisimple representation πf'l) ofHf(q) such that its
restriction to Hf_ί (q) decomposes as in (2.3) except that now only those μ occur on the
right-hand side which are also (k, I) diagrams. Ifq = e2πil1, πjfί)(gff) is a unitary matrix

Proof (a) We proceed by induction on /. If t0 is / regular, then so is r = t$. By
induction assumption, pr is a well-defined minimal idempotent in JE/y_1(g)
belonging to an / regular diagram with /— 1 boxes. Observe that the formula forptQ

makes sense only if bd{tf_1)^rbd{sj_1) for all tableaux t such that t' — r. By [W-l],
Lemma (2.1), this is the case if \dt — dtQ\ < I. This difference is just the length of the
hook through the boxes containing / in t and t0 minus 1. This is less than / because r
with these 2 boxes belongs to an /+1 diagram. Hence pt0(q) is well-defined. The
semisimplicity of πλ is shown as in [W-l] Corollary 2.5.
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(b) Let for the generic Hecke algebra Hr the idempotent z^ be the sum of all central
idempotents zλ belonging to ^-regular diagrams λ with r boxes. Obviously, a
diagram obtained from an /— 1 regular diagram by adding a box has to be /regular.
Hence it follows from (2.3) that z{jz\^zp = z(j Z{). By (a) these idempotents are also
well-defined for x — q for which the same algebraic relations hold. So if z\f)(q) is in
the kernel of ρ, then also z{jz\\q).
(c) follows from [W-l, Corollary 2.5 and Proposition 2.10].

It is possible to characterize also the maximal semisimple quotients ofH^q) and
Hι + 1(q) for q a primitive /th root of unity. Most (presumably all) of these results are
well-known to experts of Hecke algebras (see e.g. [DJ] and [Y]).

Proposition 2.2. Let q be a primitive Ith root of unity and let Hf(q) be the maximum
semisimple quotient of Hf(q). Then we have the following facts:
(a) All diagrams with I boxes are I regular except the hook diagrams {including [I] and
[I1] and the maximal semisimple quotient H^q) is a direct sum of H\{q) and H[{q),
where H((q) is the direct sum of the (k, I) representations belonging to hook diagrams
of the form [/-fc+1, I*" 1], \^k<l, i.e.

In this case the restriction of an irreducible representation in H{ (q) toHι_1 (q) remains
irreducible. In particular, if the restriction of an irreducible representation ofHx{q) to
Hi-iiq) only contains simple components labelled by hook diagrams, it has to be in

(b) One can write Hι + 1(q) as a direct sum of Hr

ι + 1(q) and H{+1(q), where

i i-i

// should be noted that the representation in [W-l] for hook diagrams with / + 1 boxes
are not well-defined if q is a primitive Ith root of unity (even though the corresponding
central idempotent is). In this case one can, for instance, take the representation in
[KL] on the W graph corresponding to such hook diagrams (see [GMcL]J. Observe
that by [W-l, Sect. 2] one has

[l-k,2Λk~2] '

(c) The restriction of the representations corresponding to hook diagrams in (b) are
not semisimple except for the trivial representations belonging to [/-f-1] and [lz + 1 ] .
More generally, if ρ is a representation of Hι + 1(q) whose restriction to Ht(q) is
semisimple and does not contain any representation labelled by a diagram of the form
[l-k,2, lk"2]for k = 2,3,.../-2, then ρ is a quotient of Hr

ι + 1(q).

Proof. The irreducible components of Hf(q) can be labelled by diagrams which are
/-regular in the sense of [DJ]. By this one means diagrams for which the number of
boxes in 2 consecutive columns does not differ by more than / — 1 boxes (see [DJ]). It
is easy to check that our expressions for Hι (q) respectively Hι+1 (q) contain the right
number of simple components. It remains to show that these are mutually
nonisomorphic semisimple representations. For /regular and (k, I) representations
it can be checked easily that already the restrictions toHι_1 (q) respectively Hι (q) of
representations belonging to different diagrams are nonisomorphic using (2.3) (see
[W-l], Sect. 2).
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To prove the theorem, it suffices to show for each hook diagram λ with / + 1
boxes that the central idempotent zλ{q) is well-defined, that the corresponding
representation is irreducible and that its restriction to Ht(q) is not semisimple. To do
so, one first shows inductively that while the idempotents/?,, t e Tλ are in general not
well-defined at q a root of unity, the idempotent pt-\-pgι{f) is so (one obtains a
cancellation of a singularity). Here we also use the convention thatpg.{t) = 0 if g{{t) is
not a standard tableau. Hence also zλ(q) = Σpt(q) is well-defined, where the
summation goes over all tableaux of shape λ.

To show that the corresponding representation is irreducible let et be a spectral
idempotent of gt. Then one obtains a partition of unity, in πλ(Hι+ί), of mutually
orthogonal minimal idempotents of the form {(pt-\-pgι{t))eh (pt+Pgι(t))(l—eι),
t G Tλ] which is also well-defined for our special choice of q. One now obtains matrix
units applying Proposition 1.3 to any pair of these idempotents.

To show (c), let ρ be an irreducible representation of Hι+i(q) corresponding to a
hook diagram λ. As H^^q) is semisimple, Q(Hι_1(q)) decomposes (as in the
semisimple case) as a direct sum of representations labelled by all subdiagrams of λ
with /—I boxes (all of which are also hooks).

Hence, if ρ (//,(#)) were semisimple, it would have the same central idempotents
as ρ(//"z_i(^)) by (a). But as they are elements of ρ(/^-i(#)), they would also
commute with ρ ^ ) , i.e. they would be central which would contradict the
irreducibility of ρ. The second statement follows from this and the other statements
in (b). D

We still need another algebra, the so-called Brauer algebra (see [Br] and [W-2]).
As before with the Hecke algebras, Brauer's algebras Df will first be defined over
C (x). For / = 0, Do = C (x). For / > 0, a linear basis of the C (x) algebra Df is given by
graphs with / edges and 2/vertices, arranged in 2 lines of / vertices each. In these
graphs each edge belongs to exactly 2 vertices and each vertex belongs to exactly one
edge. So an example for a graph in D4 would be

Fig. 2

It is easy to see that there are If— 1 possibilities to join the first vertex with
another one, then If— 3 possibilities for the next one and so on. So the dimension of
Df is 1 3 5... (2/— 1). To define the multiplication in Df, it is enough to define the
product ab for 2 graphs a and b. This is done similarly as with braids by the following
rule.
(a) Draw b below a.
(b) Connect the ith upper vertex of b with the lower zth vertex of a.
(c) Let d be the number of cycles in the new graph obtained in (b) and let c be this
graph without the cycles. Then ab = xάc.

We will call an edge horizontal if it joins 2 vertices in the same row. Note that
there are as many horizontal edges in the upper row as there are in the lower one.
Whenever a graph/? has no horizontal edges, it can be regarded as a permutation π
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connecting the /th lower vertex to the π(/) t h upper vertex. So, obviously, Df contains
C(x)Sf as a subalgebra. Let gi be the graph which has only vertical edges except for
the ίth and (i + l ) s t one, which are crossing (the graph corresponding to the picture of
σf in Fig. 4). It is easy to check that gt corresponds to the transposition (i, /-f 1). We
will also need the elements et given by graphs, in which the /th and (/-f- l ) t h vertices are
connected by horizontal edges and all other edges are vertical. We also remark that
for any graph b e Df and a permutation graph p the graph bp is obtained by
permuting the vertices of the lower row of b by π " 1 &nάpb is the graph obtained by
permuting the vertices of the upper row of b by π.

We finally remark that Df can be identified with the subalgebra of Df+1

spanned linearly by all graphs with a vertical edge on their right-hand sides.
The C algebra Df(q) has a linear basis labeled by the same graphs. The

multiplication is defined as in Df except that every occurrence of x is replaced by q.
As we will have to divide by our parameter q later, we will always assume q Φ 0 even
though Df(0) is well-defined.

We have the following results about the structure of Brauer's algebras (see [Br,
Wy, W-2]).

Theorem 2.3. (a) Df^If@ CSf, where If is ίsomorphic to Jones' basic construction
for Df_2^Df_ι. In particular, Df is semisimple.
(b) The simple components of Df are labelled by the set Γf consisting of all Young
diagrams with k boxes where O^k^fand f—k is even.
(c) If Fy λ is a simple Df λ module, it decomposes as a Df _ x module into a direct sum

where Vf_ίμis a simple Df _ x μ module and μ runs through all diagrams obtained by
removing or (if λ contains less than f boxes) adding a box to λ.
(d) Dj-(q) is semisimple except if q is an integer with absolute value at most f

As a consequence of this theorem, one obtains the structure of semisimple D/s
inductively from the following Bratteli diagram:

OlO]

Fig. 3
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3. The Algebras Cf and Cf(r,q)

We shall consider algebras C / 5 / e N over the field C(r, q) of rational functions in 2
variables r and q as well as their complex versions Cf(r9 q), fe N where the complex
parameters are denoted by the same symbols. This should not cause any confusion
after the discussion in Sect. 1.

These algebras were originally derived from the Kauffman link invariant (see
[BW, M-l]). While our present work could be done completely without using this
invariant, it still seems worthwhile recalling this connection to motivate the
algebraic relations which will be used later. We shall also use this opportunity to
simplify parts of the exposition in [BW].

Let us first recall a few basic facts of knot theory (for some detailed expositions
see for instance [Jo-2, K, Bi, BW, W-3]). A link is a smooth embedding of one or
several copies of the circle S1 (with orientations) into R3. Two links are considered
to be equivalent if there exists a homeomorphism from R3 onto itself which maps
one link onto the other preserving the chosen orientations. It follows from a
theorem by Alexander that any link can be obtained as the closure (/?,/) of a braid
βeBf (see e.g. [BW], Fig. 1 and 3 for an example or Fig. 5 for the corresponding 2
dimensional version).

The Kauffman invariant K is defined by a renormalization (i.e. by multipli-
cation by a power of r see discussion at the end of this section) of an invariant Koϊ
regular isotopy. By this one means an invariant of (unoriented) link diagrams (i.e.
projections of links into a plane without triple points, where at each crossing point it
is indicated which string goes over the other one). Two such link projections are
considered to be equivalent with respect to regular isotopy if one of them can be
obtained from the other one only by moves within the plane (i.e. without the third
Reidemeister move see [K or BW] for details). The invariant fc, which depends on 2
parameters r and q, is defined inductively by the following relations (where we use a
slightly different parametrization than Kauffman)

Ko=l, (Kl)

K{=r-1Kp=rKp, (K2)

K^). (K3)

Here, the last 2 lines relate the invariants of link diagrams which are identical
everywhere except in a small square where they look like the pictures indicated. It
follows from Kauffman's work that (Kl) — (K3) determine a well-defined invariant
of link diagrams. The corresponding link invariant is obtained by multiplying this
invariant by r taken to the power of the number of positive crossings minus the
negative crossings (the first crossing in (K3) would be positive, the second one
negative).

In [W-3] we described a general procedure how to obtain representations of
braid groups from link invariants satisfying certain properties. This could be
applied to Kauffman's invariant; due to its definition as basically an invariant of
regular isotopy, it seems more naturally to give the corresponding 2-dimensional
version of our procedure here.

We first do that for the braid groups (the reason being that closures of different
projections of the same braid may be different with respect to regular isotopy). So
we represent the generators σt and σf1 by the projections in Fig. 4, i.e. by / strings
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of which / — 2 are going straight down and the ίth and (/+ l ) s t are as indicated. A
general braid β = Y\σn^. is now given by the equivalence class modulo regular
isotopy of the picture obtained by the corresponding concatenation of the picture of
the generators. Because of this definition, the closure (/?,/) of the braid /?, obtained
as usual by joining the z th upper point with the z th lower point by a line without any
loops, represents a well-defined equivalence class of regular isotopy. So, with

1 (3.1)
q-q '

one obtains the well-defined functional tr on C(r, q)Bx by (for an example of the
closure (β,f) see Fig. 5)

for βeBf.

