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Abstract. We explicitly construct bases for meromorphic /l-differentials over
genus g Riemann surfaces. With the help of these bases we introduce a new
operator formalism over Riemann surfaces which closely resembles the
operator formalism on the sphere. As an application we calculate the
propagators for b — c systems with arbitrary integer or half-integer λ (in the
Ramond and Neveu-Schwarz sectors). We also give explicit expressions for the
zero modes and for the Teichmύller deformations for a generic Riemann
surface.

Introduction

Operator formulations of conformal field theories over a generic Riemann surface
Σ, as opposed to the path integral formulation, have recently been the object of
intensive research [1-7]. The common feature of these approaches is that they
privilege the local description of conformal field theories over a disk cut out from
the Riemann surface. The globalization is essentially obtained via Bogoliubov
transformations relating states over the disk to states over the Riemann surface
without disk. This formulation finds its natural mathematical framework in the
Grassmannian formalism developed in [8,9]. In a different mathematical context,
we also recall the important related results of [10,11] on the action of the Virasoro
algebra on the moduli space. Needless to say, a conformal field theory formulated
in this way over a non-trivial (non-spherical) topology looks rather involved. We
think a simpler and clearer formalism is now at hand, due to the work of Krichever
and Novikov (KN) [12,13], who recently suggested new bases for meromorphic
tensor fields on genus g Riemann surfaces which are holomorphic outside two
points P+ and P_. These bases are uniquely determined up to numerical
constants. It is therefore possible to closely mimic a conformal field theory over a
sphere [14,15] (where P± are identified with the North and South poles), the KN
bases playing the role of the monomials z" (n e Z) over the sphere. In other words
the KN bases provide a mean to globally Laurent-like expand any tensor field of
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the type described before on genus g Riemann surfaces. This fact lends itself to an
operator formalism interpretation similar to the analog over the sphere. As in the
latter case, the coefficients of the above expansions will be interpreted as creation
and annihilation operators acting on a suitable "vacuum" \0)Σ characteristic of the
given Riemann Surface Σ of genus g. The corresponding excitations do not have, of
course, the same physical meaning as the analogs on the sphere, but are in general
genus dependent combinations of the latter.

A conformal field theory based on the KN bases has already been partially
developed in [16,17,18]. In [16] it was shown that one can construct for a bosonic
string theory over any Σ a BRST charge which becomes nilpotent in D = 26. This
was extended to the superstring case in [17], while in [18] it was shown that the
Sugawara construction can be carried out on any Riemann surface.

In this paper we start developing systematically the operator formalism over a
generic Σ by means of the KN bases, by considering the simplest cases of conformal
field theories: the b — c chiral systems. Throughout this paper b and c are tensors of
weights λ and 1 —λ respectively; they may be commuting or anticommuting fields.
In string theory the anticommuting system with λ = 2 is of special interest because
it corresponds to reparametrization ghosts. In superstring theory we have in
addition matter with λ = 1/2 and the superghost system with λ = 3/2. Our aim is to
be able to compute any correlation function for these systems. To this end we need
an explicit expression for the KN bases: we provide it in Sect. I. In particular we
write a basis for the zero modes of arbitrary ^-differentials. Next (Sect. II), we
discuss the Laurent-like expansions of these fields, the operator interpretation of
the coefficients and the vacuum state, as well as their relation to the corresponding
genus zero quantities. In Sect. Ill we compute the Szegό kernel for an arbitrary
b — c system, that is, the relevant b — c system for any genus and any integer or half-
integer λ in both Neveu-Schwarz and Ramond cases. In Sect. IV we discuss zero
modes, Teichmϋller deformations and the relation with the path integral
approach. In Appendices A and B we set the notation and recall some basic facts
about theta functions, theta divisors, and spin structures.

I. Krichever-Novikov Bases. Explicit Construction

Let Σ be a compact Riemann surface of genus g and P + ,P_ two distinguished
points in general position.

The KN bases [12,13] are bases for the spaces of meromorphic tensors of
weight λ on the Riemann surface, which are holomorphic outside P+ and P_.

Case of Integer λ

For integer λ φ 0,1 and g > 1, the Riemann-Roch theorem guarantees the existence
and uniqueness (up to a multiplicative constant) of tensors of conformal weight λ
which in a neighborhood of P+ and P_ have the following behaviour:

)\ (I.I)
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where

s(λ) = g/2-λ(g-ί).

Here z+(P ±) = 0, where z ± are local coordinates at P ±. The multiplicative constant
may be fixed by requiring φf}+ = 1. The index; in Eq. (LI) takes either integer or
half-integer values depending on whether g is even or odd, respectively. When
j = s(λ\ ..., — s(λ) and λ > 1 we have a basis for zero modes of the ^-operator acting
on /^-differentials.

Note that uniqueness can also be proved from the Noether "gap" theorem
[19]. In fact, let us assume there are two sections f^λ} and f j ( λ ) of Kλ satisfying (I.I)
and define a function h as the quotient of them. Since fW and f (λ) have g zeroes
outside P+, it follows that h is a meromorphic function with a number of poles
between zero and g. But the Noether "gap" theorem states that there exist no
functions with a number of poles in general position between 1 and g. This implies
that h is necessarily holomorphic and therefore a constant.

