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Ground State(s) of the Spin-Boson Hamiltonian
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Abstract. We establish that the finite temperature KMS states of the spin-boson
hamiltonian have a limit as the temperature drops to zero. Using recent
advances on the one-dimensional Ising model with long range, 1/r2, interactions,
we prove qualitative properties of the ground state(s) in the ohmic case. We
show (i) the asymptotics of the critical coupling as the bare energy gap goes
to zero and to infinity, (ii) a jump in the order parameter, and (iii) that the
number of bosons is finite below and infinite at and above the critical coupling
strength.

I. Introduction

The spin-boson Hamiltonian models a "spin" coupled to a Bose field and is given
by

H = - εσx + ldkω(k)a + (k}a(k] + ̂ /2σz$dkλ(k)(a + (k) + a(k)) - hσz. (1.1)

Here σx,σz are the Pauli spin matrices. a(k\ a + (k) is a scalar Bose field with
commutation relation [a(k\a + (k')~] = δ(k- k). The Bose field is over Rd, the
d-dimensional Euclidean space. ω(/c) is the dispersion relation of the field, ω(k) ^ 0.
λ(k) = λ(k)* are the couplings.

The spin-boson system is a prototype for the interaction of a localized degree
of freedom with a field. No wonder the spin-boson Hamiltonian has a rich history.
The reader is referred to [1] for an excellent and up-to-date review.

We consider here only the case characteristic of most physical applications,
the so-called ohmic case: the frequency distribution is linear for small ω, i.e.

ldkλ(k)2δ(ω(k)-ω}~ω. (1.2)
Equivalently

\: (1.3)
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for large ί. More precisely, the coupling constant α is normalized in such a way that

limt2W(t)=l. (1.30
t~* 00

To complete our assumptions we require that

\dkλ(k)2 < oo, (1.4)

which amounts to W(ί) being bounded. More singular cases could be dealt with
if needed. We regard λ and ω, hence W, as given, h = 0, with the proviso /ι-»0±

in case of symmetry breaking. We investigate the structure of the ground state(s)
of H in dependence on the coupling strength α and on the (bare) energy splitting
ε, α ̂  0, ε ̂  0.

In [2] we studied the ground state of the spin-boson Hamiltonian exploiting
the connection to the one-dimensional, continuum Ising model with long range
interactions. In particular we showed that the "flip" symmetry is broken for
sufficiently large α.

In the recent two years the rigorous Ising technology for one-dimensional
lattice systems with ferromagnetic long range interactions has staged spectacular
progress. The purpose of this note is to indicate how the proofs of Aizenman and
Newman [3] and of Aizenman, Chayes, Chayes, and Newman [4] extend to the
spin-boson Hamiltonian. In particular we show

—bounds on the critical coupling strength αc(ε) which imply 1 ̂  αc(ε) ̂  2 as ε->0
00

and αc(ε) = (J dtW(t))~1s + 0(ε) as ε-> oo (αc(ε) is increasing in ε),
o

—jump in the order parameter across αc(ε),
—the asymptotic decay of the average boson density in space for all α.

The theorems are stated in Sect. 3. Their proofs are given in Sects. 5 to 8.
We use the opportunity to establish that the finite temperature KMS states of
the spin-boson Hamiltonian without Bose-Einstein condensate converge to the
ground states studied here in the limit of zero temperature, cf. Sects. 2 and 4.

2. Ground States as Temperature Zero Limit of Thermal States

If

\dkλ(k)2 < oo, ldkλ(k)2/ω(k) < oo, (2.1)

then H is self-adjoint on C2®^, where &'s denotes the standard Boson Fock
space over Rd of symmetric wave functions. A domain of essential self-adjointness
is the domain of — εσx + \dkω(k}a + (k)a(k). H is bounded from below as

(2.2)

Thus, a ground state is a vector φeC2®^s which minimizes

<ψ\Hψy, <^> = 1- (2-3)

This standard definition of a ground state is not adequate for our purposes,
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because of the possibly large number of infrared bosons. To see why we consider
the particular case ε = 0, i.e.

H0 = \dkω(k}a + (k)a(k) + ̂ /2σz$dkλ(k)(a + (k) + a(k)) - hσz. (2.4)

For h = 0 H0 has two ground states related by the flip symmetry, σz -> — σz,
a(k) -> — a(k). h breaks this symmetry. In the ground state the number n(Λ), of
bosons in the region A of momentum space has the Poisson distribution

Prob ( (n(A) = n} ) = 1 ( ̂  J dkλ(k)2/ω(k)2 Y exp Γ - ^ j dkλ(k)2/ω(k)2 ] , (2.5)
nl\2Λ J |_ 2 A J

where A is such that J dkλ(k)2/ω(k)2 < oo and A c (/ceRd|ω(fc) ^0}. For disjoint
Λ

regions the n(Λ)'s are independent. Thus if §dkλ(k)2/ω(k)2 = oo, then the number
of bosons is infinite and the ground state does not lie in Fock space. On the other
hand the ground state energy equals

(2.6)

which is finite by (2.1). Note that $dk(λ/ω)2 = oo for (1.2), (1.3).
In view of this situation we define "ground state" as the temperature zero limit

of a thermal state. One could adopt other definitions, cf. the discussion below. A
thermal state has an infinite number of bosons. Therefore, the state has to be
defined on a suitable algebra of quasi-local observables. This construction has
been carried through in [5]. The algebra of observables is M2(χ)ja/. M2 are the
2 x 2 complex matrices. Let jfr be the Hubert space with inner product

ω(kΓ1)f(k)*g(k). (2.7)

Then stf is the CCR-algebra generated by the Weyl operators W(f)
We regard - εσx as a perturbation of H0, cf. (2.4). We define the state ω°β on

by

° λ OT
0 (1-

where ω°±>β are the states on sf given by

a>°±,f(W(f)) = exp Γ - ^dk| f(k)\2 coth (βω(k)/2) ± ̂

(2.9)

To ωQ

β there is associated the GNS-triplet (J^ω9πω9Ωω). For notational con-
venience, the algebra M2 (x) j/ is identified with its representation. Let (M2 (x) j/)"
be the von Neumann algebra generated by M2 (x) j/. Since H0 is the sum of two
commuting quasifree Hamiltonians, the dynamics α° generated by it on (M2 ® ̂ )"
is given explicitly. ωQ

β is a KMS state (equilibrium state) for αf°. The full dynamics,
αf, and the KMS state, ωβ9 of the spin-boson Hamiltonian H is then constructed
by a strongly convergent perturbation expansion in ε [5,6]. Note that in this
fashion only a FF*-dynamical system is obtained (αr as defined is not a group of
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automorphisms on M2 (x) jtf). The ground states studied here are the limit of the
states ωβ as /?-»oo.

ωβ is the thermal state without a Bose-Einstein condensate. H0 could have
other KMS states. They must have then a condensate with non-zero density. The
perturbation of such states results in a thermal state of the spin-boson Hamiltonian
with condensate. These other states are of no particular interest to us: Either (i)
the condensate does not couple to the spin. This happens if λ vanishes continuously
at such fe-values where ω(k) = 0. The thermal state is then a superposition of ωβ

and the unperturbed condensate. Or (ii) the condensate couples to the spin. In the
limit /?-> oo, this forces the spin to be either up or down with certainty. Thus, in
the limit β->oo, we obtain a superposition of the unperturbed condensate and

for h > 0; respectively ί 2 + >GO

 ί 0 ] for h = 0. We briefly explain

why at the end of Sect. 4.
Under some regularity assumptions, which in particular exclude condensation,

Fannes, Nachtergaele and Verbeure [5] prove that ωβ is the unique KMS state of
the spin-boson Hamiltonian.

