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Abstract. The spatial Fourier transforms of local operators are analysed. It
is shown that the Fourier components for non-zero momentum form weakly
square integrable functions in all states of finite energy. Moreover, there hold
uniform bounds for the respective L2-norms. The relevance of this result is
illustrated in collision theory.

1. Introduction

The interplay between locality and the spectrum condition is one of the basic
ingredients in many investigations of quantum field theory. The link between
these structures is provided by harmonic (Fourier) analysis. It is the aim of the
present paper to exhibit regularity properties of the spatial Fourier transforms of
local operators which have escaped observation so far. These regularity conditions
greatly simplify the analysis, notably in collision theory.

The setting and the notation used in this paper are standard. Let Jf7 be a
Hubert space, let 21 cz M(βtf) be a *-algebra of local operators, and let U be a
continuous unitary representation of the space-time translations x e R s + 1 which
acts on Jf7 and satisfies the relativistic spectrum condition [1]. We recall that the
condition of locality implies that for each operator A e 91 there exists some finite
distance d > 0 such that

[A(x),A*]=0 if \x\>\xo\+d. (1)

Here x, xo denote the space and time part of the translation x with respect to a
fixed coordinate system and we have introduced the notation

B(x) = U(x)BU(x)~1 for B e Λ{Jf). (2)

We write B(x) if the time component xo of x in relation (2) is zero, and similarly
B(xo) if x = 0.
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Within this general setting we want to study the properties of the Fourier
transforms

= (2π)" s / 2 / dsx e*xA(x), A E 2ί, (3)

which are defined in the sense of operator valued distributions. We mention as
an aside that the support of i4(p) coincides with 1RS if the local operator A e 21
is not an element of the center of 21. This is an immediate consequence of the
locality condition (1) and the Paley-Wiener theorem.

We will see that the Fourier transforms Ά(\>) enjoy certain specific regularity
properties in states of finite energy. Let P(E), E > 0 be the spectral projection of
the generator H of the time translations (the Hamiltonian) corresponding to the
spectrum in the interval [0, E] and let ω be any normal state on gβffl) whose
support projection is contained in P(E). It will turn out that for any δ > 0 the
restriction of ω(^4(p)) to the domain {p : |p| > δ} is represented by some square
integrable function. Moreover, the L2-norm of this function is, for fixed E and δ,
uniformly bounded in ω. We have also control on the nature of the singularities
of these functions at p = 0. They exhibit an at most power like singularity whose
strength depends on the dimension 5 of space. These facts will be established in
Sect. 2.

We emphasize that we depend in our analysis neither on the existence of
a vacuum state nor on the existence of Lorentz transformations. In fact, our
analysis can be extended to arbitrary dynamical systems, provided the spectrum
of U lies in some positive cone and the locality condition (1) is replaced by some
sufficiently strong form of asymptotic abelianess. The precise requirements will
become clear in context.

Besides adding information to the general harmonic analysis of automorphism
groups [2] our results are useful in applications. In Sect. 3 we will indicate how
the a priori information about the Fourier transforms Ά(j>) simplifies the analysis
of asymptotic fields and observables in collision theory. In a forthcoming paper
[3] the present methods will be applied in an investigation of the asymptotic
vacuum structure in quantum field theory.

2. Analysis

The essential ingredient in our analysis is the following lemma based on "positivity
of the metric." Similar ideas have been used in [4], but the present result seems
to be new.

Lemma 2.1. Let B e &(&), let n e N, and let Pn be the orthogonal projection
onto the kernel of Bn. Then

\\PnB*BPn\\ί(n-l)'\\[B9B*]\\.