For λ = 0 the behaviour is modified with respect to Eq. (1.1). Let Ap \j\ ̂  g/2 -f 1,
be the unique function which in a neighborhood of P+ has the Laurent expansion

Aj(z±) = afz±j-*/2(l + 0(z±)). (1.2)

(As before, j is integer or half-integer depending on the parity of g). For
j= —g/2, ...,g/2 —1 we take the functions with the following behaviour:

Λ/z±) = α/zΐ' -^+?(l+0(z±)). (1.3)

These conditions define Aj uniquely up to addition of a constant. For j = g/2 we
choose Agj2 = 1 this completes the basis of meromorphic functions.

For λ= 1, we take the basis of one-forms as follows: in the range [/| g g/2-h 1,
ω^/iy, with /iy given by (I.I); for 7'= —g/2, ...,g/2 —1, those specified by the
local series

ω\z±} = βfzlj+9l2^(\ + 0(z±})dz± . (1.4)

Finally, we take ωg/2 as the Abelian differential of the third kind with simple poles
in P± and residues +1, normalized in such a way that its periods over all cycles
be purely imaginary.

In the g = 1 case, the number of zeros is equal to the number of poles for any
section of Kλ, for any λ; the existence of a holomorphic (and therefore without
zeroes and poles) one-form η enables us to write the KN bases as follows:

(1.5)

where the A?s are defined as before.
Let us now move to the explicit construction of these bases (in what follows, we

will make extensive use of definitions and properties given in Appendix A).
Looking at (I.I), we observe that this behaviour is correctly reproduced by using
prime forms as follows:

, P + )j ~ s(λ]/E(P, P _ X + s(λ) .

The correct weight in the P-variable is obtained by means of the σ-differential
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Finally, we require fW to be single-valued. To this purpose we introduce a
θ-function

) , (1.6)

where

-(j + s(λ))P-+(i-2λ)Δ ,

and

θ(P++e(λJ))

Note that the θ-function gives the g zeroes of ffλ) outside P+; the constant
Nf\P + , P_) is chosen in order to satisfy a duality condition to be defined below.1

For g= 1 or λ = Q, 1, Eq. (1.6) does not work in the interval —g/2^j^g/2. In
fact, in these cases the ^-function has zeroes in P+ and P_ which cancel the poles of
the prime forms, as it is easy to verify by using the Riemann vanishing theorem and
the relation Θ + 2y(α/?) = Θ, where Θ is the locus of zeroes of the ^-function and y(Λβ)

depends on the Riemann class and on the spin structure (see Appendix B).
For λ = Q the expressions for any g are defined by \j\>g/2:

A:(P) = as (1.6) with λ = 0,

p y+9/2+ι

±,Pβ + ,}-aj(P±,Pg+,}, (1.7)

where

dj(P ±^9+^= (Aj(Pϊ + aj(P ± > P9 + l)

and

Here Pg+ x is an arbitrary point different from P± [as we have already said, the Afs
defined by (1.3) are fixed up to addition of a constant; this arbitrariness is reflected
in (1.7) through the point P9+1], ωg/2 is given below in Eq. (1.9), and C is any
contour which separates P+ and P_). Finally we take Ag/2 = ί.

1 One can check that this choice of the coefficient N(jλ) makes fW single-valued and with the right
weight in both P+ and P_ variables
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For λ=l the elements of the basis of one-forms take the following form:

ω>(P) =/iy , according to (1.6)

E(P P- . ^ ^ f > ;
where

e(/)

and

r)(Imfl)y^(P), (1.9)

where τ?7 are the g holomorphic differentials with the standard normalization (see
Appendix A).2

In the genus one case, considering Eq. (1.5) we can define the following
expressions:

for I/I > 1/2

EY P P \j— 1/2
™r,r + J / m 2 λ - >•)), (i-io)
r/^,r,jr_/ ~

where

f o r / Ί =

and

-c(P±,P2)/$(P),

2 Note that in Eq. (1.8) we have no pole in Pg+ί because the ^-function has a zero there which
cancels the zero of E(P,Pg+1) for any;=-g/2,...,g/2-l
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where e = P++P_-P2-Δ, and

E(P,P2)θ(P-e)

*' 2' \θ(P+-e)E(P + ,P2)J 4πil\E(P,P+)E(P,P_)

and

/ n n , £(P+,P.)

Let us now recall the definition of the contours Cτ [12]. On Σ there exists a

well-defined harmonic function of g Re J ω9/2 (QQeΣ is an arbitrary re-
\Qo /

ference point). The contours Cτ are defined as the level lines of this function, i.e.

J ωg/2) =τ
Qo /

For τ-» ± oo the contours Cτ become small circles around PT. The coordinate τ
plays the role of (euclidean) time, and the level lines Cτ can be interpreted as the
position of the string at a given time τ. So we have a pictorial image of the string
propagating on the Riemann surface, with as many splittings and joinings
(interaction) as the genus g of Σ. As for the orientation, Cτ as well as any inte-
gration contour separating P+ and P_ is understood henceforth to encircle
P+ in an anticlockwise way.