Then it is easy to check by pictures, using the definition of K that

(1) tr(j8y) = tr(yj8) for β,yeBf,

(2) tr(j8σ/

±1) = tr( j8)tr(σf) and

(3) tr(σ i

± 1) = r± 1/x.

Functionals on B^ which satisfy (1) and (2) are usually called Markov traces. If
they also satisfy tr(σI ) = tr(σf 1), they are called normalized (this is often already
assumed for Markov traces). If this is not the case (as for instance in our case), it can
be easily remedied by rescaling (see the end of this section).

Let now π t r be the GNS construction with respect to tr and let gi — τιiτ{σ^ for
ι = l,2,.... The similarity between the crossings on the left-hand side of (K3) and
the standard generators of the braid group suggests the definition of elements
eieπtr(C(r,q)BJby

i =τ(gigf)

We will show that the algebra Cf can be described by adding to our 2-dimensional
description of the braid group Bf additional generators ε̂  as indicated below. This
obviously suggests a close relationship with Brauer's centralizer algebras. The main
difficulty is to get rid of cycles which are no longer connected to the upper or lower
end. For this see [MW].

Fig. 4

We shall show that the element ei9 defined above, satisfy similar relations as the
corresponding graphs of Brauer's algebras.
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Lemma 3.1. (i) Let βeBfbe a braid. Then tr(e^tr(j?)) is equal to x1~fK(εiβ,f).
(ii) Similarly, if m is a product of g/s, gfl9s and e/s, tr(mπir(β)) is equal to
x1~fK(μβ,f), where μ is obtained from the corresponding concatenation of σ/s,
σ[x's and ε?s (see also the proof of (in) for an example).
(iii) One has the following relations between g/s and e^s:

(Rl) e.g^r-'e^

(R2) e^e^r^e,.

Proof. By (D) we can write for t r ^ π ^ β ) ) the linear combination tr(jβ) —(tr(σ^)
— tr(σf1 βty/iq — q'1). By definition of tr below (3.1) this linear combination is
equal to a linear combination of invariants of link projections which only differ at
one crossing. The claim follows now from (K3) of the definition of the invariant K.
(ii) Can be shown by induction on the number of e/s in m using (i) (i.e. expand one
of the e/s as a linear combination oΐgu g[ι and 1 and apply induction assumption).

Observe that tr is nondegenerate on πtr(CBf). So to prove (R2), it is enough to
show that

as the πtr(β),
showing that

obviously span π

for all

linearly. By (i) this is equivalent to

This follows immediately from (K2) and the following picture (where we have
assumed / = 3 and β = 1 to simplify the drawing the argument is exactly the same
for a more complicated picture)

Fig. 5

Relation (Rl) is shown in a similar fashion. •

The previous lemma provides the motivation for defining complex algebras by
generators satisfying the braid relations and the relations (Rl) and (R2) (a different
set of relations for which the algebra is also well-defined at (r, q) = (1,1) is given after
Proposition 3.2). More precisely, the complex algebra Cf(r, q) is given by generators
0i>02>•••9f-\> which are assumed to be invertible, and relations

(Bi) gigi+1g

(B2) 9^1 = 9

(Rl) e^^r

(R2) e^e

if \i-j\^
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where et is defined by the equation

(D) (q-q-1)(l-eί) = gi-gr1.

Multiplying (D) by ex and solving for e\ yields

with x as in (3.1). This together with (Rl) shows that et is a multiple of the
characteristic idempotent p{ belonging to the characteristic value r" 1 of gt.
Multiplying the equation (D) by (1 —/?f) then shows that the only other possible
characteristic values of gt are q and — q'1. Hence gt also satisfies

(Rl)' ( Λ - r - 1 ) ( Λ + ? - 1 ) ( β £ - ί ) = 0.

In the rest of this section, we construct the functional tr on this algebra by
elementary methods (see (3.3)) without assuming the existence of the Kauffman
polynomial. This will then be used to determine the complete decomposition of Cf

into simple matrix rings (see Theorem 3.6). We will need the following relations
which can either be derived from the defining relations (see below) or by drawing
pictures of link diagrams (see e.g. [BW, Fig. 6])

(1)

(2) ei±1gigi±1=gigi±1ei,

(3) giei±1gΓ1=gΓ±i^i9i±i9

(4) e^e-r^ei,

(5) g^^e^g^e^

(6) eieJ = ejei if \i-j\^2,

(7) ef = xei9

(8) ^ ί ± 1 ^ . = β£,

(9) e. -i 9i9i-i=*i-iei,

(10) »? = (ϊ-ί- 1)(Λ

Most of these relations follow immediately from the defining relations and the
previous ones. We restrict ourselves to proving (5). Applying (2), (R2) and (4), we
obtain

Relations (7), (8) and (10) are shown by multiplying (D) by et from the left and from
both sides and by gt respectively. (9) follows from

The following proposition contains easy consequences of these relations (see also
[BW, Sect. 3]):

Proposition 3.2. (a) Any element ofCf+ί can be written as a linear combination of
elements of the form ayb with χ e {1, gf, ef} and a, beCf. In particular, it follows from
this by induction on f that Cf+1 is finite dimensional.
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(b) Let If+1be the ideal in Cf+1 generated by ef. Then each element in If+1 can be
written as a linear combination of elements of the form aefb with a,beCf. In
particular, Ij.+1cz(Cf,efy. Moreover, the quotient is isomorphic to the Heche
algebra Hf+1(q2).
(c) The structure of Cf remains unchanged under the following changes of
parameters:

{r,q)v^{r, -q'1),

(r,q)*-*(-r, -q),

In particular, if\r\ = \q\ = l, one can assume without restriction of generality that

q = eu, O^t^π/2 and r = eis, -πβ^s^πβ.

Similarly, if both r and q are real, one can assume

q^\ and r>0.

Proof, (a) and (b) follow from the relations above (see also [BW]). For (c), let
gi(r~1,q~1), z = l,2,.../—1 be the standard generators of C/^r"1, g" 1 ) and let
Φ: gi(r~1,q~1)\-^gf1 e Cf(r, q). It is easy to show that Φ preserves the relations and
can be extended to a homomorphism from Cf(r,q) onto C ^ r " 1 , g" 1 ) mapping
ei( — ria~*)to ei I n Λe same way, we can construct the inverse map to show that Φ
is an isomorphism.

It can be shown in the same fashion that the maps g^ — r, — #)*-•—^ and
9i(r> ~#~1)h~>>0i c a n be extended to isomorphisms between Cf( — r, —q) and
Cf(r,q) and between Cf(r, —q"1) and Cf(r,q), respectively. D

To show the connection between the C/s and Brauer's centralizer algebras, one
needs a different choice of parameters, which results into a so-called "blowing-up"
of the point (1,1):

The quantity x, defined in (3.1) will be introduced as a new variable replacing q.
Then the algebra Cf(r, x) is defined by the same generators and relations as above
where the quantity q — q"1 is replaced by (r — r " 1 ) / ^ —1). This does not affect
relations (Bl), (B2) and (R2) while (Rl) changes to

(Rl) (Qi-r-

and (D) changes to

As one can not solve for e{ if r= ±1, one introduces et9 e2-
 en-ι a s additional

generators (actually, eγ alone would be enough by (3)). Then one also introduces
relations (1)—(10) as additional defining relations. The following lemma will be
useful for getting a lower bound for the dimension of Cf and for defining the
structure trace tr on it.

Lemma 3.3. (a) The map Ψ which maps the elements g{ and et to the graphs of the
Brauer algebra Df which are denoted by the same symbol (which correspond to the
pictures for σt and εt in Fig. 4) extends to a homomorphism from Cf(l, x) onto Df.
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(b) Assume that Ψ is a C(x) algebra isomorphism between Cf{\, x) and Dj and that
the C(x)'dimension of Df coincides with the C(x,r)-dimension of Cf. Then

Proof It follows immediately from the defining relations that the map Φ\aeCf

H ( l / x ) e / + 1 α e C / + 2 is a homomorphism. By assumption, there exists a basis B of
Cf which specializes for r = 1 to the basis graphs of Df. But for the Brauer algebras,
the map Φ can be interpreted as just adding two horizontal edges on the right to each
graph. Obviously, the images of the basis graphs are also linearly independent. But
then so are the images of our chosen basis of Cf (or Cf respectively) by Proposition
1.3 (with/? = 1). D

By Proposition 3.2, (a), any element of Cf+1 can be written as a linear
combination of elements of the form aχb with χe{l,gf,ef} and a, beCf. Now
observe that by (R2) and (7) we have ef+x aχbef+1=(xabef+ί with α e {1, x}. Hence,
if the hypotheses of the previous lemma are satisfied, it follows from this and
Proposition 3.2 that there exists for all elements a e Cf a unique element εf(a) e Cf

such that
ef+1aef+1 = xεf(a)ef+1. (3.2)

As in [W-2] it is easy to check that the map a\->εf(a) is linear. Moreover, as ef + 1

commutes with C / ? it follows directly from the definition (3.2) that εf has the so-
called bimodule property, i.e. εf(bίab2)=zbί£f(a)b2 for b1,b2e Cf and aeCf+1. In
particular, it follows from this that the restriction of εf to Cf is the identity map.
This is used to define a functional tr on Cf inductively by tr (1) = 1 and

/ for aeCf+1. (3.3)

We are going to show that this functional tr agrees with the one derived from
Kauffman's invariant. Assuming the existence of that functional, this would
already follow from part (d) of the following lemma. Parts (e) and (f) are only
needed to prove the existence of tr without using Kauffman's work.

Lemma 3.4. Assume the hypotheses of Lemma 3.3.
(a) Iftv is well-defined on C / 5 it extends to a well-defined functional on Cf+ί.
(b) tv(ei) = l/xandtτ(gr1) = r±1/xfor i=l,2,...f-1, wherex = (r-r-ί)/(q~q~1)

+ 1.
(d) tτ(aχb) = tr(χ)tr(ab) and εf(aχb) = tr(χ)ab for χe{ef,gf} and a,beCf. In
particular, any functional φ on C^ which satisfies the first property of this statement
for all fe N has to coincide with tr.
(e) IfbeCf one has

εf{gj1 bgf) = sf(gfbgj ^ = εf(efbef) = εf.1(b).

(f) If tr is a trace on Cf and if If+1 is semisimple, then tr is also a trace on Cy + 1 .

Proof (a) follows immediately from the inductive definition and from εf(a) = a for
all aeCf. (b) follows from (R2) and (8).

To prove (e), first recall that any element of b e Cf can be written as a linear
combination of elements of the form aχb with χe{l,gf-ί,ef_ι} and a,beCf_ί.
Hence, as εf (aχb) = tr(χ)ab by (d), the claim would follow from

ef+ΛgJιχgf)ef+ί=ef+ί(gfχg}1)ef+1=ef+ί(efχef)ef+1=xtτ(χ)ef+1.
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It is easy to check this for χ = 1. Let χ = ef_ί. Then, using relation (3), one has

Similarly we compute that

lef+i9fef-i9flef+i=ef+i=ef+iefef-iefef + i

The case x = gf-i goes similarly.
For (f), one has to show that tr(ab) = tr(ba) for any a,beCf+1. We will use the

fact that Cf+ί is the linear span of elements of the form cχd with c, deCf and
χe{l,gf,ef}. Firstly, assume that aeCf and beCf+1. Then it follows from the
induction assumption on tr, the bimodule property [see below (3.2)] and (3.3),

tr (ab) = tr (aεf(b)) = tτ(εf(b)a) = tr (ba).

By semisimplicity of/ / + 1 , there exists a central idempotent zeCf+ί such that
zCf+ι=If+ί. Soif ae If+1,oneha.sab = (az)b = a(zb), i.e. one can also assumed to
be in If + ί . By linearity, it is enough to consider the case a = cιefc2 and b = d1efd2

with cΐ,c2,d1,d2eCf (see Proposition 3.2). But then

Similarly, one shows

tv(ba) = tr(ef)tr(xεf_ί(d2c1)εf_1(c2d1)).