The first result ensures the existence of ground states. Our real goal is an
understanding of their qualitative properties. Existence is needed to set the arena.

Theorem 1. Let \dkλ(k)2 < oo, j dkλ(k)2/ω(k) < oo, and let ωβ be the equilibrium
state at inverse temperature β of the spin-boson Hamiltonian H as constructed above.
If needed the dependence on α, ε and h is indicated as ωβ^ε,h- Convergence is
understood in the weak* sense on stf, i.e. ωβ(A) has a limit as β-+ oo for all Aestf.

(i) For h^Q the limit

limω /, t α t β > Λ = ω0 0 > α > e > Λ (2.10)

exists. The states in (2.10) have a limit as /ι-»0+ and as /z-»0_,

lim ω0 0 f β f β f Λ = ω±fβiβ( = ω±). (2.11)

ω + and ω_ are related through the discrete symmetry τ ,τ°τ = 1, defined by

τσx = σx, τσy=-σy, τσ z =-σ z , τW(f)=W(-f). (2.12)

(ii) We define the order parameter

m* = ω+(σz). (2.13)

// m* = 0, then ω+ = ω _. // m* > 0, then ω+ φ ω _.
(iii) Ifh = Q and m* = 0, then

Iimω, iβ,ef0 = ω + iβ,β( = ω_ f β i e). (2.14)

Ifh = Q and m* > 0, then

lim ωβ,a,ε,0 = 2ω + ,α,ε + 2ω- ,α,β (2 15)

with the possible exception of a, at most, countable number of tfs (for fixed ε).
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Remark 1. The limit (2.15) should hold for all α. Unfortunately, one can prove
(2.15) only for such α's, where the ground state energy is continuously differentiable
in α. By convexity there can be at most a countable number of exceptions.

As already indicated one could adopt other definitions of a ground state. A
physically natural construction is the approximation through finite volume ground
states. In position space we restrict the Bose field to the bounded region A with
suitable boundary conditions. The system has then a unique ground state. As
A]Rd sequence of ground states converges to a superposition of the states in
Theorem 1 and, possibly, an unperturbed superfluid condensate.

There is also the algebraic definition of a ground state, cf. [6, Definition 5.3.18].
ω is an (algebraic) ground state, if

ω(A*lH9A])^Q (2.16)

for all A in the domain of the derivation i[/f, ]. Since α, has been constructed
only on (M2 ® £#}" the definition, as it stands, is not applicable. A quite different
problem is whether linear combinations of the states ω + , ω_ exhaust already all
algebraic ground states with no Bose-Einstein condensate. For the spin-boson
Hamiltonian I conjecture that ω+, ω_ are algebraic ground states and that there
are no others. It would be of interest to elucidate this point.

To summarize: For h = 0 and ra* > 0, there are two distinct ground states, ω +

and ω_. The flip (τ -) symmetry of the spin-boson Hamiltonian is broken. With
Theorem 1 we have established the general framework.

3. Ground State Properties, Results

We return to the ohmic case stated in the Introduction, i.e.

\dkλ(k}2 < oo, lim t2W(t) = 1. (3.1)

To simplify notation we denote expectations with respect to ω± > α > ε by <•)+ (α, ε).
m*(α, ε) is increasing in α (and decreasing in ε). The critical coupling strength, αc(ε),
is then defined by

<σz>+(M = 0 for α<αc(ε), (3.2)

<σz>+(α, ε)>0 for α > αc(ε). (3.2')

In fact (3.2') holds also for α = αc(ε). We have the following qualitative bounds for
the phase diagram.

Theorem 2.

(i) αc(ε) is finite and increasing in ε.
(ii) The following lower bounds hold,

lgαc(ε), (3.3)
\ -1

\dtW(t)\ ε^αc(ε). (3.4)
,o /

(iii) One has the asymptotics
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limsupαc(ε)^2, (3.5)

1 /°° \ ~ 1

lim-αc(ε)= \ dtW(t) . (3.6)
β-ooβ V o /

Remark 2. Equation (3.5) should read

limαc(ε)= 1,

cf. Sect. 6 for details.

Remark 3. If
limt2W(t) = 0
ί->oo

then m* = 0 for any coupling strength. Thus ω+ = ω_. In fact the state <•>+ lies
in Fock space. If

then there is a critical coupling αc such that m* > 0 for α > αc. For small ε,
αc(ε) = ε(2 ~ y\ in particular αc(ε)->0 as ε->0 [2]. Thus the non-zero αc(0+) is
characteristic feature of the scale-invariant 1/ί2 interaction.

Theorem 3. The dichotomy

either < σz >+ - 0 or α < σz >
2

+ ̂  1 (3.7)

Ao/ds. /n particular <σz>+(α, ε) jumps at least by l/^/α^ε) αί αc(ε).

Theorems 2 and 3 (and some further details given in [2]) in essence cover the
ground state spin density matrix. Of interest are also properties of the Bose field.
For α < αc the average spatial boson density decays integrably for large distances
and the total number of bosons is finite. At αc the average density jumps to a
nonintegrable decay. The number of bosons is infinite with probability one. This
is due to the generation of very many infrared bosons of small energy.

Theorem 4. For h = Q and α < αc the total number of bosons is finite,

f d x < α + (x)φ)>+(α,ε)<oo. (3.8)

On the other hand for h = 0 and α ̂  αc, the number of bosons is infinite.

Remark4. By (3.8) for h = 0 and α < αc, the ground state lies in Fock space. General
positivity properties ensure that this is the only ground state in Fock space.
Therefore H as a self-adjoint operator in Fock space has a unique ground state
for h = Q, α < αc and has no ground state for h = Q, α ̂  αc.

4. The Ising Representation of Thermal Expectations

The Weyl operators satisfy the commutation relations

W(f)W(g) = W(f + #)exp l-^dk(f(k)*g(k) -/(%(*)*)], (4.1)
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W(f)* = W(-f), (4.2)

/e^7. In terms of the basic Bose operators

W(f) = exp [ J dkf(k)a+(k) - J dkf(k)*a(k)l (4.3)

The W(f)9s are unitary, in particular ||W(/)|| = 1. jtf is the norm closure of
{W(f)\fεJJf}. A state, ω on M2(x)j/ is determined by the expectations

ω(W(f}\ ω(σζW(f))9 ζ = x,y,z (4.4)

for all / in a dense subset of jfc.
Thermal expectations of Weyl operators can be written as averages with respect

to the one-dimensional Ising model of length β. The /? -» oo limit corresponds to
the infinite volume limit for the Ising model, which one (almost) knows how to
control.

We have to introduce the Ising measures. For β < oo we need their finite volume
version. A spin configuration, denoted by σ, on the interval A is a function on A
which takes only the values + 1. n(Δ)(σ) is the number of spin flips ( = points of
discontinuity) of the configuration σ in the set Δ. The space, ΩΛ, of all spin
configurations over the interval A is given by

ΩΛ = (ίι— >σ(ί)e± l,ίe/l \n(Δ)(σ)< oo for any bounded interval Δ c=/l}.