The dual section of /)(λ), /({_λ), is defined by the following duality relation:

>=*• (L12)

The bases defined before satisfy this relation with /({ _ λ) =/!1/~ λ} [in the particular
case : λ = 0, for g ̂  2 this relation is also verified by the Aj's and ω/s given in (1.6-8)].
The constants were chosen in order for (1. 12) to hold.

Case of Half-Integer λ

Let us now consider sections of Kλ with a given spin structure [α,/?]. We are
interested in two kinds of bases:

i) Basis for the space of tensors of weight λ with the spin structure [α, /?] which
are holomorphic outside P+ and P_ and a slit from P+ to P_ ("Ramond-type"
bases);

ii) Basis for thespace of tensors of weight λ with the spin structure [α, /?]
which are holomorphic outside P+ and P_ ("Neveu-Schwarz(NS)-type" bases).

By Riemann-Roch theorem, there exists a unique (up to a normalization
constant) section f^ which in neighborhoods of P± have the form (when the spin
structure is odd, the following expression is slightly modified in the NS sector in the
cases λ = l/2 with \n\ = 1/2 or g = 1, see below)

)λ, (1.13)
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where n takes integer values in the Ramond case i), and half-integer values in the
NS case ii).

Even though (1.13) looks like (I.I), there is however a difference due to the fact
that the indices j or n, run in general over distinct values. Throughout this section
indices ij, k will be used to label the elements of the bases for integer λ, and /, m, n to
label the elements of the bases for half-integer λ.

Let us now consider the NS sector with odd spin structure, and 1 = 1/2. If
rcφ ± 1/2, then Eq. (1.13) still holds. For n= ± 1/2 we take the sections as follows:

)^,

2.

Considering as before the NS sector, odd spin structure, but g = 1, we can define for
any half integer λ

ftλ} = constant Anη
λ, (1.15)

where we take the spin structure of η1/2 odd.
The explicit construction of these bases is made in the same way as for integer λ,

but now we have to take into account the spin structure. This is accomplished by

introducing ^-functions with characteristics . Then, we write

pip p yι-s(λ)

/.(A)(p)=^)(f+.p-)£|p;f^+8(A)σ(f)2Λ-1

where

e(λ, n) = (n - s(λ))P +-(n + s(λ))P _ + (1 - 2λ)A ,

+ ,P_)"+sU)σ(P+)2"
JV<Λ )(P+,P_) = '&]"* + e(λ,n}}

For the particular case of corresponding to an odd spin structure, NS sector

and λ = ί/2 we have for \n\ = 1/2,

_), (1.17)

where

and
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where e = R — P+ — P_, and

where R is a generic fixed point. The dual bases are defined as in the λ integer case.
This completes the explicit construction of the KN bases.

The Structure Constants Cs

tj

As an immediate application, the expressions for the bases given above can be used
to explicitly write the structure constants Q7 of the Krichever-Novikov algebra
[12]

90

s= -go

where et=f^~^ and g0^3g/2. By integrating with the dual toe ί + J _ s we have

Cΐj= -L § Ωί+j-sίei9ej], (1.20)

where Ωk = f(

k

2}. Now we can insert the explicit formulas given by (1.6) for λ= — 1
and its dual, and so obtain the Q/s in terms of θ-functions and their derivatives.

In [12] the Q/s were given only for s = — g0 and s = g0 (g>l):

For s= — g0-h1, ...,g0 — 1, the structure constants will depend on the succes-
sive coefficients of the expansion oiet around P+ or P_ [cf. (I.I)], which can also be
written in terms of 0-functions and their derivatives using the formulas given
above. For example

Ψl 0(P++e(-lί})\σ(P+)

II. The Operator Formalism

Any tensor F(λ\P) (Pe Cτ) of weight λ which is smooth (or piecewise smooth) over
Cτ can be expanded in the basis {fk

(λ)} [12, 13],

Therefore, if we have a tensor over Σ which is smooth except possibly in P±9 the
expansion (II. 1) will hold for any Cτ, — oo<τ<oo, with coefficients generally
depending on τ. But if we consider a meromorphic F(λ} which is holomorphic
outside P±9 the coefficients αk will be τ-independent This is the case for b — c
systems, as the tensors b and c are supposed to satisfy db(P) = 0 = dc(P) everywhere
except at P+ (a discussion concerning the zero modes, i.e., the globally
holomorphic tensors of the b and c type, will be given in Sect. IV). So let us expand
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them according to (II. 1),

W=ΣMl)(ί>),
(11.2)

The summations run over the integers or half-integers depending on the case we
are considering (cf. previous section).

Upon quantization, b(P) and c(P) become operators and satisfy canonical
(anti-)commutation relations. Henceforth we will consider for simplicity the case of
anticommuting b and c fields with integer λ > 1, g > 1. Then, the coefficients bk's and
cfe's will satisfy the standard anticommutation rules

tfrt-Q-tbb} (IO)

They are operators in a Fock space with vacuum state |0)^ satisfying the conditions

(II.4)

We can represent the vacuum as the semi-infinite form

\v)Σ=J(λ) ' ΛΛ^) " Λ (H 5)

[from now on we drop the label (λ) when it is not strictly necessary]. Then the
action of ck and bk on the vacuum admits the explicit representation (right action)

00

where ifk denotes the usual antiderivation defined by

j - 1 j- j
fk' 2πi cτ

and v denotes omission. Analogously we can define the dual vacuum j(0| by means
of

(II.7)
= 0, k<s(l-λ).