Proof. The proof is given by induction in n. For n = 1 the statement is trivial.
The step from (n — 1) to n is accomplished as follows: let ω be any state on
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ΰ8(3tiF) which is induced by some vector in the subspace Pn3f. (We assume that
pn φ 0, otherwise the statement is trivial.) Setting Q = B*B we have

ω(Q • Q) = ω(B* [B, B*]B) + ω(B*QB)

<ω(Q)-\\[B,B*]\\+ω(B*QB)

= ω(Q) • || [B, B*] || + ω(B*P I _ 1 βP B _iB),

where in the last step we made use of the fact that the positive functional
ω(B*.B) is induced by some vector in BPnffl c Pn_{j^. It thus follows from the
induction hypothesis that

ω(QQ)<(n-l)\\[B,B*]\\ω(Q).

On the other hand we have ω(Q Q) > ω(Q)2 since ω is a state, and consequently

The statement now follows by taking the supremum over all states ω which are
induced by vectors in Pnffl. D

There exist several variants of this lemma. For later use we mention

Lemma 2.2. Let B G ffl(#f), let H G N , and let Pn be the orthogonal projection onto
the intersection of the kernels of the n-fold products B(xι)...B(xn) for arbitrary
xi, ..., xn G 1RΛ There then holds for each compact subset K c R s the estimate

PnJdsx(B*B)(x)Pn < (n-l) supjdsx\\[B(x), B*]Ψ\\,
K AK

(4)

where AK = {x — y : x, y G K}, and the supremum is to be taken with respect to
all unit vectors Ψ £ Pn-ι3tf.

The proof of this statement is given in the Appendix. The result is of interest
if the norm of the commutator [B(x), B*] decreases sufficiently rapidly for large
x. One can then replace the region AK in (4) by R 5 and arrives at bounds for
the integral appearing on the left-hand side of this relation which are uniform
inK.

In the next step we construct from any given local operator A € 21 certain
specific operators to which we can apply Lemma 2.1. Let δ > 0 and let e G ΊR.S

be some unit vector. Picking any / G ̂ ( R ) whose Fourier transform f(po) has
support in {po : —oo < po ̂  <V2} and any g G ̂ (IRS) whose Fourier transform
has support in {p : p e > δ}, we define

Aδ= Jdxf(xo)g(x)Λ(x). (5)

In the subsequent lemma we establish properties of these operators which are a
consequence of the spectrum condition and locality.

Lemma 2.3. Let As be the operator defined in relation (5). Then:

i) (Aδ)"P(E)=0
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i / n e N satisfies n > 4E/δ. Here P(E), E > 0 are the spectral projections of the
Hamiltonian corresponding to the spectrum in [0, E].

ϋ) IIM^^II^^ail/sllill/llillgllMl^ll2.

Here Ωs denotes the volume of the unit ball in R s , || | |p denotes the LP-norm of the
respective function, and fs is the function defined by fs{xo) = (|xo|5 + (d/2)s) 'f(xo),
where d is the distance appearing in the locality condition (1) for the operator A.

Proof i) Let Δ c R s + 1 be any Borel set. We denote by jf(Δ) the spectral
subspace of Jf corresponding to the joint spectrum of the generators of U in
A. Because of the relativistic spectrum condition we have P(E)jf = 34?({p : 0 <
|p| < po < E}). On the other hand, the space-time Fourier transform of As has by
construction support in {k : ko < δ/2,k-e > δ}. Hence (Aδ)

nP(E)j^ c j(f(Δn)9

where
Δ n = {p + k : 0 < | p | < p 0 < E, ko < nδ/29 k-e>nδ}.

The condition on n in the lemma implies that Δn is disjoint from the closed
forward lightcone, and applying the relativistic spectrum condition a second time
we conclude that jf(Δn) = {0}.

ii) Let Φ, Ψ e J^ be arbitrary unit vectors. It follows from the definition of
the operators As and the locality condition (1) that

