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Abstract. This is our second paper devoted to the study of some non-linear
Schrodinger equations with random potential. We study the non-linear
eigenvalue problems corresponding to these equations. We exhibit a countable
family of eigenfunctions corresponding to simple eigenvalues densely embed-
ded in the "band tails." Contrary to our results in the first paper, the results
established in the present paper hold for an arbitrary strength of the non-linear
(cubic) term in the non-linear Schrodinger equation.
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5. Introduction

In this paper we continue our analysis of the non-linear eigenvalue problem

(-A + V(x) + λW(u)(x))u(x) = Eu(\

which was initiated in [1]. In (5.1), A is the finite difference Laplacian,

(Δu)(x)= Σ «ω, (5-2)
y:\y-x\ = 1

* Address after July, 1988: Department of Mathematics, University of California, Los Angeles,
CA 90024, USA
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V(x) are i.i.d. random variables with distribution

±-e'v2HV9 (5.3)

and W(u)(x) is defined as follows:

W(u)(x)=ΣW(\y-x\)\u(y)\2. (5.4)
y

We assume that the function W(\x\) decays exponentially fast with rate mw > 0. To
normalize W, we impose the following condition:

In the first paper [1], we considered the problem of perturbing the solution of
the linear problem (5.1) corresponding to λ = 0. We found that this is possible,
provided that λ is restricted to a set, A, which is not an interval, and we showed that
the set of eigenvalues one finds for λ e A is a (random) Cantor set. In this paper, we
look at the non-linear eigenvalue problem (5.1) from a different perspective: We fix
some λ>0 and propose to construct solutions of (5.1), for the given value of λ.
Our main result is the following theorem:

Theorem NL2. Consider the distribution (5.3), and suppose that the kernel W(\x — y\)
of the operator W decays exponentially, with rate mw>0. Then there exists a
constant E\(v, ζ) and, for every λ>0,a set, Ω(λ), of potentials, V, of full measure with
the property that, for Ve Ω(λ), the non-linear Schrδdinger equation (5.1) has infinitely
many solutions, and the corresponding eigenvalues form a dense subset of

{E:\E\>E\(v,ζ)}. (5.6)

We remark that in [1] we stated this theorem under the more restrictive
assumption that W(\x\) have finite range. However, this turns out to be easily
avoidable.

This paper is fairly technical and many notations are required. Our most
important notations are summarized in Appendix D.

6. Strategy for the Proof of Theorem NL2

To explain our approach to this problem, let us fix an interval (E — ε, E + ε), with
ε > 0 and with \E\ large enough. What we must prove is that, for every λ > 0, the set
Ω(λ,E,ε) of potentials, V, for which the non-linear eigenvalue problem (5.1) has a
solution (E,ψ), with Ee(E — ε,E + ε), has full measure. Noticing that the set
Ω(λ, E, ε) is invariant under translations and that the group of translations acts
ergodically, we see that it is enough to prove that Ω(λ, E, ε) has positive measure.
Our proof consists in an explicit construction of a subset, Ω^, of Ω(λ, E, ε) of
positive measure.

Let us Γix an origin 0 in the lattice Έv. Let d0 > 0 be a number to be chosen later
on, and let us consider the following family of blocks:

= dn}. (6.1)
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We shall define Ω^ as a set of potentials Ffor which there is a sequence Bn of blocks
close to Bd such that the eigenvalue problems

- Aψn + Vψn + λW(ψn)ψn = EnΨn j

have solutions (En,xpn) converging, as nfoo, to a solution (£,φ) of (5.1), with

E e I £ 0 — -, Eo + - ), where £ 0 is the eigenvalue of (6.2) for n = 0. The set Ω ω will

be constructed as the intersection
00

Ωo0=^Ωn (6.3)

of a decreasing family of subsets

Ω0DΩ1DΩ2D ... . (6.4)

Our construction is inductive and, at each iteration step, we find a quadruple
(Ωn, Bn, En, ψn). To pass from the nth step to the (n + l) s t step (for n ̂  1), we need to
know some properties of the quadruples (Ωk,Bk,Ek,ψk\ with k^n. These
properties are summarized in an induction hypothesis, </(&), to be proven
inductively, which will be introduced later on in this section.