We choose σ to be right continuous with left limits. Two configurations σ, σ' are
close if σ(t) = σ'(t) except in the neighborhood of flip points. The Ising measures
to be introduced below live on Ώ[- 0/2,0/2]-

Let

Wβ(t) = $dkλ(k)2__βω(k}(e-^t + e-*™-*), (4.5)

Q^t^β. μl-β/2,β/2](dσ) denotes the free spin measure over [ — /ϊ/2, β/2] with
periodic boundary conditions. Its flip points are Poisson distributed in
[ — β/2, β/2] with density ε and are restricted to be even in number because of
σ( — β/2) = σ(β/2). The Ising measure of interest is given by

I Γ ft β/2 β/2

~μϊ-β/2tβi2}(dσ)ex]?\ -- f dt J dsWβ(\t-s\)(σ(t)-σ(s))2

& L 8 -β/2 -β/2

β/2 Ί

+ h } dtσ(t) \ = <i yβ(a,ε,h). (4.6)
-β/2 J

If obvious from the context, (α, ε, h) will be omitted. We will also need the measure
which has a flip at the origin with certainty. Let then < >0,o(α>ε9 h) denote the
measure (4.6) conditioned that there is a spin flip at t = 0.

Besides periodic boundary conditions also the standard +, — boundary
conditions will be used. Note that in (4.6) the interaction is weakly β dependent
and tends to W(t\ cf. (1.3), as β->co. The + state is defined with respect to the
interaction W(t\
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-^ J at } ds W(t-

T α / -r oo \ r Ί
+ h ] dtσ(i) - - J dt + f dt ) f dsW(t - s)(l - σ(s))2 . (4.7)

-T 8\-oo T J -T J

Here μ{LΓ>:r](dσ) is the free spin-flip measure with σ( — T) = 1 = σ(T\ <*>+,r,x
denotes the Ising measure < >+,Γ conditioned to have a flip at x, |x| < T.

The Weyl operators produce local external magnetic fields in the Ising model.
For each/e^f we define the external field

D) (4.8)

with |t | ̂  j?/2. θ(t) = 1 for ί ̂  0 and θ(t) = - 1 for ί < 0. Λ/>/t(t) is bounded. The
regular part of its derivative is

h',,p(t)= - _

"""l -e-^>^-"l>) (4.9)

with \ t \ £ β / 2 .

Lemma 4.1. For arbitrary a,ε,h and every fe^f we have

<oβ(W(f)) = exp[ - ^dk\f(k)\2 coth (βω(k)/2-]

Γ β/2 -|\
- I dthftβ(t)σ(f) ) ,

L -β/2 J/β
•( exp I — J dthj

Δ/β
(4.10)

ωβ(σzW(f)) = exp [ - ^dk\f(k)\2 coth(/?ω(/c)/2]

/ Γ βl2 1\
•(σ(O)exp - J dthfβ(t)σ(t) ) , (4.11)

\ L - f / 2 J / / S

/S/2 /

} ΛA> t/J(ί)( σ(0)σ(0exp - | dthf,β(t)σ(t)
-β/2 \ L

^ίdfcλ(fc)(/(fc)+/(fc)*)/expΓ- T d t h f t β ( t ) σ ( t ) ] } \ (4.12)
\ L -β/2 Δ / β J
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ω (fr \A7( f\\ — pvn Γ — Γ ί\]f I f(lΛ\2 rntVi ( Rm(lr\l')\~\/A^JC '" \J )) — CΛJJ |_ 2 I UK, I J W I L/ULll ^|JCl/^A\J/Z,y J

/ Γ β<2 Ί\ / l \
•(exp - J dthfβ(ήσ(t)\) (-=n([Q9δ])) (4.13)

\ L -β/2 ' J / / u > \ 0 /β
with 0<δ<β/2.

Proof. We choose a finite mode approximation to H avoiding the set (k\ω(k) = 0},
cf. e.g. [7, Sect. 5] for details. Then H has a unique KMS state. Integrating out
the bosons as in [2] results in the Ising expectations (4.10), (4.11) with Wβ(t) and
hβj(t) replaced by their finite mode approximation. As the number of modes tends
to infinity, because of (2.1), the Ising expectations converge to (4.10), (4.11) and the
finite mode KMS states converge to the state ωβ constructed through the
perturbation expansion in ε.

An alternative route is to trotterize exp [ — βH~\ with respect to the interaction

./α/2 σz$dkλ(k)(a+(k) + a(k}\ Let us use the short-hand a\f) = \dkf(k}a\k\ Then
averaging the product of Weyl operators yields

7(ί)σ(s)5~<[α + (A) + α(A)]ί[α + (A) -

]dtσ(tK\_a + (λ} + a
o

(4.14)

Here <y is the time-ordering. <4t4s> are imaginary time correlations with respect
to H° = §dkω(k)a+(k)a(k\ in particular,

< W(f» = exp [ - ^dk\f(k}\2 coth (βω(k}/2)l (4.15)

In (4.10)-(4.13) we only shifted the time-interval to [ - β/2, β/2] in order to make
the limit β-*co more transparent.

Our construction covers (4.10), (4.11). To obtain (4.12) we use in addition that

γ-lH,σz] = σy (4.16)

and therefore, by periodicity,

i i / / Γ β/2 Ί) = lim^?τ;\σ(0) exp " ί Λft/,/*(ί+<*Mθδ^oθ2ιε\ \ L -0/2 J
Γ β/2 Ί \ \ Γ Ί

-exp - J d t h f β ( t ) σ ( t ) } exp -^\dk\f(k}\2coth(βω(k)/2) .
L -β/2 ' J / Λ L J

(4.17)
To obtain (4.13) we use σyσz = ίσx together with (4.16). Therefore

i i / Γ βl?
α— -( (σ(^)-σ(0))2exp - f dthf β(t)σ(f)
o 4 ^ ε \ L 4I2 *'*

•exp l-τ\dk\f(k)\2 coth 08ω(fc)/2)] (4.18)
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We want to prove that (4.11) to (4.13) have a limit as /?-> oo. In essence, this
amounts to prove that a ferromagnetic Ising model with periodic boundary
conditions has an infinite volume limit. The answer is well known. For h ̂  0 and
for h = 0, m* = 0, the limit is the unique Gibbs state. For h = 0 and m* > 0, the
limit is the \ mixture of the -f and — state. This last statement can actually be
proved only with the exception of a countable set of temperatures. In our context
we have three complications: (i) The interaction and the magnetic fields are weakly
j8-(i.e. volume-) dependent, (ii) We have to show convergence also for the measure
conditioned to have a flip at the origin, (iii) The space of configurations is not
compact because of the arbitrary number of spin-flips in a bounded interval.

ad (i): This can be dealt with by simple uniform estimates. We do not take the space
to write them out.
ad(ii): Fortunately the conditioning respects the FKG inequality. Thus the major

part of the argument goes through without changes. Only at one point do we have
to spatially average.
ad (iii) As is well known from the theory of stochastic processes, the convergence
of moments has to be supplemented by tightness. We use reflection positivity to
prove that the distribution of the number of spin flips in an arbitrary bounded
interval decays faster than any exponential.

Let us introduce the infinite volume Ising measures. The limit Γ -> oo of the
measures < > + ( _ ) > Γ , cf. (4.7), defines the probability measure < >+ (_ }(α,ε,/z)
( = <•>+(_)) on ΩR = Ω, the space of spin configurations over the real line. FKG
domination ensures the existence of the limiting moments as T-» oo. For < )+ (_ }

the number of spin flips in a bounded interval has a distribution which decays
faster than any exponential. This follows from Lemma 4.4 to be proved below. As
usual we define the spontaneous magnetization by

(α,ε,0). (4.19)

The conditioned measure < >+ f Γ > J C, x| < T, satisfies FKG. Spin flip at x means
σ(x+) = — σ(x-). This can be achieved by a strong local magnetic field to the left
of x and an opposite one to the right of x. Thus FKG holds. By FKG domination
the limit T->oo of < >+,Γ f X exists and defines the conditioned measure <•>+,*
on Ω. From Lemma 4.7 to be proved below it follows that for < >+ >x the distribution
of the number of spin flips in a bounded interval decays faster than any exponential.