So the claim follows from induction assumption.
Now the only remaining case is if both a,beCf+1jIf+1. Observe that also

elements of the form dί χd2 with χ e {1, ef, g J1} and d1,d2e Cf span C,+1. Hence we
can assume without restriction of generality a = cί gfc2 and b = dίgj d2 with c1, c2,
dx, d2eCf. But then it follows from (e),

By the same method, one shows

tr(ba) = tr(εf_1(d2c1)εf_1(c2d1)).

The claim follows now from the fact that tr is a trace on Cf_1. D

The following result shows how the algebraic structure of Cf depends on tr (see
also [BW, Theorem 3.7] and [W-2]).

Theorem 3.5. Let Cf be the algebra over the field C(r, q) given by the relations above.
Then we have for all fe N,
(a) Cf is semisimple and it has the same decomposition into full matrix rings as the
Brauer algebra Df. In particular, Cf(x, l) = Df and we can write, as for the Brauer
algebras

Cf= ® Cftλ9
λeΓf

where Cf λ is a full matrix ring and Γf is the union of the set of all Young diagrams with
/,/-2,/-4,.. . l or 0 boxes.
(b) If Vλ is a simple Cftλ module, it decomposes as a Cf_ί module in the form

y — /φ) y
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where Vμ is a simple Cf_ίμ module and μ runs through all diagrams which can be
obtained by adding /removing a box to/from λ.
(c) The functional tr is a faithful trace on Cf. More precisely, there exists for each
Young diagram λeΓfa nonzero rational function Qλ independent of f such that for a
minimal idempotent pλe Cf λ we have tr(pλ) = Qλ(r, q)/xf.

Proof We proceed by induction on /. It is easy to check the claim for Co and Cx with

β[0] e m

To show the claim for C / + 1 observe that efCf_1^Cf_ί by induction as-
sumption and Lemma 3.3. Hence one can define ef_1 and tr as in (3.2) and (3.3).
With these definitions Theorem 1.1 can be applied for A = Cf_t, B = Cf and
e = (l/x)ef. By Proposition 3.2 (b), If + 1 ^End C / _ i C / which is semisimple. More-
over, also Cf+1/If + ί^Hf + 1(q2) is semisimple, hence so is C / + 1 . In particular,
C I H ( 2 )

f f f

By Theorem 1.1 (b), the simple components of If + 1 are in 1-1 correspondence
with the ones of Cf-ί9 hence they can be labelled by the elements of /}-i The
simple components of the quotient are labelled by the elements of Λf+1. Hence the
simple components of Cf+1 are labelled by Γf_1uΛf+1=Γf+1. The decomposi-
tion of a simple Cf+ί module into simple Cf modules follows for If+1 modules from
Theorem 1.1 (b) and induction assumption and for modules of the quotient from
(2.2). So Cf and Df have the same decomposition into full matrix rings and, in
particular, the same dimensions over their corresponding ground fields.

It has already been shown that If+x is semisimple, hence tr, as defined in (3.3) is a
trace on Cf+ί by Lemma 3.4. If pλ is a minimal idempotent in Cf_lλ, then
(l/x)efpλ is a minimal idempotent in If+liλ by Theorem 1.1 (b). By induction
assumption we have

If pλ is a minimal idempotent of Cf+1 λ which is not in / / + i , one defines

To show the faithfulness of tr note that the structure trace is faithful on Brauer's
algebra Df+ί(x) = Cf+1(x, 1) for all but finitely many values of x. Hence \ΐpλ is a
minimal idempotent in (Cf(x,r))λ, tr(pλ)(x, l )φθ. In particular, Qλ = xftτ(pλ)is a
nonzero rational function in r and x. So after transforming back to the q, r
coordinates by (3.1) one obtains the desired nonzero rational function Qλ in
r and q. •

Let us briefly sketch how one can deduce from the previous theorem the
Kauffman link invariant along the lines of Jones' original derivation of his
polynomial: Using the homomorphism of the braid groups into the algebras
Cf(r,q), determined by the map σ^g^ tr induces a class function on the braid
group B^. It follows from Lemma 3.4 (b) and (d) that tr is a Markov trace. In order
to get a link invariant, one needs to rescale tr such that tr (σ̂ ) = tr(σfx). This is done
easily by defining for a braid β=zon

r^1σ
n^2...σ

n

r!;k the exponent sum e(β) = Yjnk and

As a consequence of Markov's theorem and Jones' work (see [Jo-2]) one obtains a
link invariant Ltr, defined by
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To show that this link invariant is the Kauffman polynomial (up to the change of
parameters which we made) it suffices to check that the algebraically defined
functional tr and the functional defined at the beginning of this section using
Kauffman's K are the same. This follows from Lemmas 3.1 and 3.4.

4. Semisimple and Unitary Representations of Cf(r,q)

The crucial fact for proving semisimplicity of Cf was the faithfulness of tr. This can
no longer be expected for the corresponding structure traces of the C algebras
Cf(r, q) in general. Even if tr is not faithful, one can still do a similar analysis in
special cases for the quotient over the annihilator ideal.

So let Jf(r,q) be the annihilator of tr in Cf(r,q), i.e.

Jf(r9q) = {aeCf(r,q)9lτ(ab) = O for *ΆbeCf(r,q)}.

As Cf+1 is the linear span of elements of the form αχb with χe{l,ef,gf} and
α,b,ceCf, it follows from tr(c(αχb)) = tr(cab)tr(χ) (by Lemma 3.4) that

Jf(r,q)czJf+1(r9q). (4.1)

So if π[P denotes the representation of Cf(r, q) coming from the GNS construction
with respect to tr, one has

{r,q)). (4.2)

Hence the algebra πtr(Cf(r, q)) is well-defined regardless of the underlying
representation space (which could be any CΓ(r,q),f'^f). We will use a similar
approach as for the Brauer algebras (see [W-2]) to determine the structure of
πtr(C/(r, q)). The only additional difficulty comes from the fact that Hf(q2) is not
semisimple if q is a root of unity. As a first step we show the following

Lemma 4.1. (a) Let r,qeC. If πtr(C/_1(r,q)) andπtτ(Cf(r,q)) are both semisimple,
then

where the first summand is isomorphic to the Jones basic construction for
τιtr(Cf_1 (r, q)) a πtT(Cf(r, q)) (which is semisimple) and the second summand is the
image of a representation ofCf+ι(r, q) which factors over If+1(r, q) (hence it can be
regarded as a representation ofHf+ι(q2)). The second summand may of may not be
semisimple.
(b) If Hm(q2) is semisimple for ra = l, 2,.../, then so is πir(Cf(r,q)).
(c) Qf(Hf-ι(q2)) is isomorphic to a quotient of £ ? / - i ( # / ( 2

Proof We proceed as in the proof of Theorem 3.5 with the algebra Cf replaced
by πtr(Cf(r,q)). By definition, the trace is always faithful on πtr(Cf(r,q)) so that
we can use the same induction argument [Theorem (1.1) with πtr(ef) as idem-
potent] as before. Hence πtr(If + 1(r,q)) is isomorphic to the basic construc-
tion for ntτ(Cf + 1(r,q))<^πtτ(Cf_ί(r,q)) which is semisimple. The quotient
πtr (Cf+! (r, q))jnxτ (If+1 (r, q)) is obviously a quotient of the Hecke algebra Hf+x (q2).
It has to split because π t Γ(// + 1(r, q)) is semisimple.
(b) follows from (a) by induction.
(c) As If-ι(r,q)^If(r,q), (Cf_ί

Jt-If/If)(r,q) is isomorphic to a quotient of
(Cf_1+If_1/If_1)(r,q). The same holds for their images under π t r. •
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So by the last lemma πir(Cf(r, q)) is semisimple for all fe N if and only if at each
stage the representations ρf(Hf(q2)) are semisimple. It also shows that in this case
the structure of πtr(Cf(r,q)) is completely determined if one knows which
representations of the Hecke algebra appear at each stage. In case that all the ρ/s
are semisimple, this information will be encoded in the graph Γ(r, q) whose vertices
at the / t h level are labelled by the simple components ofρf(Hf(q2)). As for a Bratteli
diagram, the edges are given by the decomposition of an irreducible ρf(Hf(q2))
module into irreducible Hj ^^q2) modules. We also note that this is of course the
same definition which Ocneanu uses for describing higher relative commutants of
subfactors (the so-called principal graph) and we will show later that indeed our
graphs do describe subfactors.

We shall see later that the ρ/s will always be direct sums of the representations
πλ and π(

A

M) defined in Sect. 2. So we usually label the vertices of Γ(r, q) by Young
diagrams. The next lemma gives conditions when an /regular diagram can appear in
Γ (r, q). The main difficulty consists of producing minimal idempotents of Cf which
are still well-defined for the chosen values of r and q. More recently, a canonical set
of idempotents of Cf has been defined in [RW] which could also be used for the
proof of the following lemma.

Lemma 4.2. Let μeΓ(r, q) be an I regular diagram with f boxes and let λ be an I
regular diagram obtained by adding/removing a box to/from μ. Then λeΓ(r, q) if and
only if Qχ(r,q) + 0. Moreover, one also has
(a) All subdiagrams of μ are in Γ(r, q).
(b) There exists a minimal idempotent Pχ^Cf+lλ such that also pλ(r,q) is well-
defined.
(c) tr(/?Λ) = βΛ(r, q)/xf+1 and, if\λ\ > \μ\, Cf+ltλ(r, q) is well-defined and splits as a
direct summand.

Proof The proof goes by induction on /, the number of boxes of μ. By definition,
πμ{Cf{r,q)) is a direct summand of πtτ(Cf(r, q)). But as

πμ\Cf-ι(r,q)= ® Uη >
η<μ

all subdiagrams η of μ with /— 1 boxes are in Γ(r, q) by Lemma 4.1 (c). The claim in
(a) follows from this and induction assumption.

By induction assumption and (a), there exists a minimal idempotentpμeC fμ

such that/?μ(r, q) is well-defined. By Theorem 3.6 there exists for each subdiagram η
of μ with /— 1 boxes a minimal idempotent pηeCf+ίη such that

(PμIf + iPj(r><l)=® C(r,q)pη.
η<μ

On the other hand, using the symmetry of the Bratteli diagram for Jones' basic
construction (Theorem 1.1) and Lemma 4.1 (a) we also have

M(/V(r+i/V)fotf))=0 C

η<μ

Hence πtr is faithful onpμlf+1pμ(r, q) and/?^ / + 1 (r, q) is well-defined for all η < μ by
Proposition 1.3 (b) (with B=pμlf+1pμ). In particular,pμIf+ιPμ(r, q) is semisimple
and the quotientpμCf+1pμ(r,q)/pμϊf+1pμ(r,q) has to split. As λ is /regular, the
central idempotent zλ(q2) does exist mHf+ί (q2) and one can take ίoτpλ the image of
pμzλ in the quotient (which splits), (c) now follows from this and Lemma 1.4 (c). By
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Lemma 1.4 (b), Cf+ίtfl appears as a direct summand in π t r(C / + 1(r, q)) if and only if
tr(/?Λ)(r, g)φθ, which shows the main statement. Π

In order to compute Γ(r, q) the previous lemma suggests the definition of the
graph Γ(r,q)czΛ, defined inductively by [0]ef (r,q) and λeΓ(r,q) if
(a) βλ(r,<?)Φθand
(b) there is at least one subdiagram of λ with |λ| — 1 boxes which is in Γ(r, q).

Observe that by the previous lemma an / regular diagram λ is in Γ(r, q) if and
only if it is in Γ(r,q). For the general case one needs the next lemma. The
semisimplicity assumption could be weakened to the assumption that both
polynomials on the right-hand side of condition (2) are well-defined for the given
values of r and q (from which semisimplicity would follow by Lemma 1.4). We will
later use another method for proving it.