Before describing the induction hypothesis, we introduce some other piece of
notation. Let (Ωn, Bw Ew ψn) be one of the quadruples described above. In the
following, we shall regard ψn as a function defined on the entire lattice Zv, by
defining it to be zero outside Bn. Let Hv

λ n denote the operator

-A + V+λW(ψn). (6.5)

The operator (6.5), with λ = 0, will be denoted by H%. If H is a Schrόdinger
operator and .4 is a subset of Έv, let H(A) denote the restriction of H to ί2(A) with
Dirichlet boundary conditions. In the following we make use of the Green

\ (6.6)

(6.7)

δn denotes the number exp( — |/<ϊj, with dn given in (6.1), <$„ the circle

π}, (6.8)

and Wn the disc enclosed by <βn. Finally, we set Ad

n = Bd

n\Bd

n_u and An = Bn\Bn_γ.
The construction of the first quadruple (Ωo, Bo, Eo, ψ0) is somewhat special and

proceeds as follows: We set B0 = Bd

0.

Definition of Ωo. Ωo is contained in the (positive measure) set of potentials, V,
which have a single well of depth at least U at the origin 0 e Z v, i.e. we have

0<U< inf (F(x)-F(O)), V F e Ω 0 . (6.9)
xeBi\{0}

In the following we shall specify the minimal size, U*(λ\ that U must have.
Moreover, we require that the problem (6.2), for n = 0, has a solution with
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eigenvalue Eo e \_E — \s, E + jέ]. {Eo, ψ0) is constructed as the solution of (6.2), for
n = 0, on the bifurcation branch emanating from the ground state solution of the
linear problem (6.2), with n = λ = 0.

The discrete version of a global bifurcation theorem, due to Rabinowitz [2],
assures one that this is possible, for all λ > 0. Moreover, Bί will be chosen to be B\,
and (Ωί9E1,ψ1) will be constructed similarly to Ώo,E o,ψ0. The details are given in
Sect. 7. An alternative construction of a suitable subset, Ωo, of potentials from
which our construction can proceed is given in Appendix A.

For n ̂  2, we shall construct solutions of (6.2) with the help of a two-step-
procedure: First, we consider the spectral problem for the linear operator H\\n(Bn)
defined by (6.5), where Bn is a set close to Bd

n. The set Ωn is defined as the subset
of Ωn_1 which fulfills a suitable condition on the spectrum of the operator
H^(Ad

nκjAd

n+λ). On one hand, our condition will guarantee that the linear eigen-
value problem

has a solution {E*n,φn) close to (£„_!,!/>„_!). On the other hand, it will guarantee
GO

that Ω^ = P| Ωn has positive measure.

Second, we consider the following family of eigenvalue problems connecting
(6.10) with (6.2):

Here β is a parameter ranging over [0, λ], and we look for a smooth curve, (Eβ, uβ),
of solutions of (6.11) such that

(Eβ9uβ)\β = 0 = (EίφJ. (6.12)

We then set (£„, ψn) = (Eλ, uλ). See [3] and [4] for other applications of this method
to the construction of solutions of non-linear eigenvalue problems.

We are now ready to describe our induction hypothesis, J{n\ for rc^l. It
consists of the following statements:

Jγ(rί)\ ΩnQΩn_u and if π^2,

i O ^ Λ , (6.13)

where ρ(£,ζ)|O, as |E| + CToo.

J2(n): Bd

nQBnCBd

n + 1, (6.14)

and

K - ^ d i s t f o y J ^ d , , - ! , Vxeyf, (6.15)

w h e r e yn = dBn, γd

n = dBd

n.
J*3(ri): If Ak = Bk\Bk_ί, then, for a certain m o >0 and for all fe^n, we have
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provided \z — En\^\δk and \x — y\^\dli_ι.

S4(n): lEί-E^il^iexpί-imd^i), (6.16)

and

l^-Eίlrgiexpί-im^), (6.17)

where m = min (mo,mw).