To state the limit /?-» oo of (4.10) to (4.13) we have to define the local fields

hf(t) = ^

(4.20)

(4.21)

Proposition 4.2.
(i) Let be either h φ 0 or h = 0 and m* = 0. Then for anyfεJtf,

lim ωβ(W(f)) = exp [ - i jdfc|/(/c)|2] <exp [ - f dthf(f)σ(t)~\ >+ , (4.22)
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lim ωβ(σzW(f)} = exp[ -i|^|/(/c)|2]<σ(0)exp[-\dth f(t}σ(t)-]>+, (4.23)

lim ωβ(σyW(f)) = — — exp[ — ^dk\f(k)\2~\

• (| dt h'f(t) < σ(0)σ(t) exp [ - J dt hf(t)σ(t)'] >+

+ '(4.24)

\ /

(ii) Ifh = 0 and m* > 0, then for fixed s and with the possible exception of a countable
set of as the limit /? -> oo exists and is given by the expectations on the right-hand
side of (4.22) to (4.25) with respect to the measure i< >+ +^< >_.

To prove Proposition 4.2 we need some auxiliary lemmas.

Lemma 4.3. For h^O and for h — 0, m* = 0, the moments converge,

lim ( Π σ(tj } = ( Π σ(θ) ) - (4 26)
£^oo \ j = ι Iβ \ j = ι I +

Proof. We use FKG domination and the Lee-Yang Theorem as in [8].

Lemma 4.4. Lei A c [ — β/2,β/2] be a bounded interval and zeR. Then there is a
constant c(z\ depending only on z, such that

<e~z" (Λ)>/^e |Λ | c (z). (4.27)

Proof. Because of the underlying Hamiltonian the measure <•>£ is reflection
positive. This can also be verified directly from the definition of < >j5. The free
measure is reflection positive. The interaction can be written as

β/2 0/2

- f dt ] dsWβ(\t-s\)(σ(t)σ(s) + σ(-t)σ(-s))
0 0

β/2 β/2

-2\v(dλ) \ dte~λtσ(t) J dse~λsσ(-s)
o o

with a positive measure v because of (4.5). In this form [14] applies. Let A = [0, ί],
0 < ί < β/2. By reflection at zero and Schwarz inequality,

/£-zπ([0,r])\ < Xg-z(n([0,i]) + n([-i,0]))\l/2 (428)

We repeat (4.28) n times such that 2"t^β but 2n + 1t>β. If z < 0, we bound
exp [ - zn(l - β/2, - β/2 + 2nί])] ̂  exp [ - zn(\_ - β/2, β/2'])']. If z > 0, we bound
exp [ - zn([ - β/2, - β/2 + 2wί])] g exp [ - zn([ - ^/2,0])] and apply (4.28) once
more. In any case we obtain the bound
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C\A | f i(<Γz - 1)1

(4.29)

with the free energy /^(ε) = — log Z, Z of (4.6).

As a prelude to the conditioned measure we need a result on the spin-flip
density, 0 + (_)>Γ(x), in the measure with + ( — ) boundary conditions. g + ,τ(x) is
defined by

g + tT(x)= Hm-Wσ(x + <5)-σ(x)]2>+,Γ (4.30)
<5^oo4()

with |x| < T. Correspondingly we define g^^τ(x). 0 is the infinite volume spin-flip
density. By translation invariance it is constant. Thus g is defined either as in (4.30)
or by

, (4.31)

independently of δ, δ > 0. g agrees for + and — boundary conditions.
We note that

I dx0 + ,r(x) = <H([-M])>+,r (4-32)
— δ

Hence

lim J dxg + >τ(x) = 2δg. (4.33)
Γ-»GO -δ

We have to strengthen the convergence.

Lemma 3.5. We have

lim g + tT(x) = g (4.34)
Γ-^oo

uniformly on compact intervals.

Proof. For |x | < T we differentiate and obtain

^0 + ,rM = ατ(x)^ + )Γ(x) (4.35)

with

]τdtW(t-x)σ(t)}θ^σ)\TtX9 (4.36)

-T
J

2 - o o

dtW(t-x}+ \dtW(t-x) . (4.37)
T

Here < >+,r,^ is the measure < >+)T conditioned to have a flip at x. θx=i if
σ(x_) = 1 and θx = - 1 if σ(x_) = -' 1. Clearly

|α r(x)|^c. (4.38)
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Now let [ — δ, δ~\ be the interval of interest. Then

(4-39)
J

13;I ^ δ. By (4.39) and (4.36) we conclude that

δ Γx Ί

dxg + τ(x)= J dxexp Jdx'αr(x') 0 + ιT(jO,
i -<5 ]_y J

d
) g+ Γ(x)^c, sup

1*1 *

uniformly in Γ. Together with (4.33) this implies the assertion

Lemma 3.6. For h^Q and for h = 09 w* = 0, the moments converge

£ c, (4.40)

l i m Π < τ ( ί =
β-+co \j=l / βtQ \ j = l

Proof. By FKG domination (4.41) holds provided that

<*(0>+,o = <σ(f)>-,o (4 42)

for all t φ 0. We choose a sufficiently small δ and average,
(5

J dx<σ(ί-x)>+>Tt0

— δ
«5

- J
— «5

- J Jxl im<σ(ί)[σ(x + ̂ )-σ(x)]2>+,Γ_^ + ,r_,(x). (4.43)
-δ λ^O Λ

By Lemma 4.5 f̂ + > r_5(x) converges uniformly to 0. Therefore (4.43) is bounded by

— i^<σ(ίW[-δ,δ])>+>τ_ί (4.44)

for sufficiently large T. Repeating the same argument for the — boundary condition
we obtain, for T sufficiently large,

^ J rfί<σ(ί)>-,r,o^ f Λ<σ(ί)>+fΓ,o

r-^ (4.45)

By Lemma 4.3 and 4.4 the upper and lower bounds agree as T^oo. Thus (4.42)
holds ί- almost surely. By spectral representation <σ(ί)>0>+ is continuous
in /
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Lemma 4.7. Let A c [ — β/2, β/2~] be a bounded interval. Then for any z < 0 there
is a constant c0(z) such that

<e-"*Λ*\0^c0(z) (4.46)

uniformly in β.