\(Φ, [Al As]Ψ)\

< Jdxjdy |/(χo)| \f(yo)\ 2-1(|g(x)|2 + |g(y)|2) |(Φ, [A*(x)9 A(y)]Ψ)\

< 2ΩS llgll̂ MH2 Jdxojdyo\f(xo)\ \f(yo)\(\xo -yo\2 + ̂ 2 ) s / 2

Making use of the fact that

(|xo - yo\2 + dψs < 42~ι(\xo\s + \yo\
s + 2(d/2)s)

the bound given in the lemma follows. D

Now let δ > 0, let e € R s be some unit vector, let g e ^ ( R s ) be any test
function whose Fourier transform has support in {p : p e > δ}, and let A e 91
be some local operator. We will study the continuity properties of the map
g -> P(E)A(g)P(E), where A(g) = f dsxg(x)A(x). To this end we choose test

functions f± e 5^(R) whose Fourier transforms f~(po) vanish for +po > δ/2
and add up to 1 for \po\ < E. A for our purposes convenient choice is

/±(xo) = ±(»xό)"1 (h(δxo/2) - e+2iEx°h(Ex0)), (6)

where h € <Ŝ (IR) is a fixed real testfunction such that /i(0) = 1 and the Fourier
transform of h has support in [—1,1]. We will make use of the facts that
/+* = / - and that

Jdxo\xo\
s\Γ(xo)\ < ((2/δ)s + (l/EY) • ίdxo\

Jdxo\Γ(xo)\ < 2 • Jdxo\h(xo)\ + \\n(2E/δ)\ • J
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These bounds can be derived from (6) by a straightforward computation. One
could proceed further and determine, for given dimension s, explicit numerical
values for the integrals involving h by choosing suitable functions, but this is not
necessary here.

With the help of the test functions f± we construct the operators

A(x). (8)

The operator Aj is of the type considered in Lemma 2.3. Since / + * = /~ and
since the Fourier transform of g(x)* has support in {p : p (—e) > δ}9 the same
is true for A^ . Moreover, since the Fourier transform of (f+ +/~) is equal to 1
for \po\ < £, we have

P (E)A(g)P (E) = P (E) μ + + AJ)P (E), (9)

and consequently

\\P(E)A(g)P(E)\\ < \\AfP(E)\\ + \\AJP(E)\\. (10)

From the first part of Lemma 2.3 we see that Lemma 2.1 can be applied to the
expressions appearing on the right-hand side of relation (10), giving

||P(£)Λ(g)P(£)|| < (4E/δ)V2(\\[A+, Λ+*]||1/2 + \\[AJ*, AJ]\\1'2)

< {As+2Ωs{E/δ)\\fTh\\ΓhΫ'2\\gh\\A\\. (11)

In the latter inequality we used the second part of Lemma 2.3. Making use of the
bounds on / " given in (7) and of the facts that \\P(E)A(g)P(E)\\ = 0 if δ > IE
and \nx < λ~xxλ if x > 0, λ > 0 we obtain for any 0 < ε < 1,

\\P(E)A(g)P(E)\\ < Cs(δ-s+ds)1/2-ε-ι(E/δy+V2-\\g\\2\\A\\. (12)

Notation. Here and in the subsequent analysis Cs denotes some numerical con-
stant which is independent of all quantities in the respective formulas, but which
depends on the dimension s of space.

Up to this point we made use of the assumption that the Fourier transform
of g has support in some half space {p : p e > δ}. Now let g be any test
function whose Fourier transform has support in {p : |p| > δ}. We then find
by a standard partition-of-unity argument test functions g, such that

i

11 gill 2 < II gib, and the Fourier transform of each gt has support in some half space
{p : p βj- > (5/2}. The maximal number of functions gi needed in this partition
depends only on the dimension 5 of space. From this we see that the bound (12)
holds for arbitrary test functions g whose Fourier transforms vanish in the ball
{p:|p|<<5}

Finally, we decompose g into a sum of test functions whose Fourier trans-
forms have support in shrinking concentric shells about the origin and apply
relation (12) to each individual term. For the resulting sum we then find by
a straightforward application of the Cauchy-Schwarz inequality upper bounds
leading to our main technical result:
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Proposition 2.4. Let A be any local operator satisfying condition (I), let P(E) be
the spectral projections of the Hamiltonian corresponding to the spectrum in [0, E],
and let g G ^ ( R 5 ) be any test function whose Fourier transform vanishes at the
origin. Then

α 1/2

for any 0 < ε < 1.