,f5(n): distiE^^σiHl^^BMK})^^.,. (6.18)

S6(n): \\φn-ψl,.1\\aΰ^min(l,λ-1)e-* Hd"-\ (6.19)

and

||V.-^IL^imin(l,A-1)e-*"< l—. (6.20)

JΊ(ή): \φn{x)\ύ2ve~m^, V |x |^K, (6.21)

and

|φB(x)|^2vβ-"l*lJ V | x | ^ K (6.22)

(v is the dimension of the lattice).
To conclude this section, we state a theorem that will be proven in the next

sections and from which Theorem NL2 follows.

Theorem 6.1. // \E\ or ζ are large enough, then, for all choices of an origin 0 eZ v, all
ε>0 and all λ>0, there are constants d%(λ,ε) and Uξ(λ) such that if d0>d%(λ,ε),
U > U*(λ) and for all Ve Ωo (where Ωo has been defined in (6.9),), there is a sequence
of quadruples {(Ωn, Bn, En, ψn)}n^0 satisfying the induction hypothesis J>(n), for all n,
and such that

Σ\En+1-En\<^. (6.23)
n = O 2*

We note that if Theorem 6.1 holds, then the sequence {(En, ψn)}n ^ 0 converges in
the R x ίf2(Zv)-norm. In fact, thanks to J6{n\ we have

l l ^ - φ ^ ^ U ^ m i n ί l ^ - ^ I B J e x p ί - i m d ^ ! ) , (6.24)

and the sequence |2?n|exp( — ^m^-x) converges to zero, as n|oo. Moreover, we
have

μ(ΩJ = μ[ Π Ωn ^μ(Ω0)- Σ
\n=0 J k=0

00

sup mC))!^1. (6.25)
Ee[E-ε, E + ε] J n = 0

For |£| + C large enough, we conclude that μ{Ωm) > 0. This and the ergodicity of the
action of the translation group prove Theorem NL2.
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7. The First Step

In this section we discuss the construction of (Ωn, Bw En, ψn) for n = 0,1 and of
(E{, φ{). We also prove some lemmas which, together with the methods explained
in Sects. 9 and 10, imply that J(\) holds. Our aim being to prove Theorem 6.1, it is
enough to prove our statements for d0 and U large enough.

We set Bo = Bd

0, B1 = B\ and choose Ωo = Ωγ to be the set of potentials such that

(7.1)0<U< inf F(x)-F(0),
xeBΪ\{Q}

and such that the problem

o\\2

has a positive solution with

(7.2)

(7.3)

To prove that our choice of Ωo is consistent, we need the following extension of
a global bifurcation theorem due to Rabinowitz [2]:

Lemma 7.1. Problem (7.2) admits a solution (ψ0, Eo), with ψ0 ^ 0, for all λ^i0,do>0,
and VOs in (7.1).

Proof. From the general theory of bifurcation off nondegenerate eigensolutions
for finite dimensional problems [8], we know that there exists a curve
y: α i—• (wα, Ea, λa), a e [0,1), in the space tf2(B0) x such that (ua, EΛ) solves
(7.2) with λ = λa. The curve y is differentiate, for αe [0,1), with initial condition
(uθ9Eo,λo) = (uo9Ei,0)9 and either

(a) the projection of y onto the subspace R £ x RA is unbounded; or
(b) we have

where ( M 1 , E 1 ) Φ ( M 0 , E 0 ) ; see Fig. 1. In our situation, (b) cannot occur, for the
following reason: An excited state of the Hamiltonian ( — A + V)(B0) cannot be
everywhere non-negative, because otherwise it would not be orthogonal to w0.

Fig. 1
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Hence, if (b) held there would be a point (ΰ,E,λ) on γ with ύ^.0 and ΰ(x) = 0, for
every x in a non-empty set QcB0\dB0.

But if Q φ 0 then Q = B0. In fact, if x0 e Q then (Λu)(x0) = 0 and this implies that φc)
is zero also on the sites x neighbouring x0. Since Bo is connected, we conclude that
Q = B0, which contradicts (b) above.

Thus in our situation, (a) holds. Clearly, γ cannot be unbounded in the
direction of 1R£ without being unbounded in the direction R A as well. This means
that (7.2) admits a positive solution for arbitrarily large λ. Q.E.D.

Remark. See Appendix A for an alternative choice of Ωo.
The next few lemmas illustrate some of the properties of xp0 which hold if U is

large. [Recall that ψ0 is a solution of (7.2).]