It can be usefully given the representation [12, 13]

l ( 0 | = / s ( l - Λ ) Λ / s ( 1 - λ ) + 1 Λ . . . ,

ck and bk act on this semi-infinite form (left action) as

(11.9}

Moreover there exists a pairing such that

(11.10)
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It is now time to comment on the meaning of this vacuum and of the excitations
which are created out of it or destroyed by the operators ck and bk. First of all, we
have to emphasize that both these operators and the vacuum state are globally
defined over Σ, due to the fact that the KN bases are globally defined. In this sense
our approach is different from the previous ones [3-7], where two vacua are
generally used, one related to a disk singled out of the surface and the other related
to the rest of Σ.

It is evident that the ck and bk modes are related in a complicated (g-dependent)
way to the usual g = 0 modes, which are the string modes with associated particle
interpretation. Let us find the relation between the genus g modes and the genus
zero modes. We pick a coordinate z near P + , z(P + ) = 0, and the circle C = { \z\ — 1 } .
A basis for tensors of weight λ over this circle is given by

( 1- λ )z = z"- 1 + λ ώ 1 " λ

9

where n is integer. The restrictions {f}1"^} and {f^λ}} of the bases { f } 1 ~ λ } } and
{/({J on C are dense in the space of the corresponding tensors on C [12]. There-
fore, we can expand

(11.12)

where

(11.13)

" 2πi c (λ) n

It is easy to see that A(l - λ) = B(\ - λ} ~1, C(λ) = D(λ)'l, and C(λ) = B(1- λ). The
entries of the A ( ί — λ ) matrix vanish for n<j + s(λ) — λ, and are given by the
coefficients of the Laurent tail in Eq. (I.I) otherwise. Similarly BJ

n(l —λ) vanish if
n>j + s(λ) — λ, and is otherwise given by the coefficients of the Laurent expansion
of/j{ _ λ) near P +. We remark that in general the matrices A(\—λ) and B(i - λ) have
an infinite number of non-vanishing entries and stress that they can be explicitly
calculated.

Now we are able to calculate the relation between creation and annihilation
operators on the sphere and on genus g Riemann surfaces. Let b and c be the
restrictions of b and c to the circle C, then we can consider both expansions
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It is easy to find the relation between the 5 '̂s, ft/s, cps, and cps,

These are infinite combinations, however one can realize that when applied to 10)^
only a finite combination survives due to (II.4) and the properties of the A and B
matrices listed after Eq. (11.13). As a consequence this is true for any state
constructed from |0)^ by applying a finite number of bn and cn operators. In
particular we have

FΛ|0)Σ = 0 for

cn\0)Σ = 0 for

Of course, we could have started from the g = 0 vacuum |0)0 defined by Eq. (II.5)
where g = 0, and tried to find the action of bk and ck over it. We would have found
Eq. (II.4) with |0)0 instead of \Q)Σ. The relation between |0)0 and \0)Σ for a genus g φ 0
Σ can be reconstructed by means of the semi-infinite form representation of \0)Σ

and the transformation of the basis elements. For example, we have for the
quadratic differentials:

Ωj = l2j~go+ Σ B&ffi-
n<j-go

In this connection see [3-7,20].
It is now worth spending a few words about the connection between the

vacuum defined here and a vacuum frequently used in the literature [3-7]. A
definition of the vacuum |0>^ implicit in the path integral approach (see Sect. IV) is
specified by means of (II.4) and

<0|c* = 0, k>-s(ί-λ),
(11.16)

instead of (II.7). 10)^ and χθ| can be represented by two semi-infinite forms, given
respectively by Eq. (II.5) and by

XO|=/_ s ( 1 _ A ) + 1 Λ/_ s ( 1 _ λ ) + 2 Λ . . . , (11.17)

ck and bk acts as in Eq. (II.6) and Eq. (II.9). It is evident that

and that χθ| and Σ(Q\ differ exactly by the dual bases elements of the b zero modes
for λ > 1 and for g ̂  2.

For g = 0, λ = 2, let us define

|0> 0 -β" 1 Λί2 0 Λ.. . , 0 < O H £ 2 Λ έ 3 Λ . . . , (11.18)

and assume

|0>o+=0<0|, (ckΓ=c~k, (bk)
+=b_k. (11.19)

These definitions exactly realize the prescription

fc_ 1 |0>o)+ ^OIcjCo
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introduced in [15] (remember that with respect to this reference cfc<-»c_fc). It is
therefore possible to interpret the pairing defined by the brackets Σ< | yΣ as a scalar
product.