The properties of the Fourier transforms of local operators mentioned in the
introduction are a simple consequence of this result. This is shown in

Theorem 2.5. Let φ be any normal linear functional on &(£F) whose right and
left support projection are contained in P(E), let A be any local operator, and let
δ > 0. Then the restriction of the distribution φ(Ά{#)) to the domain {p : |p| > δ}
is represented by a square-integrable function. In fact, one has for any 0 < ε < 1

dsp}p\s+ι+ί\φ(A(p))\Z < Cie-Wil + {Ed)s)\\ψ\\λ\\A\\ι.

Proof Let L2, 0 < ε < 1 be the Hubert space of (classes of) functions h on 1RS

for which

2<oo.

It follows from standard arguments that the subspace of test functions in
which vanish at p = 0 is dense in each L2. Since

\φ(A(g))\<\\φ\\'\\P(E)A(g)P(E)\\

and since the distribution φ(A(p)) has support in the ball {p : |p| < IE) as a
consequence of the spectrum condition we infer from the preceding proposition
that

\φ(A(g))\2 < Csε-3E1+ε (1 + (Ed)s) | |g | | | β | |<p| | 2M|| 2 .

The statement now follows from Riesz' theorem. D

It is evident that there holds a similar statement for functionals φ which are
in the domain of sufficiently large powers of H under simultaneous left and right
multiplication. Moreover, the assumption that A is local can be replaced by the
requirement that A is quasi-local of sufficiently large order [5, Sect. 2]. One may
even relax the condition that A is bounded and replace it by the assumption that
A satisfies energy bounds of the form ||AP(E)|| < oo, ||^4*P(E)||| < oo. Since these
generalizations are straightforward we refrain from giving details.

So far we have treated A(g) effectively as a bilinear form, and our estimates
led us to uniform bounds on this form. If A(XQ) is differentiate with respect to
the time translations x0 we can proceed further and give bounds on A(g) in the
operator sense. Denoting the derivative of A(x$) at xo = 0 by A we have
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Theorem 2.6. Let A be any local operator such that XQ —> A(xo) is strongly differ-
entiable, let g E y(lR s) be any test function whose Fourier transform vanishes at
the origin, and let λ > 0. Then

1/2

for any 0 < ε < 1, and the same bound holds for ||(1 + λH)~ι~εA{g)\\.

Proof Making use of the spectral theorem for H it follows from Proposition 2.4
that

||(1 + λHΓ{1+ε)/2A(g) (1 + λHΓ{1+ε)/2\\

and the same inequality holds if A is replaced by A, because A is a local operator
with the same localization properties as A, On the basis of these estimates and
the fact that [(1 +λH), A(g)] = iλλ(g) we conclude that the norm of the function

-z-l-εz e C -> (1 + λH)zA(g) (1 + λH)

is bounded from above by the expression given on the right-hand side of the
inequality in the theorem if Rez = — (1 + ε)/2 or Rez = (1 — ε)/2, respectively.
The first half of the statement now follows from the three line theorem, cp.
[6]. The second half is a consequence of the fact that ||(1 + λH)~1~εA(g)\\ =
M*(g*) (1 +λH)~1~ε\\ and that A* has the same differentiability and localization
properties as A. D

It is an immediate consequence of this theorem that A(g) can be defined
as a closable unbounded operator for all functions g for which the L2-norm
given in the theorem is finite. Moreover, there hold energy bounds for A(g)
which are almost linear in H. Again, there exist analogous results for quasi-local,
respectively unbounded operators A.