Lemma 7.2. We have

Ψo(0y2l (7.4)

andψo(0)2J\l, as U^oo.

Proof. ψ0 is the ground state of the Hamiltonian H^t0(BQ), corresponding to the
eigenvalue Eo. Let χ(x) be the first excited state of H\\0(B0) and E'its energy. The
orthogonality relation

gives
χ(0)v> 0 (0 )=- Σ

xΦO

whence

\ - 2

Σ
2 Σ

This bound and some simple inequalities yield

E' - Eo = Σ [ - ήx) Wx) (x) + VoW (Δ Ψo) (x) + λψo(x)2(χ(x)2 - vo(x)2)]

Σ V(x) (χ(x)2 - ψo(x)2) + 7(0) (z(0)2 - Ψo(0)2)
xΦO

. Q.E.D.

Lemma 7.3. We have

y= inf V{x)-E0^U-(λ + 2v). (7.5)
fiUO}

Proof. Since t/;o(x)>0, ^oW ' s t n e ground state of H\t0(B0), and thus we have

^ o = inf Σ l - ψ 2 2

inf V{x)-U,
xeBo\{0}

whence (7.5) follows. Q.E.D.
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Lemma 7.4. If γ> 2v, then for all ε e (0, y) we have

m(7,c)|x|), (7.6)

where m(γ, ε) = In ί 1 + —- (y — ε — 2v) J.

This bound can be obtained with the help of a Combes-Thomas argument that
will be sketched in Appendix C. From the two lemmas above one can derive the
following corollary:

Corollary. There is a constant mo(U) depending on U and diverging to oo, as l/f oo,
such that

IV>oWI^~m o ( ϋ ) W> V x e β 0 . (7.7)

The quadruple (Ω1? Bu E1,ψί) will be defined in a completely analogous way.

Namely, we set Bΐ=Bd

1, we define Ωx as the set of potentials, F, satisfying the

condition (7.1) and we define {Euψγ) to be a solution of the problem (7.2) with

Dirichlet boundary conditions on dB x instead that on dB0. The existence of a

solution (E{, φ{) of the linear eigenvalue problem

satisfying the induction hypothesis J{\\ can be proven easily, because V + λW(ψ0)
has a deep well near the origin which enables us to prove an analogue of
Lemma 7.3 and of (7.7).

8. Construction of Ωn + ί and Bn+ι

Let n be an integer ^ 1, and suppose we know (ΩpBp Epψj) for j^n, and that the
induction hypothesis J(j) holds for every j ^ n. In this section we shall construct
Ωn+1 and 5 n + 1 such that ^ ( n + 1), ^ ( n + l), and J3(n + \) are fulfilled.

Let ^f+! = J5^+ Λ^WJ where 5^= {x: |x| ̂ d j . We define Ωw + x to be the subset of
Ωn of potentials, V, satisfying the following conditions in the annulus A(jl + luA*+2:

and

(Ad

n + ίuAd

n + 2)nSn_1(En_uV) = 0. (8.2)

The singular sets Sk(E, V) appearing here are defined recursively. Namely, we
set

S0(£,F) = {xeZv: \V(x)-E\^\\E\ + 2v) (8.3)

and if 0 ̂  k S n — 2, we define

), (8.4)
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where Sf(E, V) = (J Q(£, V) is a maximal union of components satisfying

(i) Q(E,V)cSk(E,V); (8.5)

(ii) diamC*k(E,V)<dk; (8.6)

(iii) d i s t (Q£, V), Sk(E, V)\Q(E, V))>2dk+1; (8.7)

(iv) dist(£, σ(H0(Cl(E, V)))) > 2δk, (8.8)

where

. (8.9)

There are two probabilistic estimates we need in order to bound
Pγob(Ωn + 1\Ωn). The first one is a consequence of Wegner's results (see [5, 6]).

Lemma 8.1. // A is a V-independent subset of Έv with cardinality \Λ\ < GO, then the
probability of the event

dist(E,σ{H%(Λ)))^κ (8.10)

is bounded from above by

min(cκιl2

Qι{EX)\Al2κζ~ι\A\), (8.11)

where c is a constant and Qχ{E, ζ)|0, as (ζ + |£|) |oo.