Proof. Let gβ be the spin-flip density for < yβ. Let Aδ be the interval A with a
border of length δ added. Then, using periodicity,

1 δ 1 δ δ
/ -zn(Λ)\ _ x Γ J / -zn(Λ+x)^ < jL Γ dγ/p-zn(Λ\
\e /β,0~ Tc J a*\e ^ / J . x ^ ^ c j J fl X ^ e 70>JC

20 -δ 2,0 -s

= (e-2n(ΛS}^n([_-δ,δyyβ/gβ. (4.47)

The claim follows now by Schwarz inequality and Lemma 4.4

Proof of Proposition 4.2. The differences

β/2 β/2

J at f ί/5(P^(ί-5)-^(ί-s))(σ(ί)-σ(5))2

-0/2 -β/2

and
0/2

J dt(hftβ(t)-hj(t))σ(t)
-β/2

tend to zero as β -> oo uniformly in σ.

ad (i): Lemma 4.3 and 4.4 for < yβ respectively Lemma 4.6 and 4.7 for < > j8j0? ensure
the convergence for averages over local functions as in (4.10) to (4.12),
respectively as in (4.13).

ad (ii): If h = 0 and m* > 0 then <•>+ / < • > _ . Tightness holds as before. The
problem is to identify the limit(s) of the sequences < >^ and < >^,0

Let us assume that

J at W(t) < σ(0)σ(ί) >+ (α, ε, 0) (4.48)

is continuous at α. By convexity of the ground state energy (= Ising free energy)
in α, this holds for all α ̂  αc except possibly a countable set. By tightness, we can
choose a subsequence such that < >^ has a limit measure <•>, on Ω as /?-»oo.
<•> is translation invariant [9], cf. also [10], and hence \dt W(t)(σ(ήσ(tyy+ =
JdίJF(ί)<σ(ί)σ(0)>. Since W(t\ <σ(ί)σ(0)>+, <σ(0)σ(ί)> are positive, we have
<σ(ί)σ(0)>+ = <σ(ί)σ(0)>. By [9] all even correlation functions must agree. Since
for < >β, hence also for <•>, all odd correlation functions vanish, we must have

< > = iO++έ< >-.
For the conditioned measure we average, as before, over a small interval. Then

J dx < Π σ(tj - x) V0 = < Π σ(tj)n( [ - δ, δ]) >β/gβ. (4.49)
-δ

The right-hand side converges to

J d
— δ
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which identifies the limit measure for < >/?,o as /?-> oo

By definition the state ωβ has no superfluid phase. Let us try to understand
then how the spin-boson system behaves in the presence of a condensate. For the
sake of discussion we assume that ω and λ are continuous, ω(0) = 0 and ω(k)
strictly bounded away from zero otherwise. The average superfluid density, ps,
depends on how the limit of infinite volume, i.e. of infinitely many modes, is carried
out. However, if this limit exists at all, because of (4.14), the functional integral
for cύβ(W(f)) must acquire the extra piece

b /J
(4.50)

/continuous close to k = 0. If λ(0) = 0, then the condensate does not couple to the
spin. If λ(0) φ 0, ps > 0, then the long range term

dominates for /?-»oo, since it is proportional to β2 rather than β. The long range
term forces the spin to be either up or down with probability one.

We do not attempt to give a full proof here. Rather let us explain the case of
a pure condensate, denoted by ω|. Then, undoing the square,

= exp[-iJ

(4.51)
o

where D = ρsoίλ(Q)2/2 and y = λ(0)~/ai/2Imf(0). The integration over μ(dσ) yields

cosh(jS^/ε2 + (ξ + h + ίy)2). For large β the ξ integral is estimated by steepest
descent. Since the functions are given explicitly, it is not hard to show that the
error term vanishes as β-» oo. As a net result the term in the curly brackets tends
to one as β -> oo. The corresponding computation for ω|(σζW(/)), ζ = x,y, z, yields

ζ" ""'
(4.52)

Thus, in the limit /J-> oo, the spin decouples from the condensate. If h > 0( < 0),
the spin is up (down). For h = 0 the spin state is a ^ mixture of up and down.

5. The Fortuin-Kasteleyn Representation and Continuum Percolation

Symmetry breaking for the spin-boson Hamiltonian is equivalent to the existence
of a ferromagnetic phase transition for the one-dimensional continuum Ising model
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with long range, 1/f2, interactions. Thus we have to analyze the phase-diagram of
the Ising model in the (α, ε)-plane. Since the results of [4] refer to the standard
Ising model over Z, an immediate impulse is to use a discrete approximation to
the continuum model. We choose a lattice spacing δ. The Ising model approxi-
mating (4.7) as δ ->• 0 has then

(i) a nearest neighbor coupling of strength
(ii) a long range coupling of strength (a/2)δ2W((ί— j)δ\

We note that the asymptotics of the long range part,

]imj2(δ2W(jδ))=l (5.1)
j^oo

independent of the lattice spacing. On the other hand the nearest neighbor coupling
is increasing whereas the long range couplings are decreasing as <5-»0. For this
reason we do not know whether there is monotinicity with respect to δ.

Let (-yδ

+ be the infinite volume Ising measure for the potentials (i), (ii) above
with + boundary conditions on a lattice with lattice spacing δ. In the obvious
way, we may think of < ><5

+ as a measure on Ω. Tightness can be shown as
before, using reflection positivity. Therefore there exists a subsequence such that,
weakly on ί2, < >β

+ has a limit as <5-»0. Let us denote the limit measure by <•>.
Since < >(5+ is translation invariant, so is {•>. The limit measure <•> has to be
a Gibbs measure for the potentials h and (a/2)W(t), because the conditional
measures for <•> satisfy the DLR equations with respect to these potenials. If
h -φ 0, then the continuum model has a unique Gibbs measure. Hence

l i m < Λ(α,ε,ft) = < >+(α,fi,Λ), (5.2)
<5-> oo

h^O. We expect (5.1) also to hold for h = 0. Unfortunately we do not know how
to show this from abstract arguments.

In order to prove Theorems 2 to 4 we are forced then to pay closer attention
to the proofs in [3,4]. Their essential tool is the Fortuin-Kasteleyn (FK)
representation which leads to a percolation problem with long range bonds. This
construction works also here giving rise to a continuum percolation problem.
Incidentally Aizenman and Newman [3] also studied a continuum percolation
bearing some similarity to ours.

We work in finite volume [-T, T] with + boundary conditions. The external
field h — 0. For the discrete approximation, lattice spacing δ, the FK representation
yields the following bond percolation:

(i) Nearest neighbor bonds {jδ, (j + l)δ} are occupied with probability 1 — εδ,
empty with probability εδ.

(ii) General bonds {lδ, jδ}9 i<j, are occupied with probability \ — e~
δ2y W((ί~j)δ\

empty with probability e~
δiΛW((i~m.

The bond variables are independent. To obtain the Ising model each bond
configuration is weighted by

(independent weight) x q€τ , (5.3)
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q = 2, where Cτ is number of connected components. Here (— oo, — T] u [T, oo)
is considered as a single connected component. This is the proper transcription
of the + boundary conditions.

As δ -» oo the discrete Ising model tends to its continuum version (4.7). Clearly
also the bond percolation has a well defined limit:

(i) On the real line we have a locally finite configuration of points. We refer to
them as points of fracture. A configuration of points of fracture is denoted by
τ = {τy|7 = 05 ±1,...}, τj^τj+1. For independent percolation the points of
fracture have a Poisson distribution with constant density ε.

(ii) On the half-plane RQ = {s, t\s rg ί} we have a locally finite configuration of
points denoted by ω = {ω^j = 1,2,...}, ωj = {s7 , ί,-}. Each point [sj91}} is referred
to as bond starting from the site Sj and reaching the site t^ Sj ^ ί, . For
independent percolation the bonds are distributed according to an inhomo-
geneous Poisson process with density aW(t — s)dtds. Bonds and points of
fracture are independent.

The open intervals ( τ j 9 τ j + 1 ) 9 7 = 0, ±1,..., form the basic components. Two
intervals, (τf, τ ί + 1) and (τp τj+1) belong to the same connected component if there
exists a bond (5, t} such that se(τ f,τ ί + 1) and t€(τj9 τ/+ι). The bonds of (ii) link the
basic components. This concludes our prescription for the independent continuum
percolation.