As can be seen in free field theory, our general results on the properties
of the Fourier transforms 4̂(p) are about optimal for non-zero momentum p.
Yet our bounds on the behaviour of yϊ(p) at p = 0 seem to be too conserva-
tive. The origin for these weaker results is our crude estimate of the integrals
f dsx\(Φ, [A*(xo, x), ;4]*F)| in Lemma 2.3. Making only use of locality, we gave
an upper bound for these integrals which increases like |xols for large |xol If this
bound would be saturated it would mean that supess{|(Φ, [A*(XQ, X), A]Ψ)\ : x e
R s } does not tend to 0 at asymptotic times *o On the other hand one expects
that this expression decreases (disregarding theories of massless particles in two
space-time dimensions) like an inverse power of |xol because of dispersive effects.
With such an input one can establish stronger results which are relevant for a
discussion of the asymptotic vacuum structure of states in quantum field theory
[3].



638 D. Buchholz

3. Applications

In order to illustrate the utility of our general results for the structural analysis
in quantum field theory we briefly reconsider here the construction of asymptotic
fields and observables in collision theory.

According to the basic ideas of Lehmann, Symanzik and Zimmermann [7]
one approaches the construction of asymptotic fields for a given particle type by
averaging suitable local (Bose or Fermi) operators A with solutions of the Klein-
Gordon equation, respectively of the wave equation. The resulting operators are
of the form

(13)= / dsxg(x0, x)A(xo, x)

where

g(x 0 , x) = (2π)" 5 / 2 J dsp g{γ>)e~iExQ+ivx (14)

Here E = (|p|2 + m2)1/2 and m > 0 is the mass of the respective particle. One
then argues that the operators At(g) converge weakly in the limit of asymptotic
times t to the desired asymptotic fields on some dense set of vectors. By taking
suitable time averages of At(g) one can also achieve strong convergence.

In the case of Bosons the actual justification of this method is plagued by
domain problems due to the fact that the asymptotic fields are unbounded op-
erators. In the existing arguments these difficulties are handled in a fairly involved
manner, cp. [4, Sect. 15] and [8]. Here the present results lead to considerable
simplifications.

It follows from Theorem 2.6 that for any 0 < ε < 1 the norms \\At(g) (1 -f
XH)-l~&\\ and \\At(g)*(l+λH)-ι-ε\\ stay bounded in the limit of asymptotic times
ί, provided the operator A and the initial wave function g(xo, x) |Xo=o comply
with the premises of the theorem. Hence the sequence of operators At(g) has limit
points at asymptotic times t which are closable operators having the dens
of vectors (1 + λH)~ι~εJί? in their respective domain. This a priori information
greatly simplifies the analysis, notably in the case of massless particles [8].

In a somewhat different approach to collision theory which seems to be
suitable for the discussion of particles as well as infraparticles, cf. [9] and
references quoted there, Araki and Haag [5] have studied the timelike asymptotic
behaviour of almost local observables which can be interpreted as detectors.
A typical example of such an observable is C = B B, where B is any almost
local operator whose space-time Fourier transform has compact support in the
complement of the closed forward lightcone. The operator B thus annihilate
vacuum state.

Araki and Haag proved that in theories of massive particles the spatial
averages

= ίdsxh{.C(t;h)= / dsxh(x/xo)C(xo,x) (15)

of the operators C, where h is any essentially bounded function on R s , converge
in the sense of bilinear forms at asymptotic times t to the asymptotic momentum
space densities of the respective particles. These operators can therefore be used
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to determine directly the collision cross sections without appeal to the scattering
matrix.

As in the case of asymptotic fields the asymptotic behaviour of the operators
C(ί; h) can be controlled on cleverly chosen domains of collision states [5]. In the
presence of interaction these domains are different, however, for large positive
and negative times t and therefore do not include all states of physical interest.