On the basis of Theorem 2.2 in [6], we get also the following bound:

Lemma 8.2. There is a number N such that if \E\ + ζ^.N, then the probability that

S k _ 1 ( £ k _ 1 , 7 ) n ^ + 0 (8.12)

is less than ρ2{E,ζ)\Λ\dJ;l
2

1

v + 2\ and ρ 2 (£,0 |0 , as (C + |£|) |oo.

These two lemmas permit us to bound from above the probability that (8.1) and
(8.2) fail to hold. Namely, we have

Prob {(8.1) or (8.2) do not

+ ρ2(E,ζ)\Ad

n+ίuAd

n + 2\d;(2r2). (8.13)

For sufficiently large d0, the second term dominates the first term. We have that

; Λ , (8.14)

where cv is a geometric constant and dn = (d0)
i5/4'}n. This proves J>γ(n).

Let us now pass to the construction of Bn+1. Let yn+ί=dBn+1 and let
yd

n+ί = dBd

n+1, where the boundary of a set AcΈv is defined as follows:

dA = {x,yeZv\ | χ - j / | = l, xeA and yeZv\A or vice versa}. (8.15)

Following [6], we require the following definition.

Definition. A set Ac%v is (/c,inadmissible if

ψ, Vα and Vj = O, 1, ...,/c. (8.16)
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From Appendix D of [6], it follows that there exists a (n — Inadmissible set
satisfying J2(n + 1): Bn+1 will be such a set.

Next we need the following lemma which establishes

Lemma 8.3. For \E\ + ζ large enough, for all Ve Ωk and every k = 1,..., n, there exists
a constant m(E,ζ)>0 such that

\Gλ^(x,y,z)\^xp(-m(E,ζ)\x-y\), (8.17)

provided

\z — En\^2^k-i and \χ~y\ = î fc + i (8.18)

Moreover, we have

for every k = 2,...,n.

The proof of the decay estimate (8.17) is an almost immediate consequence of
the proof of Theorem 2.1 in [6], while to verify (8.19) one needs some extra
arguments. We defer the proof of this lemma to Appendix B.

9. Construction of φn + 1

We now assume that we know (Ωk,Bk,ψk,Ek) for k^n, and that these quadruples
satisfy the first n induction hypotheses. In Sect. 8 we constructed Ωn + 1 and Bn+ x

satisfying J>x(n +1), J>2{n +1), and J3(n +1). Here, we consider the following linear
eigenvalue problem

(-Δ + V+λW{Ψn))φn+l=K+lΦn+l

Our aim is to prove that this eigenvalue problem has a solution (E'n + Uφn + 1\ which
satisfies the first part of the induction hypotheses J^in +1), ^6(n + 1), and J>Ί(n + 1).

Thanks to «/4(n), ^5(n), and J6(n\ we have the following bound.

Lemma 9.1. We have

^3^7^7" -**"^- 1 — β-^-»»^»-i]-1 (9.2)

for every zec$n-1 = {z\ \z~En_ι\ = δn_ί}, where DW and ||DW|| are defined in
Appendix D.

From the induction hypothesis ^ ( n + l), verified in Sect. 8, we also find the
lemma

Lemma 9.2. We have

\\Gχn(z)\\S2δk_\, Vze%-ltk*n. (9.3)

The existence of a solution of (9.1) with eigenvalue close to En, follows from the
following lemma.
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Lemma 9.3. For d0 large enough (independent of n), the Hamiltonian Hv

λ\n(Bn + ι)
has one and only one eigenvalue in the interval

and we have

\\\Gλ

B-n

n

+ι(z)\\\£e2Vd».

(9.4)

(9.5)

In this and in the following section, we omit writing the superscript "λ, n" on the
Green functions Gg'" and Gβn"+1.