Lemma 4.3. Let q2 be a primitive Ith root of unity and assume that πtr(Cf(r, q)) is
semisimple for all fe N. Then the hook diagram λ = [l—k+l,lk~1]isinΓ(r,q) if and
only if

(1) μ=[l-k + l,lk-2]eΛι_1(r,q) and

(2) Qλ(r,q) = (

Proof As πtr(Cj(r, q)) is semisimple, it is, by Lemma 4.1 (a), enough to consider the
semisimple quotient Cι(r,q)^πtr(Iι(r,q)@Hι(q2), where Hx{φ) is the maximal
semisimple quotient of H^q2) (see Prop. 2.2). So λeΓ(r, q) if and only if
te(Px(r> #)) + 0 f°Γ a minimal idempotent pλ(r, q) in the simple component of Ct λ

which is isomorphic to π(χ'l)(Hι((f')) by Lemma 1.4(b).
By the restriction rules (see Proposition 2.2) and Lemma 4.1 λeΓ(r, q) only if

μ=[l-k + l, lk~2]eΓ(r,q). As μ is / regular, there exists a minimal idempotent
^ e Q . ^ μ such that/?μ(r,q) is well-defined.

One derives directly from the Bratteli diagram for Cι_ίaCι (see Theorem 3.6)
that

where η runs through all diagrams which can be obtained by adding/removing a box
to/from μ. If η is / regular, pη(r, q) is well-defined and tr(pη(r, q)) = Qη(r, q)/xι by
Lemma 4.2. Observe that the only 2 diagrams among the η's which are not /-regular,
are the hook diagrams λ and [l — k — 2, lk~2]. Hence it follows from the Bratteli
diagram for ^ ( Q ^ ^ ^ c C , ^ , ^ ) that

ηl regular

Comparing this with the decomposition of pμ one obtains tr (pλ(r, q))

Theorem 4.4. Let π t r be the GNS construction with respect to tr and let q2 be a
primitive Ith root of unity. Moreover, assume that πtr(Cf(r,q)) is semisimple for all
/ G N . Then
(a) The isomorphisms in Proposition 3.2 also extend to ntτ(Cf(r,q)) (e.g.
πtT(Cf(-r, -q))^πtτ(Cf()))
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(b) Assume that Γ(r,q), as defined before Lemma 4.3, does not contain a hook
diagram with /—I boxes. Then Γ(r, q) = Γ(r, q) with edges inherited from the Young
lattice and it only contains /—I regular diagrams.
(c) If Γ(r,q) contains only one hook diagram μ with /—I boxes with, say,
μ=[l—k, lk~1] and it does not contain its successor [l — k, 2, lk~2], Γ(r, q) consists of
all I regular diagrams in Γ(r, q) and, ifQλ(r, #) φ 0 (with Qλ as in the last lemma), also
of the diagram λ = [/—fc + 1,1*-1]. The edges ofΓ(r, q) are exactly those inhertited
from the Young lattice.
(d) These graphs completely determine the decomposition ofπir(Cf(r, q)) into a direct
sum of full matrix rings. The weight vector of tr for πtr(Cf(r,q)) is equal to
(Qλ(r><ϊ)lχf)λeΓ(r q) except for the special diagram in (c) where one has to take
Qχ{r,q).

Proof Let Φ be as in the proof of Proposition 3.2 (c). For (a), it is enough to show
that tr o φ is the structure trace on the algebra on which Φ is defined. This follows by
induction using Lemma 3.4 (b) and (d).
(b) The proof goes by induction on / with / = 0 and / = 1 being trivial. By induc-
tion assumption, we know that the simple components of ρf(Cf(r, q)) are labelled
by /— 1 regular diagrams. But then Qf+1(Hf+1(q2)) has to be semisimple and all its
irreducible components have to be labelled by / regular diagrams by Proposition
2.1 (b). By our assumption and Lemma4.2 only /—I regular diagrams can appear.

For (c), one uses essentially the same strategy where one only has to consider the
cases / = / and / = /+1 separately. By Lemma 4.3 and our assumptions, ρ^C^r, q))
is semisimple and its simple components are labelled either by /— 1 regular diagrams
or by diagrams containing [/—k, I*" 1]. The diagram [/—£, 2,1*~2] is / regular,
hence it does not appear in Γ(r, q) by our assumptions and Lemma 4.2. By Lemma
4.3 the diagram [l — k + 1, lk~1] only appears if 5[/-fc+i,ik-i](^,^)=t=0.

By Proposition 2.2, ρ / + 1 has to be semisimple with its simple components
labelled by /—I regular diagrams none of which contains [l—k,^'1]. Now one
can show as for (b) that only /—I regular diagrams can appear in ρf(Cf{r,q)) for
/ > / . D

Let us demonstrate at an example how one can determine the structure of
\ ( Q ( r ^ ) ) J e N from Γ(r,q). It will be shown in Sect. 6 that for q = e2πiΠ and
r = q , the graph Γ(r,q) is given by

Fig. 6

It follows from the definition of Γ{r,q) and the last theorem that the Bratteli
diagram for the πtr(Cf(r, q)) is of the following form (where diagrams with / boxes
appear in the (/-+- l) s t line for the first time)
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[0]

>v Ml

"tr<C,(q2.q))

•121] πtr(C3(q2.q))

3 6 5 dimensions

Fig. 7

In the rest of this section, we will give conditions when representations of Cf(r, q) on
a Hubert space can induce unitary representations of the braid group Bf. Slightly
more general, a representation of Cf(r,q) (or Hf(q)) will be called a C*
representation, if the corresponding representation of the braid group, induced by
the homomorphism σ^gi maps the standard generators σf to normal operators.
An irreducible C* representation is called nontrivial in this context if its image has
dimension > 1.

Observe that if ρ is a C* representation, then ρ((l/x)ei) is a spectral projection of
the normal element ρ ^ ) , hence selfadjoint. Hence, as π t r (/ / + 1 (r , q)) is isomorphic
to the basic construction for π t r(C /_ 1(r 5^))czπ t Γ(C /(r,^)), Lemma 1.2 yields the
following necessary conditions for πtr(If+ί(r,q)) to be a C* representation:
(a) The restriction of π t r to Cf(r,q) has to be a C* representation.
(b) All irreducible components of the restriction in (a) must have positive weights
with respect to tr.

The following lemma will give more precise conditions for possible C*
representations of πtτ(If(r, q)).

Lemma 4.5. Let q,reC Ifq2 is a primitive Ith root of unity, we assume the conditions
for Γ(r,q) as in Theorem 4.4.
(a) Ifr=—qorr — q~ι, x = Q[i](r,q) = 0. In this case tr can not be defined.
(b) There are nontrivial C* representations oflf(r, q),f^ 5 factoring over π t r only if

(bl) both r and q are real or if
(b2) \r\ = \q\ = \ or if
(b3) r = qorr=—q 1 or if
(b4) r = q~3 or r= —q3 and qeiR.

Proof (a) is clear. For (b), let us first assume that Q[2,i](r> #) + 0> i e [ ]
appears as a direct summand in π t r (C3 (r, q)). By the restriction rule for Cf(r, q) (see
Theorem 4.4), any irreducible representation of πir(If(r, q)), / ^ 5 , restricted to
C3 (r, q) contains a subrepresentation isomorphic to π [ 2 > 1 ] (C 3 (r, q)) ̂  π [ 2 > 1 ](i/3(q2)).
But by [W-l, Proposition 2.9] this can only be a nontrivial C* representation if q2 is
positive or if \q2\ = l.

By condition (b) the weights of tr have to be positive for any subrepresentation
of If. This implies in particular for 73(r, q) that Q[0](r, q)jx2 = 1/x2 > 0. One deduces
from this easily that ,

r — r ι

^reR
q-q
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This is possible for q real only if r is also real and for \q\ = 1 only if |r| = 1. This shows
the claim under the condition g p > 1 ] (r , </)=l=0. To complete the proof, we need the
fact that

r-r-1+q3-q~3 rq-r'^'1 rq^-r^q
β 0 W )

This will be shown in the next section using solutions of the quantum Yang-
Baxter equations. It can also be shown by elementary means by constructing mini-
mal idempotents in C3Λ2>ί](r,q) and by computing their trace. Observe that

β ( ) 0 l i f

r = q or r = — q'1, which is case (b3),
r = q~x or r = — q, which is case (a), or if
r = q~3 or r = —q3.

If r = q~3, we also have Q[2](r,q) = Q (see Theorem 5.5 or compute it directly).
Hence n^igj only has 2 different spectral projections with spectral values r" 1 and
q~x. It follows that πtr(Cf(r,q)) is isomorphic to a quotient of the Hecke algebra
Hf((f). So again by [W-l] q4 has to be either real and positive or its absolute value
has to be equal to 1. If r = — q3, β[12](r, q) = 0 and one can show the statement as
before. D

Recall that the characteristic values of the g/s are q, —q~γ and r ~*. By the result
above we have therefore for any C* representation ρ of Cf(r,q),f^5 that either
ρ(^) is unitary (for |r| = |#| = l) or selfadjoint (for r and q real).

So one can already define an involution for Cf(r, q) which is compatible with
the * operation for C* representations. More precisely, if \r\ = \q\ = 1, one defines the
conjugate linear map t on Cf(r,q) by

g} = gri /=1,2,.../-1 (4.1a)
and

(ααft)t = ά&V for a,beCf(r,q), αeC. (4.1b)

It is checked easily that f is compatible with the generating relations of Cf(r,q),
hence it is well defined.

Similarly, if both r and q are real, one defines * as above where the first line is
replaced by

gj = gt /=1,2, . . . /-1 . (4.2)

Note that one has in both cases

el = et /=1,2, . . ./-1. (4.3)

It follows from these definitions that a representation ρ of Cf(r9 q) on a Hubert space
is a C* representation if and only if ρ(gi)* = ρ(g}) for z = l,2,.../— 1.

The operation t is also used to define a sesquilinear form on Cf(r,q) by

<tf,ό> = tr(Mα). (4.4)

In the following we will always define the representation coming from the GNS
construction with respect to this sesquilinear form.

Theorem 4.6. π t r is a C* representation of C^{r, q) if and only if
(a) ρf is a C* representation of Hf(q2)for allfeN,
(b) βA(r,q)/χW >0 for all λeΓ(r,q).
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Similarly, π t r is a C* representation ofCfo(r, q) if and only if the conditions (a) and
(b) hold for 1 SfSfo and for all diagrams in Γ(r,q) with f0 boxes at the most.

Proof. If π t r is a C* representation, condition (a) follows immediately and condition
(b) follows from Lemma 1.2 and Theorem 4.4.

The converse is shown by induction on /. We first show that if π t r is a C*
representation of Cj ^^r.q) and Cf(r,q), conditions (a) and (b) imply that the
sesquilinear form <,>, defined in (4.4), is positive semidefmite on If+ΐ(r9q). By
Lemma 1.2, the basic construction for 2 C* algebras A aB is a C* algebra if tr is
faithful and positive. Hence π t Γ(/ / + 1(r, q)) is a C* algebra by (a) and (b). As the
weight vector of tr on πtΐ(If+1(r,q)) is equal to (Qμ(r,q)lxf+1)μeΓf_ι(rfq), which is
positive by assumption (because f—\μ\ is even), <,) is positive semidefΐnite on
/ / + I (r, ί)by(1.5).

By (a), also ρ / + 1 is a C* representation oϊHf+1(q2). As the weights Qλ(r, q)/xlM

corresponding to the simple components of ρ / + 1 are positive, tr also induces a
positive definite sesquilinear form on ρf+1(Hf+ι(q2)). As tr(ab) = tr(0) = 0 for
a G π t r (If+! (r, q)) and beρf+ί (Hf + λ (q2)), tr induces a positive definite sesquilinear
form on π t r(C / + 1(r,q)). Hence π t r represents Cf+ί(r,q) on a Hubert space.

Assume that \r\ = \q\ = 1 and let a,beCf+1(r,q).

The same identity factors through π t r. Hence, as <.,) is an inner product on
π t r(C / + 1 (r, q)), ntr(gj) is the adjoint of π t r(^ f). By remarks after (4.3), this means that
π t r is a C* representation. D

Corollary 4.7. Assume |r| = |#| = l and r φ ±q±1. Moreover, assume that φ—et2%\
0 < t < 1/2 αftd that there exists m e N swc/z that

Then π t r w a C* representation ofC^ (r, #) o«/y if all diagrams in Γ(r, q) are m regular.