To obtain the correlated percolation corresponding to the Ising model we have
to go through the finite volume construction. Let τ_ be the smallest point of
fracture with — T^τ_ and τ+ be the largest point of fracture with τ+ ^ T. Let
CT(τ, ω) be the number of connected components in the configuration (τ, ω), where
(— oo, τ_)u(τ + , oo) is taken as a single component. In the finite volume [ — Γ, T]
the configuration (τ, ω) is weighted by

(independent weight) x qCτ(τ>ω\ (5.4)

q ̂  1. Independent percolation is q = 1 and Ising means q = 2. Normalized to one
(5.4) defines a point process on RuRg. Let PqtT denote the corresponding
probability measure. Again the object of interest is its infinite volume limit

l imP ί t Γ = P€. (5.5)
Γ^oo

The limit exists by monotinicity in the FKG sense.
The FKG property is an important tool for analyzing the correlated percolation.

Therefore let us summarize the main points. Let Γ denote the set of all
locally finite point configurations on R u R o We introduce a partial order between
configurations by

(τ,ωK(τ>'), (5.6)

(τ', ω') dominates (τ, ω), if as point sets τ n> τ' and ω c= ω'. A function on Γ
is said to be increasing if it is non-decreasing with respect to this partial order. A
probability measure, P on Γ is an FKG measure if

P(fg)^P(f)P(g) (5.7)
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for all increasing, bounded and measurable functions f,g on Γ. For two
measures P, P' on Γ, P' dominates P in the FKG sense, P' > P, if

P'(/)^P(/) (5.8)

for all increasing, bounded, and measurable functions / on 7".
In [4] it is shown that the lattice version of the random cluster model is FKG

and that the measures for + boundary conditions decrease as T->oo. These
properties carry over to the continuum percolation. Thus PqtT and P^ are FKG
measures, q^l, and the domination

with T'^T holds.
There are two other, most useful comparison inequalities with respect to q, W

and ε. If q' ^ q ̂  1 and u!W'(ί) ^ uW(t\ ε' ̂  ε, then

Pq>Pq. (5.10)

If q' ^ q ̂  1 and a'W'(t)/q' ^ <x,W(t)/q, ε'q' ^ εq, then

If we choose q = 1, then the correlated percolation is compared with independent
percolation. From this we can read off regularity properties of Pq. In particular,
the number of points in any bounded region of R u R g has a distribution which
decays faster than any exponential. Also, all accidental degeneracies have measure
zero. Thus, by discarding a set of measure zero, we may assume that τ j <τ j +1,
s j < tj and st φ τ i 9 τj φ τj for all ij.

Let A be an event defined by specifying the configuration in an arbitrary subset
of RuRφ. Then also the conditional measures Pq>T('\A) and Pq(-\A) enjoy the
FKG property. It remains to state the correspondence with the quantities of
interest. We have

m* = <σ(0)>+ - P2({0 belongs to an infinite cluster}), (5.12)

<σ(0)σ(ί)>+ = P2({0,£ belong to the same connected component}). (5.13)

6. Bounds on the Critical Coupling

We prove Theorem 2

Proof of Theorem 2 (i). The existence of αc(ε) is proved in [2]. Decreasing ε increases
the nearest neighbor coupling. By Griffiths inequality <σ(0)>+(α,ε) is decreasing
in ε and hence αc(ε) is increasing

Proof of Theorem 2 (ii). The lower bound (3.4) is the mean field bound [2].
This bound misses the important qualitative feature that αc(ε) tends to a limit

larger than zero as ε->0. To prove that 1 ̂  αc(ε) we need the machinery of [3].
In fact, 1 ̂  αc(ε) follows from the dichotomy (3.7) since <σz)+ ^ 1. Nevertheless
it is useful to study the simpler problem (3.3) first. It exemplifies the changes needed
in the proof of (3.7) as compared to [3]. Actually, they are surprisingly minor.
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Let αc>1(ε) be the critical coupling strength for the independent percolation P{

and m? be its percolation probability. Since by (5.10) m* ̂  mf, we have

αCil(ε)^αc(ε). (6.1)

Hence it suffices to show that, if α < 1, the independent model does not percolate.
Because of the points of fracture we have to redefine the points of "furthest

direct reach," cf. [3, Sect. 2]. We consider the stochastic process [Ln,n^ύ] with
LO = 0, L1 the smallest point of fracture, τj9 such that τj_1<L< τj9 and for n>l9

(
largest point of fracture, τj9 such there
is a bond between some xε(Ln_ί9Ln)
and ye(tj-l9 τ,-), Ln^τj_ί, if there is such a point
Ln9 otherwise. (6.2)

The increments are Un = Ln — Lw_ 1.
Because of independence the conditional probabilities for the increments can

be obtained explicitly,

-* J ds]dtW(t-s)
-Un 0

+ JdfεέΓ e*exp| -α f ds ] W(t-s) 1 £(1 + t/»~a, (6.3)
0 L -ϊ>n U-ξ J

if M ̂  D + with D + sufficiently large.
In the definition of the set ALK we add the requirement that ξ+ and ξ_ are

points of fracture. In the definition of the set FLK we require that ξ is a point of
fracture. It is advantageous not to impose such a requirement for the left endpoint
0.

With these changes Lemma 3.1 of [3] holds. The remainder of the argument
carries over unaltered: only events referring to bonds are estimated. The information
on the points of fracture are contained in Λ/v,r and Λ^*,r> which are estimated
by [3, Lemma 3.1]

Proof of Theorem 2 (Hi), (small ε) Let mf(α, ε) be the percolation probability for
the independent percolation Pί. By (5.10) we have

m*(α/2,2ε)^m*(α,ε). (6.4)

We have to show that for any α > 2 we can achieve mf > 0 by making ε small
enough. We scale distances by a factor 2ε. Then the density of points on the line
is 1 and the bond density is (α/2) (2ε)~2W((t — s)/2ε). To {τ^ } we superimpose the
eually spaced configuration {n, neZ] of points of fracture. Using only bonds with
5, ίe(n, n + 1), an open interval (n, n + 1) is a single connected component with
probability pε. The intervals (m, m + 1) and (n9 n H-1) are connected at least with
probability

( Γ / γ O T + 1 n + l Ί\

l-exp -- J ds J Λ(2ε)-2H/((ί-S)/2ε) , (6.5)
L ^ m R J/
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m<n. Thus (6.5) defines a long range independent percolation problem on Z. Its
percolation probability is a lower bound for m*(α/2, 2ε).

Using that the points in [n, n + 1] and the bonds are independent and that both
have a Poisson statics, we bound pε by

1
Γ α« °° Ί

--Jdsf ΛCεΓ^ίf-^ε)
[_ / O ί J

Therefore pε -> 1 as ε -» 0. For large n — m, p(n — m) ~ p2(a/2) \n — m ~2. The nearest
neighbor probability, /?(!), tends to 1 as ε-»0. If α/2 > 1, [11, Theorem 1.2] asserts
that the system percolates provided ε is small enough .

Remark. Imbrie and Newman [12] proved recently that the standard Ising model
with pair interaction (α/2)|z —j\~2ϊoτ large separation has a non-zero spontaneous
magnetization provided α > 1 and the nearest neighbor coupling is sufficiently
strong. Clearly, for the spin-boson Hamiltonian we expect then limα c(ε)=l.

ε^O

We lost a factor 2 by estimating m* by m*. Let us try to use the same tecnique
as for large β. The flip density is one and the scaled interaction ε~2W((t — s)/ε).
We break the systems into blocks of length one. In each block σ is constant with
a probability approaching one as ε-»0. The interaction decays as 1/ί2 for large t.
The difficulty arises when trying to estimate the effective nearest neighbor coupling.
Taking the worst case, spins a distance two apart, yields ε~2W(2/ε) = 1/4 as ε->0.
(This cannot be improved by changing the block size.) The large effective nearest
neighbor coupling is due to spins which are close.