Proof It is enough to prove that GBn+ι(z) is analytic near c€n and that

: l . (9.6)

In order to establish (9.6), we shall view the couplings across Bn as a
perturbation in which we propose to expand. To this end, we define coupling
matrices Γn, corresponding to yn = dBn, as follows:

1 if (x,y)eγn

0 otherwise.
(9.7)

Fig. 2

Then

(9.9)

Our bound on (9.6) follows from a resolvent identity. Let us define

Gn+ι(z) = GBn(z)®GAn+ι(z). (9.8)

Gn+1(z) is the resolvent of ifπ_ 1(£ I I)®iί(,4 Ϊ I + 1). From (9.9) we find

Similarly, if we set

Qd ίz) = G d (z)Gr)G d (z) (9 12)

(see Fig. 2 for the definition of Bm An,...), then we have

!)G β n + 1(z). (9.13)
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By alternate applications of (9.11) and (9.12) we find

Hence

+ Gn+1ΓnG
d

n + ι(Γ

= F(z) + L(z)GBn+1(z).

GBn+ι(z) - GBn(z) = F(z) - GBn(z) + L(z)GBn+ x{z)

(9.14)

(9.15)

where the definitions of F and L follow from (9.14).

By integrating the first term in (9.14), we obtain a result which cancels against
the second term in (9.6). In fact,

For the second term in (9.14), we have

1

2πi
- §Gn+ιΓnG

d

n+ιdz
2πί

7 § GBnΓnGAa+ί

(9.16)

where we have used the induction hypothesis on \pn. The integral of the third term
can be bounded in a similar way,

1 , _

(9.17)

To compute the integral in (9.17), let us introduce the pole subtracted Green
function

^ (9.18)KBn(z) = G B n ( z ) P ψ n ,
z-tn

where Pψn is the orthogonal projection onto ψn. Equation (9.17) is equal to

\\PψnΓnGAdn+ {EJΓfK^EJ + KBn(En)ΓnGAdn+ Sβ^Pψn

dn + 1(En)Γn

d

+ x GAn+ι(En) + GAn + l(En)ΓnGAd+l(En)Γn

dPψn \\.

Thanks to (8.1), (8.17), (6.17), (6.18), and (6.22), this expression can be bounded from
above by

dn_1 +]/dn + ι —mdn). (9.19)
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To bound (9.15), what remains to be done is to bound the operator-norm of
L(z)GBn+1(z). We shall bound

\\Γd

+1Gn+1(z)ΓJ = \\Γn

d

+ιGAn + 1(z)Γn\\ (9.20)

and

\\I?Gn + 1(z)Γn\\ = \\Γn

dGBn{z)Γn\\ (9.21)

separately, for z e ^ B + 1 . From Lemma 8.6 we get

-m(dn+ί-%dn)). (9.22)

To bound (9.21), let us observe that if x e yd and y e yn then, due to «/2(n), we have
|x — y\ ̂  \dn. We can thus make use of Lemma 8.6 to bound the kernel of GAn(z) for
ze^n, and we find

Let us now recall the following resolvent identity

for all xeyd

n, yeyn. Hence, we have

χ e-m(dn-2dn-ί)e-m(dn-idn-ι) ^
(9.23)

By collecting (9.16), (9.19), (9.20), and (9.23), we find that if d0 is larger than a
certain constant independent of n, then

(9.24)

and

(9.25)

Moreover, if ze^n, then using Lemma 9.1, (8.1) and J^n), we have

\\\GBn+ι(z)\\\S\Bn+1\ί\\GBn(z)\\ + \\GAn+ι(z)\\

dn - A - 1

_m
~2 -

(9.26)

where the last step holds for d0 large enough. Q.E.D.



690 C. Albanese, J. Frόhlich, and T. Spencer

We can now pass to the proof of the induction hypothesis «/4(n + l),
f6(n+l), and JΊ{n + \). Let us observe that φn+ί can be represented as follows:

Φn+ 1 = ^ (9.27)

where c is a positive normalization constant. Using again a resolvent identity, we
find

$

n + ι{EJΓnψn+^jGn+ί{z)Γ^

(9.28)

The *f 2-norms of the last two terms inside the square brackets are bounded above
by

\\GAn+ι(En)\\ | | / > J , 2

+ sup {[| |GB n(z)| | + \\GΛn+ι(z)U \\GBn + ι(z)\\^2)] \\ΓnΨn\\
zeVn

^2\yn\e^n~mdnJrAev^ne2vTn\yn\e~mdn = an. (9.29)