Proof It is checked easily that q2 can not be a primitive kth root of unity for
k = 2,3,.. .m, m + 1 . Now if the condition above did not hold, there would exist an
(ra+1) regular diagram λeΓ(r,q) with, say, / boxes which is not m regular. By
Theorem 4.4 πλ(Hf(q2)) is a direct summand in πtr(Cf(r,q)). But by [W-l,
Proposition 2.9] this summand can never belong to a C* representation. D

5. Quantum Groups and Markov Traces

In the last section we have reduced questions about semisimplicity and positivity
structures of Cf(r, q) to faithfulness and positivity of the structure trace tr. To settle
these questions, we need representations of Cf(r,q) which use solutions of the
quantum Yang-Baxter equation (QYBE).

Let Fbe a finite dimensional vector space. Let R(x) be a matrix in End F ® V,
depending on a parameter x and let Rx = R (g) 1 and R2 = 1 ® R be matrices in
End V®V®V. Then R(x) is a solution of the QYBE if

y) = R2(y)R1(xy)R2(x). (5.1)

This is the version of the QYBE for the matrices R in [Ji 1 ]. It is easy and well-known
how to deduce this version from the original one (for the computation see for
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instance [W-3]). The most successful method for obtaining solutions of the QYBE
was the quantum group approach (see Drinfeld [D] and Jimbo [Jil-3].

A quantum group is a q deformation of the universal enveloping algebra of a
finite or affine Lie algebra in the sense that its Chevalley generators satisfy relations
depending on a parameter q which reduce to the usual relations for q = 1. We write
down these relations for sake of completeness (see also [Ji-3, Ro or L]).

Let A = (ciijji^ij^i be a generalized Cartan matrix belonging to a finite or affine
Lie algebra g. Then A is symmetrizable, i.e. there exist nonzero integers du

z = l,2,.../ such that diaij = djaji. Then, for geC, one defines the quantum group
Uq§ by generators X*, Xt~, ku kf1 (1 rgz g/) and relations

IT IT —IT IT IT I T ' 1 — k ~ l k — 1

k1 -k'1

J J q l — q~

where

[m]t\=ut-z^τ f o r a n y

Observe that by setting e—X^f^Xf and by setting formally k—qdfol2, one
obtains the relations among the Chevalley generators for the classical universal
enveloping algebra in the limit q-+l.

Uq$ also has a comultiplication A defined by

(gtkr1 , and

The general representation theory of such quantum groups has been studied in
[Ro, Lu]. If q is not a root of unity, it is similar to the one of the corresponding
classical algebra. It has been shown that one obtains for each finite dimensional
representation of a quantum group on a finite dimensional vector space Fa solution
R(x)eEnd F® V of the QYBE depending on a parameter x (this follows from
Drinfeld's universal R matrix see [D]). It can be understood as a deformation of the
flip P (i.e. P(ί;®w) = w®ϋ), which lies in the commutant of the second tensor
power of the given representation of the quantum group.

In the following, we will need the R matrix for the standard representation of
quantized son+1 with « + l odd (which is obtained as a special case from the R
matrix of the corresponding untwisted affine Lie algebra). The same procedure
also goes through for the other classical Lie algebras (see [Re]). Let F be an
n +1 dimensional vector space with n +1 odd. It will be convenient to label a basis
{vhiel} of Fby the set

Observe that this is the set of eigenvalues of a matrix corresponding to the sum of
positive roots of son + 1 with respect to a suitably normalized invariant bilinear form.
For other Lie algebras one chooses the index set in the same way (where the value 0
appears twice for son+1 with n +1 even). Let R(x) be Jimbo's solution of the QYBE
for type Bfy (see [Jil]). Following Turaev [T] one extracts from this the matrix
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R = (kξ)~1A(0) which has the following form (with (f^ jeI a set of matrix units
for End F):

^ = Σ (^Λt®Λt+^"1Λ- i®/-i,i)+/o,o®/o,o+ Σ fij®fj,i

fu®fjj- Σ Φi+mfi.,®f-ι,-\

It can be checked either by an explicit computation or by formulas in [Ji-1] that

i®f-i,i)+fo,o®fo,o+ Σ fij®fji

-ί"1)f Σ Φt+mfuj®f-t.-j-ΣΛt®f

Let us also define the quantity x (which corresponds to the parameter x in the
definition of Cf for the special choice r = qn) by

* • - + « « " _ Σ , . M

itit/
Let F be the matrix defined on V® V by

Then
i ^ 2 = x F (5.3)

and 1/x F is a projection onto the subspace of V®V spanned by the vector

Σ Φ2(υi®v-i)' It i s e a s y t o check that

One can now define elements Rte ®*° Mn + 1 by

where R is in the zth and (z + l ) s t position in ®°°Mπ + i .
The following result has already been mentioned in [T] and [Re].

Lemma 5.1. If g + 0, ± 1 , the algebra generated by the i^'s, /=1,2, . . ./—1, is a
quotient of Cf(<f, q).

Proof One only needs to show that the map Φ: g^Ri extends to a homomorphism.
(B2) is easy to check while (Bl) follows from (5.1) with x=y = 0. It seems almost
impossible to check (Bl) directly by elementary methods. It follows from (5.4) and
(D) that Φ(ei)=Fi. Hence to check (R2) it is enough to show

(1 ®F)(R®\)(\ ®F) = qn(i ®F),

which is a modestly tedious, but straightforward computation. Finally, (R2)
follows from RF=q~nF, which follows easily from the fact that F is a rank 1
idempotent. •

Let A (t) be a finite dimensional complex algebra depending on a parameter t
which acts on a finite dimensional vector space W such that
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(a) A(t)^A(l) is semisimple for all but finitely many values of t,
(b) if A(t) is semisimple, the entries of the matrices representing the central
idempotents depend continously on t and
(c) there exists a matrix D acting on W which commutes with A (t) for all values of t.

Lemma 5.2. Let Tr be the usual trace on matrices. With the notations above, the
functional ψ, defined by \l/(a) = Tτ(Da), is a trace on A(t) for all t such that
(a) the weight vector ofψ does not depend on t as long as A(t) is semisimple and
(b) n^ (A (t)) is semisimple for all values oft, where πψ is the representation defined by
the GNS construction.

Proof As any 2 elements a, be A (t) commute with D, we have

ψ(ab) = Tr (Dab) = Ίv(aDb) = ΊrφaD) = φ(ba).

Obviously, D as a diagonal matrix has a spectral decomposition D = Σ α^α w ^ h α

α

ranging over the eigenvalues of D. As D commutes with A(t), Eaz(t) is an
idempotent. As t\-+Tr(z(t)Ea)eN is continuous, it has to be constant. Hence

does not depend on t. Hence also the entries of the weight vector of ψ, which are
given by φ(z(t)) divided by the corresponding dimension do not depend on t by
assumption (a).

To prove statement (b), let aemd(A(t)) and let beA(t) be arbitrary. As D
commutes with A(t), Dab is also nilpotent. Hence ψ(ab) = Ύv(Dab) = O for any
beA(t). This shows that a is in the kernel of πψ by definition of GNS
construction. •

The previous lemma will now be applied to the following situation: Let
A(t) = Φ(Cf(tn, t)), with Φ as in the proof of Lemma 3.1, acting on W= V®f. In
order to check that A (1) is isomorphic to Brauer's Df(n +1) if f< n, we introduce
the basis {wj9jel} for V given by

(j iv_j) for

w_j = —

Observe that

for 7>0.

Hence F, which for q = 1 is a multiple of the orthogonal projection onto the vector
Σ vi®v_i transforms to n + 1 times the projection onto the vector £

i e I n j e I

Obviously, the i^'s, which for q = 1 only permute the factors of V® j, do not change
under this basis transformation. It follows now by well-known classical results (see
[Br or Wy]) that the i^'s a n d F® 1 ® f~2 generate the centralizer ρ® f(O(n +1))' of
the / t h tensor product representation of the orthogonal group O(n 4-1). Moreover,
if f<n, the centralizer algebra is isomorphic to the algebra Df(n + 1) (see for
instance [Wy, p. 149]). The semisimplicity of the centralizer algebras can be seen
directly from the fact that the generating matrices are selfadjoint (or see also [W-2]).
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As Cf(tn, t) is an algebra over C(t), its central idempotents can be written as a
sum of products of the generators gt and e{ with coefficients in C(0 (which, in
particular, are continuous functions in t except at poles). Hence, as the matrices for
the R/s and F/s depend continuously on t, so do the matrices for the central
idempotents for A(t). Hence A(t) satisfies assumptions (a) and (b) before
Lemma 5.2.

Let D be an (n +1) x (« +1) diagonal matrix with diagonal entries αx, α2,... αΛ+x.
The matrix D®f acts on W=V®f in the usual way by D®f(v1®v2(£)...vf)
= Dv1 (g)Dv2 ®...Dvf. To obtain a trace φ on A(t) as in Lemma 5.2, D®f has to
commute with A (t) for all values of t, or equivalently A (t) has to leave invariant all
eigenspaces of D®f which are defined by

K®' = s p a n k ® . . . ^ E K ® ' , Π α ^ α
I 7 = 1

It is easy to check that R leaves invariant the eigenspaces of D ® 2 if α_ f = αf~
1 for any

choice of q (or rather i). From this it follows easily that D®f commutes with Ru

ί = l , 2 , . . . / - l and hence with A(t).
So if the eigenvalues of D have the property stated above, we obtain a trace on

A (t) from the functional φ on Mn̂ .{ (essentially a product state) defined by

for αeM®+{. (5.5)

Observe that ^(1) = 1 and that for a e M®/^1 φ(a), defined for the (/- l) t h tensor
power coincides with φ{a®\) defined for the / t h tensor power. Hence φ can be
extended to the inductive limit of the M®+{'s.

To compute the weight vector of φ\A{t), we assume for the moment that the
eigenvalues α,- of D are of absolute value 1. Let α,- = βj 4- ijj. Then it is easy to see that
^ ^h respect to this basis is given by the orthogonal matrix

By the previous lemma it is enough to compute the weight vector for A(l) which is
equal to the centralizer of ρ®f(O(n +1))'. So if/? is a minimal idempotent of ̂ 4(1),
we obtain an irreducible representation of O(n-\-l) on pV®f. If χ(λ) is the
corresponding character, one has

It is well-known that the character formulas are rational functions in the eigen-
values of D. Hence the formula also holds in general for arbitrary α/s by analytic
continuation (evaluating the functional φ only involves rational operations).

So it follows from our discussion and the previous lemma

Corollary 5.3. (a) Let A and φ be as above. Then A is semisimple for all but finitely
many values oft and φ is a trace on it for all values oft. If A is semisimple, the weight
vector is given by

where χiλ)(D) is the character corresponding to λ of an orthogonal matrix with the
same eigenvalues as D. If there is no orthogonal matrix with these eigenvalues we take
the unique analytic extension of the character formula to these values.
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(b) In general, the image under π^ of any subalgebra of the centralizer algebra of the
fth tensor power of the standard representation of Uqson+ί is semisimple.

To compute the weights of the structure trace of Cf(r, q) we will compute the
weight vector of ψ given by a special D namely for

D = D(q) = άmg(q\ieI). (5.6)

(D can be characterized as the q exponential of the matrix corresponding to the sum
of all positive roots in G with respect to a (up to scalar multiples unique) invariant
bilinear form). Observe that for x as defined in (5.2) one has x = Tr(D) = £ q\ It
follows from a straightforward computation that isI

φ(R) = qn/x and ψiR'^^q'ηx. (5.7)

Lemma 5.4. Let Af(t) = Φ(Cf(tn, t)) (where t is a variable) and let ψ be as defined
above by the density matrix D = D(q).

If t = q, ψoφ coincides with the structure trace tr on Cf(qn,q).