III. Propagators for b — c Systems

Propagators for Integer λ

Let us first consider the g>l, λ>\ case. The propagator S(P, β) is defined as

where τp(τQ) means the value of τ at the point P(Q). By inserting (II.2) into (III.l),
and using (II.3, 4, 7) we easily obtain

Σ •(!-;

•ΊK-T"' ( 1 _ λ ) (m 2)
fc= — GO

Now we would like to give a more compact expression for this Szegό kernel.
Eventually we will find that S(P, Q) reduces to the known result (see [4, 21, 22])

σ(Q) θ(u(λ}} '

where

u(λ)=-(2λ-\}(g-\}P_+(2λ-\}Δ.

A check that Eqs. (III.3) and (III.2) coincide is the following. Consider the
propagator to be a tensor F(l~λ\Q) of weight 1 —λ depending on β, at fixed P.
Then it can be expanded in terms of the basis l^1"^},

Multiplying by f(

k

λ} and integrating over Cτ we obtain

Now we can use Eq. (III. 3) and the explicit expressions for /(*} in order to arrive at
Eq. (III.2). In fact, solving the integral (III.5) we obtain

k<s(\-λY < 2 p '
(III.6)

in agreement with Eq. (III.2).
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It is instructive to see how one can use a heuristic argument to pass from (III.2)
to the compact form (III. 3). This consists in looking at the behaviour of the sums
(III.2), and then identifying the zeroes and poles of S(P, Q). After that, one uses
Riemann-Roch theorem to prove the existence and uniqueness of sections with
such behaviours, and the explicit expression (III.3) easily follows.

Let us first consider the point P fixed. From (III.2) we get

OO

'Ία-ίί-ί " ' (ΠIJ)
~ Σ akJk (6)ί τ<2>τp.

fc= -oo

In order to see the behaviour of F(1~λ\Q) on the Riemann surface, we use
Eq. (I.I). It follows that

β->P + => F(1~λ\Q) is holomorphic non-zero;

Q^p_ => F(ί-λ\Q) has a pole of order (2/l-l)(g-l); (III.8)

β->P => F(1~λ\Q) has a simple pole.

Proceeding likewise, but at fixed β, the propagator can be considered as a tensor of
weight λ which we denote by F*λ)

τP>τQ

(Πl.9)
Σ bkf(

k

λ}(P), τQ>τP

k= -oo

Similarly, from Eq. (III.4) we extract the behaviour of F*λ)(P),

P->P+ => Fμj(P) is holomorphic non-zero;

P-^P_ => F(Λ)(P) is holomorphic with a zero of order (2A-l)(g-l); (III. 10)

P->2- => Pμ>(P) has a simple pole.

Riemann-Roch theorem tells us that F(1"λ)(β) and F^(P) are uniquely
determined up to a constant C^P^-t) and C2(Q,P±) respectively. So, there
remains an indetermination by a constant C(P+). The propagator S(P, β) is now
easily found from (III. 8) and (III. 10), and from the requirement of correct
dimensionality and single-valuedness,

E(P,Q)\E(Q9P-)J \σ(Q)J θ(u(λ)) '

where (IIL11)

u(λ)=-(2λ-ί)(g-l)P.+(2λ-ί)A.

The constant C(P±) can be determined by making P->P_ and Q->P + , where the
propagator has a zero of order (2/1 — l)(g— 1),

00 p_>p

-^β). (πι.12)
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Inserting the explicit expressions for f(

k

λ} and /fc

(1~λ) we obtain

S(P θΓ~ - - - - , - +

^( ^)- 2λ-^-^^ (ΠL13)

Now, comparing (III. 13) with (III.ll) we conclude that C(P±)=1.
Finally a remark. Had we chosen the vacuum state to be the state which is

annihilated by the negative frequency modes of c(P) and b(P) with P near to P_,
then we would have found a similar result for (̂P, Q) with P+ instead of P_. A
useful relation to prove this statement is

where c is a constant independent of P.
Let us come now to the λ = \ case. We have already seen that the bases

{AI}, {ωt } are slightly modified with respect to the generic /fe

(λ), Eq. (1.6). The
vacuum state in this case is defined by the conditions

c Kfc-0.

So, the propagator is

Σ ωk(P)Ak(Q), τp>τΰ

k= - oo

The summations in (III.l 5) can be performed by the two methods explained before.
We will not repeat the computation, since it follows the same lines as above. We
just quote here the result which agrees with the well-known Szego kernel for 1= 1
[21]

E(Q'P

where u — gP_ —P+—Δ.
Finally, let us consider the genus one case. The vacuum state is defined by the

conditions

C.,0L, = 0, *S,/2,

bk\0)Σ = 0, k>ί/2.

The propagator can be computed in much the same way as for the previous cases,
and we obtain

θ(u)

where u = P+-P-+(2λ-ί)Δ.
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Propagators for Half-Integer λ

These kind of propagators are of interest in the study of conformal field theories on
Riemann surfaces, and in particular, in superstring theory, where we have matter
with λ = l/2 and reparametrization ghosts with λ = 2 as a anticommuting system,
as well as superconformal ghost (β, y) as a commuting system with λ = 3/2.