The present results show that the situation is actually much better than one
might infer from the discussion in [5]. If one restricts attention to the sufficiently
rich set of observables of the form C = B*B, where B has the properties stated
above, it follows from Lemma 2.2 that for any E > 0

| |C(ί ;Λ)P(£) | |^const ||Λ||oo (16)

uniformly in t. For the proof of this assertion we decompose B into a finite sum
of almost local operators Bi whose space-time Fourier transforms have support in
compact and convex subsets of the complement of the closed forward lightcone.
There then exists a number n such that 5, (xi)... Bi(xn)P(E) = 0 for all operators
Bi and all xi, . . ., xn G 3RS. We therefore obtain from Lemma 2.2 for any compact
subset K c= R s the bound

\\P(E) J dsx (B*Bd (x)P(E) || < (n - 1) J dsx || [ΰ,(x), B*] ||, (17)
K

where the integral on the right-hand side exists since the operators Bi are almost
local. Since B = ΣfBi and consequently C = B*B < 2m Σ^B*BU we conclude
that for any E > 0,

•/
\\P(E) / dsxh(x/xo)C(xo, x)P(E)\\ < const-Pllco (18)

uniformly in K and XQ. From this bound and the fact that C is a positive
operator we infer that the integral / dsxh(x/xo)C(xo, x) exists in the sense of
bilinear forms between vectors of finite energy. Moreover, since the space-time
Fourier transform of C(x) has compact support, the estimate (18) stays true if
one replaces the projection P(E) on the left-hand side of the integral by 1. Hence
the integral f dsxh(x/xo)C(xo, x) is also defined as an operator on the dense set
of vectors of finite energy, and the stated inequality (16) follows.

Similarly to the case of the asymptotic fields the bound (16) shows that the
sequence of operators C(ί; h) has limit points at asymptotic times t which are
closable operators having all vectors of finite energy in their respective domain.
Hence the convergence proofs in [5] can be extended to this substantially larger
set of vectors which is independent of the asymptotic direction of t.

We emphasize that the existence of limit points of the sequence C(t; h)
does not depend on the assumption that the theory has a conventional particle
interpretation. This fact lends support to the conjecture that the results of Araki
and Haag can be extended to theories involving infraparticles. A preliminary
discussion of these perspectives can be found in [9], a more detailed analysis will
be given in [10].
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This brief account of applications may suffice to illustrate the utility of our
general results. We expect that our simple method of exploiting "positivity",
expounded in the proofs of Lemma 2.1 and Lemma 2.2, respectively, will be of
further use in the structural analysis of quantum field theory.

Appendix

We give here the proof of Lemma 2.2. As in the case of Lemma 2.1 the proof is
achieved by induction in n, and as before the statement is trivial for n = 1. For
the step from n — 1 to n we choose any state ω on ^(J^) which is induced by
some vector Φ in Pn#e and set β = f dsx(B*B)(x). We have

K

ω(β β) = J dsx j dsy{ω{B\x[B{x\ B\y)]B(y)) + ω(£*(x)£*(y)£(x)5(y))}
K K

- / J ^ / ^ y { l | j B ( X ) Φ ! | 1 / 2 | | j B ( y ) Φ | | 1 / 2 | I C j B ( X ) ' ^ ^ ^ ^
K K

xB(y)Φ\\1/2\\[B(y),B*

< j dsx J dsy{\\B{y)Φ\\ ||[B(x), B*{y)]B{y)Φ\\

K K

+ ω(B*(x)(B*B)(y)B(x))}

7
where we made use of the Cauchy-Schwarz inequality and the fact that the
geometric mean of two numbers is smaller than their arithmetic mean. Since
Φ e PnJ? the vectors BU(-y)Φ and B(x)Φ are elements of Pn-ι3tf. We can
therefore proceed from the preceding estimate to

ω(β β) < ω(Q) - I sup J dsx\\[B(x), B*]Ψ\\ + \\Pn-iQPn-i\\\ ,

^ ΔK *

where the supremum is to be taken with respect to all unit vectors Ψ e Pn_iJf.
Making use of the induction hypothesis and the facts that ω(Q β) > ω(β) 2 and
Pi < Pk for i < k we conclude that

ω(β) < (n - 1) sup Jdsx\\[B(x), B*]Ψ\\.

ΔK

The statement now follows by taking the supremum over all states ω which are
induced by vectors in Pnffl.
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