Proof It follows from the previous corollary that φ is a trace on A (t). Now observe
that ^((1 ®eij)R±ί) = ψ(eij)ψ(R±ί). By linearity, it follows from this

for any aeM^C)®^1. So, in particular, ψ(Φ(agί)) = ψ(Φ(a))\l/(Φ(g1)) for all
aeC2>f(tn, t). Applying the inner automorphism ηf (see defin. of braid groups in
Sect. 2), it follows from this and (5.7) that ψ°Φ satisfies the properties of the
functional tr in Lemma 3.4 (d). Hence ψo φ = tr by that lemma. D

We are now going to compute the rational functions Qλ of Theorem 3.6. The
idea is very simple. By the last proposition one can compute Qλ(qn,q), which is
nothing else than the orthogonal character χiλ)(D) belonging to the diagram λ for
the special choice of D as in (5.6). So now the only work consists of rewriting these
character formulas in such a way that after replacing certain occurrences of qn by r,
one obtains a rational function in q and r which no longer depends on n. This will
result in transforming the orthogonal (and symplectic) character formulas (in a
special case) from "root form" into "hook length form" (this terminology is due to
MacDonald).

Recall that for an orthogonal matrix D with eigenvalues 1 and z2, zr 2,
j—1,2,...k, the character χ(λ) is determined by

~2i_z-λi-k-l+2i\

By WeyFs character formula for the odd dimensional group the denominator
A = ±det(z^ ι~1 — zj"2 i + 1) f J can be expressed by the product

For more convenient notation, we use the symbol [s]q to denote qs — q~s and
^ f o r r ^ - r - 1 ^ - ^ L e t / l = μ i , 2 2 , . . . 4 ] a n d l e t z I . = ̂ ί + f e - ι + 1/2.Thenitfollows

from the last 2 formulas for D = diag{q\ iel},
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* [(2£ + l)/2 + As-4, π [2k + l+λs + λt-t-s]q[λs-λt + t-s

s = 1 β , ,
(5.8)

Let λ be a Young diagram and let (/ ,j) denote t h e / h box in the ith row. Let λt and
λj be the number of boxes in the ιth row and j t h column respectively. The hook-
length h(ij) is defined by h(ίJ) = λi-ί+λ'j-j+\. We shall need the following
observation (see [Me, Example 1 on p. 27]). Let λ be a diagram with m rows. Then
we have for n>m (with λm+ί=λm+2= ... =λn = 0)

In particular, if we replace qn by the variable r, we obtain a rational function in q and
r which is independent of n. Moreover we shall also need the observation (already
known to Frobenius (see [EK])) that the sets {λj —j, j=l,2,...λ[} and {i—ί— λ[, /
= 1,2,...λi} contain exactly λ[ respectively λx elements and are mutually disjoint.
Hence their union coincides with { — λ[, — λ[ + 1 , . . . λ1 — 1,}. In particular, we have

(5.10)

This was used by El Samra and King to define for each Young diagram λ a
polynomial Pλ which, evaluated at n gives the dimension of the irreducible
representation of O(n) belonging to λ. Pλ can be written as

{i,j)eλ nKhJ)

with the product taken over all pairs (i,j) specifying row and column of a box of λ.
The quantities d(i,j) are defined by

7—1 if /:

We see immediately that

-2λ[ + lSd(i,j)S2λ1-l for all (ij)eλ (5.12)
and

- 2 ^ + 1 ̂  -2/lj + 2/-1 ^2λ1 -1. (5.13)

As already mentioned before, these polynomials give us the dimensions of
irreducible representations of O(ή). In particular, it follows from WeyΓs dimension
formula for n = 2 k + 1 ,

(5.14)
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We shall need this to prove the following

Theorem 5.5. Let λbe a Young diagram with m rows and let Qλ(r, q) be the rational
function given by

π \y+d(Uj)]t

Then we have for all k>m and D the (2k +1) x (2k +1) matrix as in the previous
corollary,

In particular, Qλ coincides with the rational function in Theorem (3.6).

Proof. Using the notation introduced before (5.8) we define the rational function
β f by

ί-7 + 1/2], 1SrV, s l t [y-r-s]q

\SJy~kmXί]q-
By (5.8) and (5.9) we have

We are going to show by induction that Qf] does not depend on k, i.e. one
obtains the same rational function for any k,k>m. It follows from the definitions
that

δf ,-i \y-r-k-\\ ^[y-k-i+j-iV

Evaluating the second product on the right-hand side separately for each row of λ,
one checks easily that the right-hand side is equal to 1.

By the same procedure, one defines rational functions in the variable y by
replacing [n]q and [y+n]q by n and y+n respectively. For q = 1 the character of D is
equal to the dimension of the representation belonging to λ. Hence the rational
function obtained is the polynomial Pλ(y). In particular, as linear terms are
obviously prime elements in a polynomial ring, the factors in the denominator,
which contain a y, have to cancel with factors in the numerator. By carrying out the
same cancellations for the corresponding [y + n]qS, one obtains

m k-j + 1/2, -k + j-1/2

Π
j^ -

-r-s]q[λr-λs+s-r]q

ί-r-sUs-

[h(iJ)]q
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If λj^j, (jj)eλ and

If λj<j, we have —m<λj—j<0. Hence the denominator in the first product of (*)
belonging to such a j cancels with a factor in the numerator of that product. By
Frobenius' observation, the exponents of the remaining factors are given by the set
{j — 1 — λj +1/2, (j,j) E λ). Multiplying the factors belonging to the same j , one sees
that Qλ(r, q) can be written as in the statement.

By Lemma 5.4 and the uniqueness of the structure trace, the function Qλ(r, q)
coincides with the rational function in Theorem 3.6 denoted by the same symbol for
r = q2k, k = 1,2,.... This means that for each arbitrary fixed q which is not a root of
unity, they coincide at infinitely many different values of r. Hence they have to be
the same for arbitrary values of r, which proves the last statement.

Corollary 5.6. (a) Ifr + ±qn for any neZ and q is not a root of unity, the structure
trace tr is faithful on Cf (r, q)for all fe N. In particular Cf (r, q) is semisimple with the
same decomposition into full matrix rings as Cffor all / e N .
(b) Let qeC be arbitrary. Then
(bl) r ( # ~ \ g ) is not defined.
(b2)
(b3) t ^ ^ ^ ^

= 2 for m > 1.
(c) Ifr = qn and q is not a root of unity, Γ(r, q) consists of all Young diagrams λfor

which
(cl) λ1+X2<n + lfor «>0,
(c2) 2λί <\n\+2for τ?<0, n even,
(c3) λ1+λ2<\n\ + 3 for n<0, n odd.
(d) If\q\ = \ and q is not a root of unity, π t r can only be a C* representation of

C^ (r, q) if one of the conditions of(b) is satisfied. In particular, there can only be
unitary representations of C^(r,q) if q is a root of unity.

(e) Qλ{r-\q-') = Qλ{r,q) = Qλ{-r, -q) and Qλ{r,q-') = Qλ,{r,q).

Proof. Obviously, Qλ (r, q) = 0 only if one of the factors in the expression of the last
theorem is equal to 0. This can only happen if r = ± qn for some n e Z. So in all the
other cases tr is faithful on Cf(r,q) for all / e Z . The claim now follows from
Theorem 2.8.
(b) and (c) are straightforward computations (see also [W-2, Corollary 3.5]). In
particular, it follows from (c) and (a) that Γ(r, q) is never finite if q is not a root of
unity. Hence (d) follows from this and Corollary 2.11.
(e) can be checked directly from the definition of Qλ.

6. Special Semisimple and Unitary Quotients of Cf(r,q)

In this section, we determine the structure of ntτ(Cf(qn, q) with neZ and q a root of
unity. The fact that the image is semisimple has already been shown for even n > 1
using solutions of the QYBE coming from quantum groups of type B (see Lemmas
5.2-5.4). The same proof can be extended to the general case using the solutions for
types C and D (which would cover the odd integers Φ — 1) and isomorphisms as
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defined in Proposition 3.2 which we will omit. Having the explicit formulas for the
Q/s available, it is also possible to check semisimplicity directly by Lemma 1.4
which, however, is somewhat messy and does not provide any insight.

To determine the explicit structure of πtr(Cf(qn, #)), we will compute Γ(r, q), as
defined before Lemma 4.2 and check whether it satisfies the conditions of Theo-
rem 4.4. This involves somewhat tedious computations. Some simplifications can be
made if one rewrites the formulas for Qλ(qn, q) as character formulas in root form,
thereby reversing the process in the proof of Theorem 5.5. This also explains why
one obtains the conditions for Γ(r,q) in terms of highest roots (see Theo-
rem 6.4). Our initial intention was, however, to classify all unitary braid
representations factoring through C^ (r, q). This and also some subtleties with the
root lattice and various isomorphisms between different cases are the reasons why
we left the presentation in the original way.

We first do the case r = q2 with q a primitive /th root of unity which is slightly
different. It nevertheless also shows the general pattern of our strategy for the other
cases. First observe that by Theorem 5.5, Qλ(q2,q) = χ(λ)(D), where D is an
orthogonal matrix with eigenvalues q~1,1 and q and χ{λ) is its character belonging to
the representation labelled by the Young diagram λ (see [Wy]). It follows from
WeyΓs character formulas that

β A (9 2 , ί ) = 0 if K + ̂ 4
and

m + l/2_q-m-l/2

β[».lM 9) = Q\mM\ g)= qll2_q-l/2 '

The following statements are almost immediate consequences from these
formulas:

(1) If / = 2 * + l is odd, Q[k](q\q) = 0 and if q = e2πi^ Q[m](q\q)
= sin((2m + l)π//)/sin(π//)>0form = l , 2 , . . . ^ - l .

(2) If l = 2k is even, Q[m](q\q)*0 for all m e N . If q = eni'\ one has Q[m](q\q)>0

for m<k and Qm(q2,q)= -Q[k-ί](q2,q)= -β [ k -i, i](# 2 >4)

Proposition 6.1. Let q be a primitive Ith root of unity and let r = q2. Then
(a) πtr(Cf(r, q)) is semisimple for all / e N . Let k be the largest integer ^//2. The
graph Γ(q2, q) is given by

where the edges are given by the Young lattice with the only exception that for I even
the diagrams [A: —1] and [A: —1,1] are not connected.
(b) πtΓ is a C* representation ofC^{q2,q) if and only ifq= ±e±2πi/ι.

Proof As already mentioned, the semisimplicity follows from Lemmas 5.2-5.4. In
the odd case (i. e. /is odd) also q2 is a primitive Ith root of unity. Hence all diagrams of
the form [m] or [m, 1 ] with m <k are / diagrams. Moreover, by (1) Qλ(q2, q) = 0 for
all diagrams λ which are adjacent to Γ(r, q). This shows the claim in the odd case by
Lemma 4.2.

The even case is slightly more complicated. Here q2 is a primitive kth root of
unity. The structure of Cf(q2, q) is determined by Lemma 4.1 for / = 1,2,... k — 1
with ρ/ = π [ / _ l ϊ l ] © ρ [ f ] for / > 1 . By the restriction rule (see Lemma 4.1) and
Proposition 2.2 the only possible representations which can appear in ρk are τι^\k)
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and πfk*\Λy As Q[k-2Λ2](q2,2)^=0, it follows from Theorem 4.4 and (2) that

Hence πiτ(Ck(q2, q)) is semisimple and its Hecke algebra part only consists of one
simple component which is isomorphic to πfk*\Λ]{Hk{q2)). This shows the claim for
/ = k. For / > k, just observe that there is no semisimple representation oίHk+ί (q2)
whose restriction to Hk(q2) would just consist of π^i?{tl] (see Proposition 2.2). •

The rest of our structure analysis follows this pattern, i.e. it consists of checking
for which λ9s Qλ(qn, q) or respectively Qλ(qn, q) are zero. The following lemmas will
reduce the number of different cases for Γ(qn,q).

Lemma 6.2. Let q be a root of unity and let r = qn, weZ. Using the isomorphisms of
Proposition 3.2, one can assume without restriction of generality
(a) q is a primitive 2Ith root of unity, /eN,
(b) r = qn with \n\<l and
(c) either both I and n are even with n>0 or l — n is odd.