All of the results we have presented are easily extended to the commuting
case and it is immediate to show that the propagator

Sβ7(P9Q)=I(Q\T{β(Pyy(Q)}\Q)Σ

(τP - τβ) + Σ(V\y(Q)β(PmΣθ(τQ - τp) (III.l 9)

gives the same S(P, Q) as in the fermion case.
For half-integer λ the only subtleties which arise in the computation of

S(P, Q) come from the presence of branch points in the Ramond sector, though
these branch points are absent in integrals of the type (III.5) [this is due to the
fact that in the Ramond sector both F(i~λ} and /({} in Eq. (III.5) have branch
points in P+]. So, we limit ourselves to give the results:

g^2, NS sector, λ Φ 1/2,

Λ / E Ύ D D Λ \ ( 2 λ - l ) ( 0 - l ) / _ / Έ Λ \ ( 2 λ - l ) " I λ? ^ P + W(/t))

S(P,β) =
£(P,β)V£(β,P_)/ Vσ(07

where

α ' 'λ)) (IΠ.20)

g ̂  2, Ramond sector,

\ ( 2 λ - l )

S(Λ0=
£(P,β)V£(β,P_)

JαΊ

, (111.21)
,£(P,P+)

where

M(A)=l/2(P + -P_)-(2A-l)(g-l)P_+(2A-l)J.

In the λ = \/2 case, formulas (111.20,21) still hold, except when the spin
structure is odd and the sector is NS, for which we have

S(P, Q) = rT (ΠI.22)
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If g = 1, and the spin structure is odd, the propagator in the NS sector for any
half-integer λ is given by

*' E(P9Q)E(P,P+)E(Q,P-)\σ(Q)J

where

For any other case with g = l, the propagator is given by Eqs. (IΠ.20,21).
We finally make some remarks concerning the N-point correlation functions.

They can be calculated by using Wick's theorem. The only non-vanishing

ί N }
correlation functions are of the form Σ(0\T< γ[ (b(Pi)c(Qι))>\0)Σ. The rule to
calculate them is ^ I = 1 *

N

" N " Σ ' C ' ' (ΠI.24)Σ(ϋ\T< Π (b(Pi)c(Qi)n\Q)Σ =
ί Σ

σ ί= 1

corresponding to an anticommuting (up) or commuting (down) b — c system; σ
runs over all permutations.

IV. Some Remarks Concerning Zero Modes

Zero Modes and Teichmύller Deformations

In this section we discuss various questions connected with zero modes of the
^-operators.

It is interesting to note that the KN bases have among their elements the zero
modes for ^-differentials, which are by definition the holomorphic sections of Kλ.

For example, we observe that from the explicit expressions given in Sect. I, the
basis of meromorphic vector fields has three modes for i = ± 1,0 when g = 0, one
zero mode when g= 1 (corresponding to i = 1/2), and no zero mode if g^2.

It is a well-known result that the number of zero modes of two-differentials,
sometimes called quadratic differentials, coincides with the dimension of the
moduli space. In fact, for λ = 2 Eq. (I.I) becomes

Ωχz±) = φJ2)±z^'-2+ffo(l+0(z±))(dz±)2. (IV.l)

This is a zero mode provided that \j\ rg g0 — 2; therefore there are 3g — 3 quadratic
differentials for g ̂  2 and no zero modes for g = 0.

If g = 1 there is only one holomorphic section of Kλ for any λεZ [that labeled
by i = 1/2 in Eq. (1.10)].

On the other hand, we know that the number of zero modes of the 3/2-
differentials plus the number of the quadratic differentials gives the dimension of
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the supermoduli space. In fact, for λ = 3/2 we obtain [cf. Eq. (1.13)]

/n

(3/2)(zj = α^^ (IV.2)

from which we observe the existence of 2g — 2 zero modes.
The explicit global expressions of the zero modes can be obtained from the

formulas of Sect. I. As an example, let us write the basis of quadratic differentials
(λ = 2),

Y/ + 00-2

where

and

-g0 + 2,...,g0-2, g0 =
The dual to the Ω/s form a basis for the Beltrami differentials μl. They obey the

duality relation

έίfΛ°/=a/ (IV 4)

In order to discuss the deformations of the complex structure of Σ we will
closely follow the second reference in [4] (see also [22, 23]). The vector fields eί with
l * Ί = g o ~ ~ 2 can be used to generate Teichmύller deformations of the Riemann
surface in the following way. Divide the Riemann surface in two parts Σ+ and Σ~
containing P+ and P_ respectively such that Σ+ be a small disk whose center is P +

and Σ + nΣ~ = A, where A is an annulus. Take a local coordinate z on the disk. We
can use the vector field et to obtain a new Riemann surface as follows. We deform
A-+A' by

z->z + ε£ί? ze>4, εeC, (ΓV.5)

where e—e^d^ Now Σ~ is glued to the disk Σ+ by identifying the new annulus
with the previous collar on Σ + . This new Riemann surface is not analytically
equivalent to the old one when et has poles both in P+ and P_ which corresponds
to i|^go-2.