Proof of Theorem 2 (iii). (large ε) As in [2] we break the continuum spin system
in blocks of suitable size. W(t — s) is bounded below by a function constant on
each block. We then average for fixed block magnetization and compare to a
± spin system by means of Wells' inequality.

/ G O \ - l

We set UMF = \ \ dtW(t) ) We have to show that if α>αM F, then
\ o /

<σ(0)> + (εα, ε) > 0 for ε sufficiently large.
We scale the flip rate into the interaction. Then the flip rate is 1 and the

interaction is ε~2W((t — s)/ε). The block size is εfo, where ftjs chosen such that

b

oi\dtW(t)>L (6.7)
o

Let

1 (

,. = - J dtσ(t) (6.8)

be the magnetization of the j — th block, | W y | ^ 1. The lower bound for <σ(0)> +(α, ε)
is associated with the Hamiltonian

H=-(εα/4) £ b2W(\i-j\ + lKm7 + b.c, (6.9)

and the measure
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~U^mj)e-H. (6.10)
^ j

εb

The single site measure, vε, is the distribution of the magnetization m = 1/εb j dtσ(t)
o

with respect to

^μϊo,εb](dσ) exp Γ(εα/4) J dt J rfsε ~ 2 W((t - s)/ε)σ(t)σ(s) 1. (6.11)
^ |_ o o J

μ^o.βt] is the spin flip process with rate 1 and free boundary conditions in the
interval [0, εfe].

Equation (6.11) is a standard mean field model. A given spin interacts with
the other spins through a weak long-range potential with integrated strength of

f b \-ι
order one. The mean field model has the critical coupling strength αc( J dtW(t)

Therefore, by our choice of b, in the limit ε -» oo

vε(dm)^(δ(m - m*) + δ(m + m*)), (6.12)

where m* > 0 is the spontaneous magnetization of the mean field model (6.1 1). w* is
independent of ε.

For ε sufficiently large we can satisfy Wells' inequality with discrete spins of
magnitude m*/2. Therefore

/4). (6.13)

The left-hand average refers to a discrete Ising model, σ7 = ±1, with Hamiltonian

H= -(εαm*2/16)£fo2^((|/-7Ί + l)/>)^, (6.14)

α, m* and b and do not depend on ε. The interaction is i—j\~2 for large separation.
Therefore increasing ε we can achieve that <σ0>+ (εαm*2/4) > 0.

7. Jump in the Order Parameter

For the proof of Theorem 3 we only indicate the major changes as compared to
[3, Sect. 4]. This procedure puts a somewhat heavy burden on the reader. The
alternative choice — a complete transcription of the proof — would be too much of
a repetition.

Since we want to show absence of percolation, the main worry are intervals
of points of fracture which are too long. FKG helps again.

Lemma 7.1. Let nf(Λ) be the number of points of fracture in the bounded interval
A. Then

P2({nf(Λ) = Q})ίPl({nf(Λ) = 0}) = e-*Λl, (7.1)

I A I the length of A.

Proof. χ ( { n f ( A ) = 0}) is an increasing function. Thus (7.1) follows from (5.10)
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We note that (7.1) holds also for the measures conditioned on the configuration in
an arbitrary subset of R u RQ .

Proof of Theorem 3. (in the spirit of a guiding comment to Sect. 4 of [3]). The
strong FKG property holds also for the continuum system, cf. Sect. 5. Let A be
the event of specifying all points of fracture and all bonds except in the set
[x,x + dx] x[y,y + dy}. Then the conditional probability

P2 (there is a bond from [x, x + dx] to [>, y + dy]\A) = uW(y - x)dydx. (7.2)

This identifies K + (z) = W(z\ α - β + . We define

MH = P2,#(0 is connected to R\[- #,#]). (7.3)

M + = m* in our notation. Because of FKG MH is also obtained by conditioning
P2 on all fracture points outside [—//,//] and on all bonds with both endpoints
in R\[ — H,H~\ and taking the supremum over the conditioning.

For xeR let C(x) be the connected component to which x belongs. C(x) is a
countable union of open intervals of the form (τ7 _ l 5 τ 7 ). Adapting Definition 4.2
we call a bond {x,j;} Ή-anchored if C(x)*n(R\[x-#,x + //]) ^(3 and C(y)*n
(R\[y — H,y + H~\) 7^0, where C(x)* and C(y)* are connected components of x
and y obtained when removing the bond {x,y}.

In Lemma 4.1 A is any event determined by bonds with both sites at a distance
greater than H from x and y ana determined by points of fracture in
R\([x - H, x + H] u [> - H, y + #]). The estimate reads

P2 (there is an H - anchored bond from x to [y, y + dy])\A)

^(β + M2

H + ε)/\x-y\2dy. ( ' }

The modified ALίK and FLK are given below (6.3). Lemma (4.2) remains
unchanged.

CH(X) = C(x)~n [x — H, x + H], where for the connected component C(x)~ only
bonds with both sites in [x — H, x 4- H] are admitted. The left anchor is a bond
{w7, w} such that w/eCH(x) and w is maximal. In Definition 4.3 ii) of a span we
add the requirement that the right endpoint is a point of fracture, i.e. the span
[r,s] has r = x and s the smallest point of fracture larger than the s of [3, (4.9)].

Lemma 4.3 and 4.4 are unchanged. The bound (4.10) reads now

(7.5)
dist(y,^)^J

and the bound (4.15) now reads

(7.6)

In the proof of Lemma 4.3 we have also the case where the distance between y
and the smallest point of fracture larger than y is larger than J. This case is covered
by Lemma 7.1. For (4.12) and (4.13) we use that W(t) is decreasing for t ̂  0.

With the basic estimate (7.6) the remainder of the proof is identical to
[3, Sec. 4]



Ground State(s) of the Spin-Boson Hamiltonian 299

8. The Boson Density
Let

n(f} = \dxf(x)a+(x)a(x) (8.1)

be the Boson density in position space and let

nm(f) = $dkf(k)a+(k)a(k) (8.2)

be the Boson density in momentum space, / some smooth, rapidly decreasing test
function. Averaging the Weyl operator, W(f\ over the appropriate Gaussian
measure yields

• Jdfe Jdfc'λ(fc>"ω(k) | ί |β"ω(k') |5 |(l - έΓ f (k - k') ) , (8.3)
J/ +

denoting Fourier transform, and

. (8.4)

We restrict our discussion to h = 0. If α ̂  αc, thus m* > 0, we substitute σ(t) by
(σ(t) — m*) + m*. In (8.3), (8.4) thereby a term is factored out of the average. This term
equals the ground state average of exp [ — n(/)], respectively exp [ — πm(/)], for the
spin-boson Hamiltonian with ε = 0, h = 0, but an effective coupling constant am*2.

We also note that the distribution of the number of bosons with momentum in
the region Λ decays faster than any exponential provided §dkλ(k)2/ω(k)2 < oo. If

A
J dkeikxλ(k)/w(k) is locally L2, then the distribution of the number of bosons in any
bounded spatial region decays faster than any exponential.