Proof. Let q be a primitive /th root of unity with / odd and let ε(ή) = (— I ) " " 1 . Then,
by Proposition 3.2 (c),

Cf{q\q)^Cf{-q\ -q) = Cf(s(n)(-q)n, - i ) = C/((-i)
e(»>-, -q).

Observe that — q is a primitive 2/th root of unity. It is now easy to check that either

r = qε(n)n= _ j o r ε^ήn c a n be replaced by an integer of absolute value less than /
without changing the value of r.

If both / and n are even and n < 0, one has

Cf{q~\q)^Cf{-qι-\q)^Cf{qι-\ -q) = Cf{{-q)ι~\ -q)

with 0<l — n<l even. Hence one can assume n>0 in this case. By the same
manipulations one can reduce the case with both / and n odd to the case / odd and n
even. •

We will also need the following observations:
Let r = qn. Then the numerator of the factor of Qλ belonging to the box (ij) e λ is

equal to 0 if
(a) ^(«+d(i,J)) = 1 if^j^ i s a n off_diagonal box (i.e. if i+j),
(b) ^-2λ'j+2j-i = _χ o r ^π+2λi-2j+i = 1 \u=j, i.e. for diagonal boxes (JJ)eλ.

Lemma 6.3. (a) Let q be a primitive 21th root of unity and let neZ, \n\ < I. Let Nod be
the product of the numerators of the factors ofQλ(qn,q) belonging to off diagonal
boxes of λ. Then Nod is equal to 0 if

λ1+λ2 = l-n + 2 or λ

λί+λ2 = 2-n or λi-\-λ

Nod is not equal to 0 if

λί+λ2^l-n+l and

λ1+λ2^l-n and λ[+

for
for ,

for

for

n>2,

n>2,

n<-\.
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(b) Let Nd be the product of the numerators of the factors ofQλ(qn, q) belonging to
diagonal boxes of λ. Ifn is even and I is odd, Nd is equal to 0 if

Ifn is odd and I is even, Nd is equal to 0 //

λί=(2l-}-l-n)/2 or λί = (/+/i + l)/2 if n>2,

λ1=(l-n)/2 or λ[ = ( / + Λ + 1)/2 if n<-\,

Nd is never equal to 0 if both n and I are even. Ifn is even and I is odd, Nd is not equal
toO if

λίg(/+n-l)/2.

If n is odd and I is even, Nd is not equal to 0 if

λί^(2l-l-n)β and λ[^(l+n-\)β if n>2,

λ^i-l-rήβ and λ[=(l+n-t)β if « < - l .

Proof. The proof consists of checking when the conditions stated before this lemma
hold. In case (a), one observe that

)^d(i,j)^d(l,2) = λ1+λ2-2 for all (ij)eλ, iφj.

This is also true if λ= [m], i.e. it only consists of one row. One just notes that in this
case d(2,l) = m — 2 = d(l,m). The case with only one column goes similarly.

In case (b) one observes similarly that

- 2 λ ί +
and

Moreover, one also uses the fact that if n is even both n — 2λj + 2j— 1 and
n + 2λj — 2j+t are odd. But as /is even, any odd power of q can never be equal to
1 or - 1 . D

To determine the semisimple quotients of Cf(r,q) which factor over tr in
general, we need the following facts:

Recall that for n>2 the functions Qλ(qn,q) are characters of an orthogonal
(n + l)x(n + l) matrix D with eigenvalues {^±(2ί~1),/=l,2,...«/2} for n even and
{q±ι, i = 0, l,...(« + l)/2} for n odd (where q° = 1 appears twice). This was shown in
the first case for the odd dimensional orthogonal groups in Theorem 5.5. It can be
done in a similar fashion for the even dimensional orthogonal case. Also observe
that in both cases one has det (D) = 1. It follows from WeyPs character formulas that
(a) βA(?",?) = 0 i f λ ί + A ^ Λ + 2.
(b) If λ[ ̂  (n + 2)/2 let λ be the diagram which has the same number of boxes as λ in
all columns except the first one, which now contains n + \—λ[ boxes. By (a) Xis a
Young diagram if Qλ{qn,q)z¥θ. Then one has

We can now give an explicit description of the structure of πtτ(Cf(qn, q)) if q is a
root of unity and n is an integer by computing the corresponding graphs Γ(qn, q). An
example how to get from the graph to the algebra has already been given after
Theorem 4.4
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Theorem 6.4. Let q be a root of unity and let r = qn,neZ\{-l}. Then πtr(Cf(qn, q))
( = ntr{Cf( — q~n

iq))) is semisίmple for all / e N and Γ(qn,q) is a subgraph of the
Young lattice except in the case treated in Proposition 6.1 with I even. There are the

following cases left, which are not already covered by Corollary 5.6 and Proposition
6.1:
(a) If q is a primitive 2 Ith root of unity and 2<n<l — 2,

Γ(qn,q) = {λ,λ1+λ2^l-n-)rl and λ[ + ^ g « + l} u{[/-« + l, I""1]}.

(b) Ifn < — 1, even and I is odd,

2^-\-n and λ[ g

(c) Ifn<-1, odd and I is even,

and

By the previous lemmas all other cases of Γ(qn, q) with q a root of unity can be
reduced to either one of the cases listed above or to one of the cases in Corollary 5.6
(b) or Proposition 6.1.

In all these cases, π t r defines a unitary representation of B^ if q = eπi/ι.

Proof The cases r = 1, r = q and r = q2 have already been treated. By Lemma 6.2 one
can assume q to be a primitive 2/ ίh root of unity. As already mentioned at the
beginning of the section, ntτ(Cf(qn,q)) is semisimple for all / e N .

Let 2<n<l-2. Observe that λ[+λ'2<Ln + 2 and λ1+λ2^l-n + 2 imply in
particular λ[ ^{l+n-1)/2 and λ^l-{n +1)/2. Hence, by Lemma 6.2, Qλ(qn,q)ή=0
if λl+λ^n + 1 and λί+λ2^l-n + l. Moreover, if λ[+λ^=n + 2 or λ1+λ2

= l — n + 2, the numerator of Qλ(qn, q) is equal to 0. In this case, one checks that
h(i,j)<ί for all (ij)sλ except if λ= [l-n +1,1"'1]. So except for this special case
one has Qλ(qn,q) = 0 and by remark (b)β [ k _ I I + 1 > l n -i ] (^ I I ,^) = Q[k-n + 1](qn,q) is well-
defined and nonzero.

It follows from the considerations above that the only hook diagram λ with /— 1
boxes for which Qλ(qn, q) φO is λ = [l-n, I " " 1 ] . If λ is a diagram with less than n - 2
boxes in the first 2 columns and less than /—n + 2 boxes in the first 2 rows, it follows
again by Lemma 6.3 that Qλ(qn,q)φ0.

By Lemma 6.2 the only remaining cases (up to isomorphism) are n < — 1 even
and /odd, and n < — 1 odd and /even. One computes Γ(qn, q) as above using Lemma
6.3 (in these cases one need not worry about cancellations between numerator and
denominator of Qλ(qn,q)).

By Theorem 4.6 πtΓ is unitary if Qλ(r,q)/x^λ^ is positive and πλ is a unitary
representation of H{M(q2) for all λeΓ(r,q). Observe that for q = eπίJι one has the
following identities

[n + d(ij)]q = sin {{n + d(ij)) π/7)

[h(ij)]q sin(λ(U)π//)
and

It is now easy to check for 2<n<l — 2 that for each λeΓ(qn,q) the factor
corresponding to a box (zj) in βΛ(^w, q) is positive. Similarly one checks in case (c)
that each factor is negative, and, in particular, also x = Q[i](qn, q). Hence also
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Qλ(qn, q)/xlλl > 0 for each λ e Γ(qn, q). For (b), observe that it is enough to check the
statement for diagrams with the additional assumption λ^^{ — 1 — ή)/2 by
Corollary 5.6 (e) and remark (b). This is done as in case (c).

As all diagrams in Γ(r,q) are eigher / diagrams or (kj) diagrams, the
corresponding representations of the Hecke algebras are unitary by [W-1,
Proposition 2.10]. Hence also the second condition of Theorem 4.6 is satisfied. •

The graphs Γ(qn,q) can be interpreted as truncated Weyl chambers. As
examples, we sketch the graphs Γ(qn,q) for n = 3 (related to 0(4))

[01 [1] [2] [3] [I-3] [I-2]

Fig. 8

and for n = — 5 (with [r, s] indicating the number of boxes in the first and second
column of the diagrams) (related to Sp(4)).

Γ3.31

(111

[2.2]

[2,1]

13.2)

[3,1]

tt.3]

[4.2]

[0] [1] [2] [3]

Fig. 9

7. New Examples of Subfactors

We can now apply the results above to construct more examples of irreducible
subfactors using the same method as in [W-1 ]. We fix m e N and r,qeC such that π t r

is a unitary representation of C^{r,q). Let moreover CmJ- and Cmo0 be the
subalgebras of C^ generated by gm, gm+1,... gf_x and by gm, gm+x,... respectively.
Then one defines for / > m + 1 the C* algebras

We denote by ε^ and εBf the trace preserving conditional expectations onto Af and
Bf respectively, by Proposition 3.2 Af+1 is the linear span of elements of the form
ai πtr(x)α2 with ai > a2 G ^ / a n d X e {^/5 e / ? 1}. Using this and the Markov property
of tr (Lemma 3.4(d)), one checks easily (see [W-1], Proposition 3.2) that

εAf+ιεBf = εAf (' 2)
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(7.2) is usually referred to as the "commuting square condition." Recall also that for
0^J</the map vdf\gi\-^gf+d-.i, i = d+ί9 d+29...f—l extends to an inner
automorphism of C^ (r, q) (see Sect. 1 or [Bi]). In particular, we have (with vf = v0>/)

vf(Af) = Bf_m and therefore Af^Bf_m. (7.3)

Observe that if Γ(r, q) is a finite graph with depth b (i.e. any vertex in Γ(r, q) can be
connected to [0] by at most b edges of Γ(r, #)), πtr(Cf(r, q)) is isomorphic to the basic
construction for πiτ(Cf_2(r,q))(=πtτ(Cf_ί(r,q)) for f^b + 1. Hence the Bratteli
diagram becomes periodic with inclusion matrices G and G*. It is not hard to see that
G is the matrix belonging to the inclusion diagram given by Γ(r, q) with the diagrams
with an even number of boxes in one line and the ones with an odd number in the
other line. More generally, we say that the pair (Af)cz(Bf) is periodic with
periodicity k if there exists a n / o e N such that for all / ^ / 0 the inclusion diagram

A, <= Bf

n n

Af + i c Uf + l

is the same as the one for Af+k, Af + 1+k, Bf+k and Bf+1+k (with a suitable bijection
between the simple components of Af and Af+k, Bf and Bf+k, etc.).

It is well-known that under our periodicity assumptions there exists at most one
normalized trace tr on \J Bf, which, therefore, has to be a factor trace (i.e. the weak

limit of π t r ί (J Bf j is a factor). So if Γ(r, q) is finite, one obtains a pair of hyper-

fϊnite IL factors

Theorem 7.1. Let r,qeCbe such that π t r is a unitary representation ofC^ (r, q). With
above notation one has for the subfactor AczB

and

In particular, ifm = 1, A' n B — C, /. e. the centralίzer (or relative commutant) is trivial
The index values are listed in Table Ifor the various cases. Moreover, one obtains for
each λeΓ(r,q) an irreducible subf actor with index Qχ(r,q)2.

Proof. It follows from the discussion above that the algebras Af and Bf satisfy the
hypotheses for [W-l, Theorems 1.5 and 1.6]. Observe that the weight vector ΐf of tr
for Bf is equal to (Qλ(r, q)lxf)λerf(.r,q) a n d that the weight vector sf for Af is equal to
Γr_m by (7.3). Let | | . || denote the usual L2 norm. By [W-l], Theorem 1.5 one has

for f>d+m.

Hence if /> d+2m, one has

[B:A]2J7f-^2 HΓ/-2mll2_lk7-2mll
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But as /— 2m > d, Γf_2m(r> 4) ~ Γf(r, q). Hence it follows from Theorem 4.4 that the
last quotient is equal to x 4 m which shows the first claim.