Under the infinitesimal deformation (IV. 5) the metric transforms to

where

Integrating by parts we observe that the Beltrami differentials defined by (IV. 7)
satisfy (IV.4).
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Now we are able to give the explicit expression for the variation of the period
matrix Ω under Teichmuller deformations. Under the deformation of the complex
structure given by (IV.7) we have [22]

$k®ij = - ί nfljUk = - 1 riMfk > (IV 8)

where the integration contour separates P+ and P_. Then it is easy to see that the
variation δkΩ{j vanishes if |fc|^g0 — 1. Now suppose v is a linear combination of
meromorphic vector fields ek of the KN basis. Then the most general infinitesimal
variation of the period matrix is given by Eq. (IV.8) with ek replaced by (for g> 1)

go -2
v= Σ

k=-g0

where

P +

(IV.9)

The normalization constant can be chosen as in (1.6). For the g = 1 case, see Sect. I.

Connection with the Path Integral Approach

Zero modes enter in an essential way also in a definition of the vacuum state which
is mutated from the path integral approach. It would be natural to ask that
b(P)\θyΣ9 c(P)|0>Σ be finite in P + , and XO|fe(P), Σ<0\c(P) be finite in P_. This leads for
λ > 1 and g > 1 to

and

X0|ck = 0, k>-s(ί-λ)9
(IV. 10)

Σ<Q\bk = Q, k£-s(ί-λ),

as in Sect. 2. If we define the propagator by

then we would obtain a vanishing result. This is because the vacuum defined above
gives in general XO|0>Σ = 0, as can be seen by using the algebra. For example, for
even g and anticommuting c and b we have

o = χ
This fact is similar to what takes place in the path integral approach,

Z = j [db dc] exp( - S[b, c]) - 0 ,

because of the presence of the zero modes.
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In order to obtain meaningful results the partition function Z is redefined by
inserting as many b and c fields as the number N and M of the corresponding zero
modes, that is (for any λ and g)

Z(z1? ...,zN;w l 5..., wM) = $[dbdc]b(zί)... ^(z^φvj ... φvM)exp( — S[b,c]).
(IV.ll)

A correlation function is then defined with respect to this measure

<fe(P1)...6(Pr)c(ρι)...c(ρs)> = Z(z1 ?...,zΛ Γ;w1,...,wM)-1

xf[dbdc]fe(z 1)...c(w 1)...fe(P 1)...c(Q 1)...exp(-S[&,c]). (IV.ll)

In our operator formalism we proceed likewise and define a correlation function in
the following way (throughout the rest of this section we drop the label Σ
from the vacuum):

<*Λ)...*fm)...c(&>=<0^
I J \i V . -I J J

We will show that (IV.I 2,13) lead to the same results and also are in agreement
with those of Sect. Ill, provided we identify at the end of the computations the
points zf with P_ and w f with P + .

Let us first consider the case λ > 1 for g ̂  2. The propagator is then defined
according to (IV.I3),

<0|Γ{/KZl)...fc(ZN)6(P)c(0}|0>

where N =-2s(λ) + \.
Let us choose z t,..., ZN such that τ1 >... > τN; then we have

<o| τ{b(Zl) . . . b(zN)}\oy = <o|fc(z1) . . . b(zN)\oy
= del || f\zj) || <0\b+s(λ)...b.sw\θy, i =

Let us take now zt near F_ and consider first τP>τQ so that

= Σ <o\bίl...bίNbjc
k\oyfi^l)...fi^zN)f^p)fk(Q)

(ik},j,k

= Σ (-)F<o\b(z1).. b(Zί)...b(zN)b(p)\oy Σ fj(Zi)fj(Q), (iv.iό)
perm. j — s(l — λ)

where z£ takes the values z l 5 ...,ZN, P. In a similar way one calculates the
contribution for τP<τQ. The final result is given by

S(P,Q) S(Zl,Q) ... S(Zfl,Q)

1

det||g;(Zj.)
rdet , (IV.17)

where g1; ...,gN stands for f+s(λ\...,f+ s ( λ ~ s ( λ
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By taking the limit z f->P_, for which S(zi,Q) = Q we get

lim (I V.I 8)

as it was asserted.
Let us consider as another example the case λ=ί. We obtain

1
<b(P}c(Q)} =

xdet

S(P,Q)-S(P,w) S(z1,Q)-S(z1,w) ... S(zg,Q)-S(zg,w)

w\P) ωl(Zl) ... ωl(zg)

ωa(P)

. (IV.I9)

In the limit z f ->JP_,w->>P + ,we recover the expected result

lim <WP)c(β)> = S(P,β). (IV.20)

Appendix A

Here we summarize the notation about theta functions [24]. Given the g
holomorphic differentials ηt with the standard normalization around the basis of
homology of the Riemann surface Σ,

i = βy> Im(Ω)>0,

the θ-function with characteristics Λ associated to Σ is

(A.I)

)= Σ
Ne

= exp(fπα

The Jacobian torus is defined

(A.2)

= C9/Γ(Σ) where the /?erfod ίαίίice Γ(Z) is

The set 0 = (z : θ(z) = 0} is a variety of complex codimension one in J(Σ) called

When the characteristics α( , j8f are 0 or 1/2, the corresponding θ-function (A.2),
known as first order theta function, is even or odd depending on the parity of 4ofβ.
The theta function is the unique holomorphic section of a holomorphic line bundle
on J(Σ\ called θ-line bundle, whose transition functions are defined by