We differentiate (8.3), (8.4) at / = 0. This yields the average spatial Boson
density

< a + (x)φ) > + = % J v(dλ) I J dkeίkxλ(k)/(λ + ω(k)) \ 2, (8.5)
^ o

and the average momentum density

+ = j v(dλ) lλ(k)/(λ + ω(fc))]2. (8.6)

Here v(dλ) is the spectral measure of the two-point function of the continuum
Ising model,

. (8.7)
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In particular, the average number, AT, of bosons in the ground state is

. (8.8)

Thus the average boson density is tied in with the Ising two-point function.
We will prove below that for all α < αc,

^r2 (8.9)

for large t. Close to αc, presumably, <σ(ί)σ(0)> + ̂  m*2 for intermediate t and then
it eventually drops as t~2 to zero. For α ̂  αc the asymptotic decay of the two-point
function is more complicated. (This behavior is proved only for the discrete Ising
model [12].) At α = αc the truncated two-point function is expected to decay as

(8.10)

For α > αc there is a power law decay as

-m*2^rκ (8.11)

for large t. K increases from 0 as α increases beyond αc. There exists another critical

coupling strength cζ at which K — 2 and K — 2 for α > cζ. αc ̂  α < oζ is an inter-

mediate phase. One expects that αc (ε) ->• 2 as ε -> 0 and that αc (ε) has the same slope
as αc(ε) for large ε.

For the sake of discussion let us assume that ω(k) ~ \k\ for small k and ω(k) ̂
ω0 > 0 otherwise. For α < αc, we conclude from (8.9) that v(dλ) ~ λ for small λ. Thus

+ ^|xΓ d - 2 (8.12)

for large x and

for small k. At αc the spectral weight at zero, v({0}), jumps from zero to m*2.
Correspondingly, for α ̂  αc the decay of the Boson density jumps to

for large x and to

-|/cΓd (8.15)

for small k.
In particular, we have

<JV> + = oo, for α<α c, (8.16)

AT = oo with probability one, for α ̂  αc. (8.17)

It remains the task to prove the decay (8.9) for the two-point function.
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Proposition 8.1. Let h = Q and α<αc(ε). Then there exists constants c+ and c_,

depending on α and ε, such that

c_/(l + ί2) ̂  <σ(0)σ(ί)> + ̂  c + /(l + ί2). (8.18)

The lower bound follows from Griffiths inequality. The achievement here is

that the upper bound holds all the way to the critical point. As before we follow
[3, 4]. This time the difficulty is that there is no Simon inequality available in the

continuum. With a little bit of extra work Lebowitz inequality does equally well

for our purposes. Since we work in the one-phase region, we always set

< > = < > + (α, ε). The proof is split up into four lemmas.

Lemma 8.2. Let 0 < L < | x | and let Λ(L) = {u,v \either |w |^L, \υ\^L or |w |^L,
\v\^L}. Then

w f dv(σ(Q)σ(u)yW(u- v)(σ(v)σ(x)y
Λ(L)

,L<σ(0)σ(|x -L)>. (8.19)

Proof. For the finite volume [ — T, T] the interaction is split as

f at J ds Wλ(t, s)σ(t)σ(s) = λ J at J ds W(t - s)σ(t)σ(s)
[~T,T]2 /l(L)n[-Γ,Γ]2

+ j dtfds W(t - s)σ(t)σ(s). (8.20)
l-T,τf\Λ(L)

We write

<σ(0)σ(x)>A§Γ, (8.21)
o dλ

where < >(L) refers to the expectation with respect to the equilibrium measure for

which the interactions between [ - L, L] and R\[ - L, L] are set equal to zero.

By GKSΠ and Lebowitz inequalities we obtain in the limit T -> oo

<σ(0)σ(x)> ^(α/2)Jdw f dv(σ(Q)σ(u)yW(u- v)(σ(v)σ(x)y + <σ(0)σ(x)>(L).
Λ(L)

(8.22)

Let x > L. By conditioning on σ(L) and σ( — L) we obtain

<σ(OMx)><«= £ <σ(0)σ(x)>Sl) = ffpff(_ί.) = (,.<5β(L)>ff5<r(_t))(r,>w
σ,σ'

= Σ <σ
'

),1<5(7(_LU><« (8.23)

where we used the Markov property of the free measure and symmetry. In the

expression inside the curly brackets we cut out the interval [— L, L] and join the

resulting two pieces together. This gives the correlation 2 < σ(L)σ(x)>^ with an
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interaction smaller than W. The first factor is bounded by <σ(0)> + jL and the third
factor is bounded by \.

To shorten our notation we set τ(x) = <σ(0)σ(x)>.0 rg τ(x) ̂  1, τ(0) = 1, τ(x) =
τ(— x) and τ(x) is monotone decreasing for x ^ 0.

Lemma 7.3. Let

v). (8.24)

T/ze two-point function satisfies the weak bound

τ(x) £ const exp [ - (log(l + |x|))1/2] (8.25)

implying that

lim yL = 0. (8.26)
L->oo

Proof. The bound (8.25) is a consequence of the percolation analysis [3], compare
with Sect. 6.

We choose x0 > L such that

W(u) ^ c/u2 (8.27)

for | M | > X O . We partition Λ(L)n{u + υ^.Q} into four pieces. The remainder,
Λ(L)r\ {u + v ̂  0}, follows by symmetry.

L

(1) L — x0 ^ u ̂ L, L^ R The integral is bounded by JίfoHφ) J Jwτ(w) which
L — xo

tends to zero as L-> oo.
(2) — L ̂  M ̂  L — x0, L ̂  t;. This case is discussed in [3].

L + XO

(3) L ̂  w ̂  L + x0, — L^v^L. The integral is bounded by J dvW(v) J rfwτ(w)
L

which tends to zero as L-» oo.
(4) L + x0 ̂  w, — L-^v ^ L. The. integral is bounded by

c J dw J dυτ(u)(u-vΓ2^c'(logL)τ(L), (8.28)
L + xo -L

which tends to zero as L -> oo

Lemma 8.4. T/ze susceptibility is bounded,

$dxτ(x)<oo. (8.29)

Proof. We integrate Lebowitz inequality (8.19). Then for M > L

M L M

J dxτ(x)^ J rfxτ(x)+ J du$dvτ(u)W(u — v)sup J dττ(υ' — x)
-M -L A(L) v' -M

,L f rfxτ(x), (8.30)
|x| <M-L
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and therefore

[1 ~ JL ~ <σ(0)> +,L] f dxτ(x) ^ } dxτ(x). (8.31)
-M -L

L sufficiently large and M -> oo yields a finite susceptibility

Lemma 7.5. T/z^re e dsίs some L such that for all x > L

τ(x) ^ c/x2 + βτ(x/2) (8.32)

with 0 < β < f

Proof. For each x > 3x0 we apply (8.19) with A(x/6\

τ(x) £ J du$dvτ(u)W(u - v)τ(v - x) + <σ(0)> + .x/6τ(5x/6). (8.33)
Λ(x/6)

As before, we partition the domain of integration. If either \u\ ^ x/6, t;| ̂  x/2 or
I u I ̂  x/2, i; ^ x/6, then the supremum of W is bounded by const/x2 and J duτ(u)
is bounded according to Lemma 7.4. On the other hand if either \u\ ^ x/6, x/6 g |ι;|
^x/2 or x/6g |w |^x/2, M^x/6, then the integral is bounded by y(x/6)τ(x/2).
Therefore

τ(x) ^ c/x2 + ((yx/6) + <σ(0)> + >JC/6)τ(x/12) (8.34)

for all x > 3x0. Since γx/6 and <σ(0)> + >x/6 tend to zero as x-» oo, (8.32) follows

The proof of Proposition 8.1 follows by iterating (8.32), cf. [3].
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