It follows from the defining relations that π t r(Cm(r,q))czA f nB. On the other
hand, choose fe N such that / is even and / > d and choose a minimal projection
peBf [ 0 ]. Now observe that the Bratteli diagram for

pBfpc:pBf + 1pczpBf+2pc:... apBf + mp

is exactly the same as the one for

B0czBίczB2cz...czBm.

Hence dim/λ#/ + m/? = diml?m. Observe that the inner automorphism vf + m maps
Bf c Bf+w onto Af+m. Hence one also has dim vf+m (p) Bf+m vf+m (p) = dim Bm. But
then it follows from [W-l], Theorem 1.6 that

dim A' n B ̂  dim Bm,

which shows the second claim.
Let λeΓ{r,q). Choosing m appropriately (e.g. m = |/L|), there exists a pair of

factors AaB such that A' r\B — Bm and Bm contains a simple component labelled
by λ. Let p be a minimal projection in that component. As p is minimal one has
A'pnBp = C and by [W-l], Theorem 1.5(iii)

fB:A]=^^x2™ = Ql(r,q). D

To obtain finer invariants besides index and centralizer, one also considers the
"higher centralizers" or "higher relative commutants" defined in the following
way:

Let A c B be 1^ factors with finite index. Then one defines a sequence B(i) of Πj
factors inductively by B{0) = A,B{1) = B and for / > 1, B{i) is the basic construction for
βd-2) ^βd-i) wifa generating projection ei_1. Here one uses the fact that B(i) is also
a finite factor (see [Jo-1, Sect. 3]), hence it has a unique normalized trace which
extends tr and is also denoted by tr. If SBM is the conditional expectation onto B(i\
one also has

]. (7.4)

Then the higher centralizers (or higher relative commutants) Zt are defined by

A subfactor is said to be of finite depth if the dimension of the centers of the Z f's is
uniformly bounded. It is well-known that in this case there exists an i0 such that Zt+x

is isomorphic to Jones' basic construction for Zi_<ί<^-Zi for all i>i0 (it can for
instance be deduced from [W-l, Corollary 1.2]). This definition is due to Ocneanu
who also announced that for such subfactors the higher relative commutants of the
factor and the subfactor completely describe the original subfactor (see [O] or [Po]
for a more precise statement). This has been proven recently by Popa in [Po].

Due to the fact that the basic construction already occurs naturally within the
algebras Cf it is not difficult to compute the higher relative commutants for our
examples.
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Corollary 7.2. Let A^B be a pair of factors constructed in the previous theorem with
m = ί. Then

In particular, all our constructed subfactors are of finite depth.

Proof As all g/s are conjugate to each other, the shift s h ^ :gj\-^gj+i_1 extends
to a trace preserving injective homomorphism from C^ into itself. This can be
extended to an isomorphism s h ^ mapping A onto π t r(C ί + l o o ( r , #)" and B onto
πtr(Q,oo(r>#))" % Theorem 7.1, it is enough to show that s h ^ can be extended
to an isomorphism from B{i) onto πir(C^).

Let i = 2 and let ex be the projection obtained from the basic construction for
AdB. It follows from the periodicity and [W-l], Theorem 1.5 (ii) that for / large
enough the algebra generated by Bf and ex is isomorphic to the basic construction
for AfczBf.

But on the other hand, by the fmiteness of the graph Γ(r,q) the algebra
generated by n^e^ and Bf is also isomorphic to πtτ(Cf(r, q)) for / big enough (just
use Theorem 4.4 and the automorphism ηf+1). By Theorem 4.4, the isomorphism
can be realized by mapping ex to (l/x)e1 and it is easy to check that it is trace
preserving by Lemma 3.4 (d) and the Markov property (see [Jo-1, Proposition
3.1.7]). As this is true for all fe N which are large enough the isomorphism can be
extended to the corresponding von Neumann algebras.

The general case follows from this by induction on i. Indeed, it is enough to
apply shx to the case / — 1 and then to repeat the step above for B{i ~2) c B(i" *} instead

D

Table 1

r=qn

q = eπi'1

n

0

1

2

n>2

n<-\
n even

n<-\
n odd

i

Arbitrary

Arbitrary

/ e N

/eN

/eN
/odd

/eN
/ even

Γ(q\q)

[0] [1]

see Prop. 6.1

u{[/-n + Γ, I"'1]}

μ 1 !!,;'„"?£)

positivity

arbitrary

arbitrary

eπi/l

eπiJι

eπi/l

index

1

4

sin23π//
sin2 π/l

fύnnπjl V
V sin π/l + 7

/sin|n|π// V
V sinπ// )

ίύn\n\πll V
V sinπ// )
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In Table 1 we give a survey of unitarizable representations of C^. More
precisely, πtΓ is unitarizable if q has the value indicated in the column
"positive". The last column lists the index of the corresponding subfactor

Concluding Remarks

1. There is a general procedure to construct link invariants and subfactors for each
irreducible representation of a classical Lie group (see also [T and Re]).
(a) Starting with a representation ρ of a Lie group G, consider the centralizers of
tensor products of its q deformation. This will always contain representations of the
braid groups.
(b) Let D be the q power of the diagonal matrix (we assume the Cartan algebra to be
in diagonal form) corresponding to half the sum of all the positive roots of the Lie
algebra of G with respect to a suitably normalized invariant bilinear form (see e.g.
the matrix D defined above (5.6) or, in general, [Re or Pi]). The corresponding
product "state" defines a trace on the centralizer algebras with Markov property,
1. e. a trace which can be used to define a link invariant by Jones' approach (see [Jo-2]
or, in a slightly more general form [W-3]).
(c) Determine the image of the centralizer algebras under the representation
coming from the GNS construction and determine when these representations are
unitarizable.
(d) If, in the unitary case, the Markov trace satisfies an additional condition, the so-
called commuting square condition (7.2), one obtains the subfactor
πtr(2?2,oo)'/<=πtr(i?oo)" Its index is given by the square of the q dimension of the
representation ρ.

It should be notized that in general the centralizer algebra is larger than the
algebra generated by the representation of the braid group (see also remarks about
SO(2k) in 3 and 4). Similarly as one can obtain from a given representation ρ of a
group new representations by taking tensor products, one can, at least in principle,
derive the corresponding link invariants and braid representations via cabling (see
[M-2] and [W-3]). The subfactor corresponding to the / t h tensor power of ρ is more
conveniently obtained by considering πtτ(Bf+lt00)"^πtI(Bao)". Although it seems
very likely, it is not clear at the moment whether this subfactor is isomorphic to the
one obtained from the cabling procedure.

2. We list in the table below the cases for which the program described in 1. has been
carried out. We remark that most of the objects in that table were originally
obtained by different methods (e.g. Jones' subfactors and his polynomial, Hecke
algebra subfactors, Kauffman polynomial). The corresponding braid representa-
tions can also be described in terms of loop groups (see remarks below). For a more
direct approach see [Ko]. It would be interesting to find out whether one can also
construct subfactors from Reshetikhin's R matrices corresponding to spin repre-
sentations (see [Re]). Finally observe that we have also computed the indices of
subfactors corresponding to irreducible representations which occur in some tensor
power of the standard representation. It also seems likely that one can compute their
higher relative commutants by computing branching coefficients similar as in [GW]
(see also Remark 6).
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Table 2
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Lie group

SU(2)

SU(k)

O(k), Sp(k)

Tensor products

Braid representation

Temperley-Lieb algebras

Hecke algebras

Cabled representations

Link invariant Subfactors

Jones polynomial Jones' subfactors

FYHLMO polynomialSee [W-l]

Kauffman polynomialSee Theorem 7.1

Cabled invariants Subfactors
π t r(£/+i,J ' 'cπ t r (£ 0 0 ) ' f

3. Similarly as for our algebras, one can also obtain the defining relations of the
Hecke algebras from skein relations, namely from those of the Homfly polynomial
in [FYHLMO]. The proof is essentially the same as the one for Lemma 3.1 except
that one need not even worry about the subtleties coming from regular isotopy (i.e.
one can define the trace directly from the link invariant). Somewhat amazingly, the
classification of all unitary representations of the inifinite braid group which factor
through these algebras, leads to the truncated Weyl chambers occurring for most of
the classical loop groups (see [W-l] and below) and to structure coefficients as the
fusion rules in the corresponding Wess-Zumino-Witten models (see [GW] and 4).

The graphs Γ(r, q) which describe the unitary quotients of our algebras (see
Theorem 6.4) correspond to truncated Weyl chambers of the full orthogonal, the
odd dimensional orthogonal (mod highest root of the symplectic) and the
symplectic groups. More precisely, the vertices are in 1-1 correspondence with the
highest weights in a Weyl chamber, which is truncated by a hyperplane determined
by the highest root of the same groop (except case (b); see above). Similar
restrictions were obtained in [JMO] by constructing explicit solutions of the star
triangle relation. This method is similar, but more general than our construction of
representations of Hecke algebras (see also [Pa]). Similar results were also described
in [AGS].

4. Let us briefly sketch how one can obtain the coefficients for the fusion rules of
WZW models in this context see [GW]. The method consists of decomposing
products of minimal idempotents in π(Cf(r, q)) and π ( C / + l m ( r , q)) into a sum of
minimal idempotents of π(Cm(r,q)) (where π is a unitary representation of
Coo (/>#))• Such a decomposition is, in general, not unique, but the number of
idempotents which are in a given simple component of π(Cm(r, q)) does not depend
on the chosen decomposition. These coefficients have been computed in [GW] for
type A (i.e. for braid representations into the Hecke algebras) in terms of the
classical Littlewood-Richardson coefficients and an affine reflection group, coming
from the Weyl group and the reflection about a hyperplane given by the highest root
of SU(k). The same formula can be obtained for the coefficients of fusion rules (see
e.g. [Kc, ex. 13.34,35]). One would expect a similar result for the representations
constructed here.

5. If q tends to 1, the characteristic graph becomes in the limit a graph describing the
fixed point algebra of a product type action of an irreducible representation of a
symplectic or full orthogonal group which, for the standard representations, is
essentially just the Weyl chamber without the weights belonging to spin repre-
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sentations. The corresponding subfactors have been studied by Antony
Wassermann in [Wa] and unpublished work. In this paper, we do not obtain in the
classical limit the subfactors arising from product type actions of the special even
dimensional orthogonal group. For this, one presumably would have to consider a q
deformation of the centralizer algebra of SO(2n), i.e. one would have to introduce
additional generators corresponding to a q deformation of the Pfaffian. This might
also clarify the somewhat mysterious fact that the Coxeter graphs D2n (but not
D2n+1) occur in Ocneanu's list of subfactors with index less than 4 (which are not
among the examples constructed here).

6. Finally let us also mention an analogy between Jones' basic construction and
taking tensor products of representations of Lie groups. This is actually most
explicitly seen for Antony Wassermann's examples coming from product type
actions of symplectic and orthogonal groups. It follows from his results (see [Wa])
that the / t h higher relative commutant of such a subfactor is isomorphic to the
centralizer of the /-fold tensor product of the corresponding representation (if it is
self conjugate). So the coefficients obtained by the approach in [GW] could be
considered as structure constants for this analogy of tensor products for subfactors
with q a root of unity.

It can be shown that for the subfactors coming from the Hecke algebras
(see [W-l]), the higher relative commutants do not reproduce the generating
algebras. In the limiting case q = 1 this follows from the fact that representations of
Lie algebras of type Ak9 k> 1 are not self-conjugate (see [Wa]). The coefficients in
[GW] can only be obtained if one considers the centralizer algebras of the shifted
subfactors, obtained by iterating the map sh: B^-^B^ given by σt\-^σi+1. It is, in
this context, possible to define tensor products B®n = B®AB®A...®AB (notation
as in Theorem 7.2) with a multiplicative structure such that A czB®n is isomorphic
to πtr(Bn+1 tO0)" <= πtrC#oo)" a n d where the braid group appears naturally in the com-
mutant of A in this extension. This new extension, which can be thought of as an
inverse construction of the shift, will be discussed somewhere else.
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