(A.3)

θ I I (z + n + Ωm) = exp (- iπnfΩm - i2πmtz + i2π(ofn - β*m))θ
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The Jacobi map I:Σ-+C9 is defined by

l(P}=]η, P0,PeΣ, (A.4)
PO

where P0 is an arbitrary reference point on Σ.
An important property of the Jacobi map is that it maps divisor classes to J(Σ)

m n m

(Abel's theorem), that is, given a divisor D= Σ Pi~ Σ Qi> I(D) = Σ I (Pi)
z = l / = 1 / = 1

- Σ ί(βλ tnen /(£) = /([/>]) mod/XI1), where [D] is the divisor class defined by
i = l

the equivalence relation: D^D2 Ίi (Dl —D2) is the divisor of a meromorphic
function. In the text we denote for compactness I(D) by D itself.

A fundamental theorem in θ-function theory is the Riemann vanishing theorem.
It states that the function

F(P) = Θ /(P)- X I(Pά + I(Δ)) (A.5)
V ί = ι /

either vanishes identically or it has exactly g simple zeros in P = Pί5 /=!, ...,g.
A is the Riemann divisor class defined by

Ik(A) = in - iπΩkk + £ § η,(P] J ηk . (A.6)
ί φ f c α i PO

As a useful corollary of this theorem, we have

0, VP,eΣ. (A.7)

The prime form E(P9Q) is a multivalued — 1/2-differential without poles in
both variables P and Q with a unique simple zero for Q = P,

(A.8)

0 ΓαΊ
where h2(P)= Σ dz θ\ 0 (O)^ί(P)' ^(P) is tne holomorphic section of the spin

ί=1 l / ΓαΊ \bundle corresponding to a non-singular ί δzθ (0) Φ 0 ) odd spin structure

. 3 £(P, Q) is independent of the particular choice of . For cycles winding

around P, it transforms as

E(P, Q) P + na + mb , exp ( - iπnίΩm - i2πnΐ(I(P) - I(Q)))E(P, Q) . ( A.9)

as

5 The correspondence between spin bundles and theta characteristics is illustrated in Appendix B
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Finally, we introduce the σ-differential

/ *
σ(P) = exp -

It is a g/2-differential defined on a covering of Σ without zeroes and poles. Its
transformation property is

σ(P) p + na + mb , eχp(iπ(g - l)mΏm - i2πnί(I(Δ) - (g - l)/(P)))σ(P) . (A.I 1)

Appendix B

In this appendix we illustrate some useful properties of the <9-divisor [24, 25]. Let K
be a degree (g- 1) line bundle. It has a holomorphic section if in its corresponding

9-1

divisor class [K] there is a positive divisor £ Pt. By the Riemann-Roch theorem
i= 1

<7-ι
/• * Vt o c> o r\ι\7ΛC'r\Y' r\f tV»P» τV\f m X"1 "̂) I ί>f^such a divisor exists if and only if K®κ 1 has a divisor of the form £ Qf. Let4D(α

i= 1

be a spin bundle (i.e., 2[D(αp)] = [X]), then the set

x i = l

is a symmetric subset with respect to the origin of J(Σ\ that is

s i= 1

From the Riemann vanishing theorem as the points Pt sweep Σ we recover Θ

0-1
Σ Λ

v i = l

Therefore

Since Θ and S(α/ϊ) are both symmetric subsets with respect to the origin ofJ(Σ\ we
have

Θ + 2y(Λβ) = Θ. (B.2)

This means that θ(z + 2γ(Λβ))/θ(z) is a constant on the compact space J(Σ), therefore
2y(OLβ} e Γ(Σ), that is each y(aβ} is one of the 22g points of order two. Being 22g also the
number of spin structures, it follows from Abel's theorem that for each half-points
ofJ(Σ) there is a different D(aβ} and vice versa. Since we can write y(aβ} = β + Ωα, then

\z:θ\ α (z) = 0> =Θ + y(aβ}, ^,^6(0,1/2},

(B.3)

4 In the following we denote by D(α/)) both the spin bundle and the divisor class [/)(tlί)]
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Noting that

Γ A-1 \ 1
= Θ, (B.4)

and that Θ is P0-independent we see that D(00) depends only on the homology basis
chosen. From (B.4) it follows that there is a one-to-one correspondence between

degree (g— 1) line bundles for which dκ has a zero mode that is, the line bundles

M Σ Pi)\P^"^Pq-ί^Σ> } and points in Θ. Moreover, it turns out that
\ί = ι / J /

/z°(Σ, jc) equals the multiplicity of the zero of θ(z) at z = I(A) — I(κ).

For odd characteristics L Oe Θ(α^)? so that there is at least a set of points
Pl9...9Pg-1 such that LPJ

= 0, (B.5)

that is, D(Λβ) has at least a holomorphic section with zeroes at z = Pi9 ί = 1,..., g — 1.
In the case of even theta functions there are certain values of Ω for which 0 e Θ(aβ^
for example for g = 2 this happens when the period matrix is diagonal.
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