For the normalization factor c we thus get the following estimates:

l-a^c-^l+cin, (9.30)

where an is the constant defined in (9.29). Moreover, we have

GAn+i(En)ΓnΨn+^ § Gn + 1(z)ΓnGBn+1(z)ΓnΨn-^
ZJTίl <£„ Illy. i

1

ί-a. 1-α2
(9.31)

Hence, if d0 is larger than a certain constant depending on λ but not on n, the
bound (6.19) of the first part of J>6(n +1) is valid. The first part of J4(n +1) derives
from (9.29) and can be proven by writing E{+ x and En as the expectation value of
the corresponding Hamiltonian in the corresponding eigenstate. Finally, the first
part of J^7(n + 1) derives from Lemma 8.6 once we represent \φn + ί(x)\ as follows:

where H = Hn(Bn+l\{0}) and the last step holds provided \x\^jdn + 1.

10. Construction of \pn + x. The Proof Completed

As anticipated in Sect. 6, in this section we shall construct a solution (ψn+1, En + 1)
to the non-linear eigenvalue problem (6.2) in the ball Bn+ί by considering the
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following family of n.l.e.p.'s connecting (6.10) with (6.2):

= E(β)uβ)(_ A + V + λW(ψn))uβ + β(W(uβ)- W(ψn))uβ = E(β)uβ

where β e [0, λ], and we look for a solution uβ(x) which depends smoothly on β and
satisfies the condition

uβ(x)\β = 0 = φn+1{x). (10.2)

If β is so small that

we have

\\β(W(uβ)-W(Ψn))\\ao<^n, (10-4)

and Eq. (10.1) can be rewritten in integral form

°^ Wφn+ί, (10.5)

where c(β, uβ) is a positive normalization constant. Recalling the definition (6.6)
and (6.7) of the Green functions and the convention stated in Sect. 9 to omit the
superscript n, we can expand (10.5) in a geometric series as follows:

+ 1+ Σ βj~ § GBn + £(W(uβ)-W(Ψn))GBn + Jφn+X (10.6)
j= i zπi <βn j

Due to the implicit function theorem, [8], we know that the problems (10.1)
and (10.6) have a solution for β small. In this case, the solution uβ obeys the
differential equation one gets by differentiating both sides of (10.6) with respect
to β:

du ί °° 1

jjj-(x) =C(A^)(1-^)|.Σ JF^MJ

+ J , βi^ύ I Gβ"^jβί{w(Uβ)

= c(β,u)[ Fi(β,uβ)(x)+ ΣFβ(β,uβ)(x,y)jj(

(10.7)

where Fx and F2 are defined in the obvious manner. Let [0,/^) be the maximal
interval for which a solution of (10.1) exists, (10.3) holds and

c|| |F2[ ] | | | < l . (10.8)

Then, for all βe [0, βx) we have

^ = ( l - c F 2 [ ] ) - 1 F 1 . (10.9)
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Our aim is to verify a priori bounds on the right-hand side of (10.9) which
guarantee that βx>λ and that ψn+χ=uλ fulfills the (n + l) s t induction hypothesis.

Let us introduce the following notation:

9λ-1)e-*nd»}. (10.10)

The estimates we need are contained in the following lemma:

Lemma 10.1. For uβe% + ί and β^λ, we have

c(β,u) = ί+co(do,n), (10.11)

WF^m^c^do^rήWuβ-ψJ^, (10.12)

\\\F2(uβ,β)\\\^c2(d09U,n), (10.13)

where c0, c l 5 and c2 are constants JO uniformly in n, as both d0 and ί7|oo.

Before proving this lemma, let us show how it can be used to control the
solutions of (10.9). We have

= \\c(l-cF2y
ιFι\

dβ

= C3\\Uβ-ψn\\(X),

where c3j0 uniformly in n, as (£/, d0)ΐ(oo, oo). We thus find the differential
inequality

\ \ φ \ \ ύ

which, upon integration, yields the bound

^ - ^ + 1 I L ^ ( ^ 3 - i ) β - ^ " . (10.14)

From here it is clear that, if the depth, (7, of the well at 0 and d0 are larger than
certain constants independent of n, then uβ e °Un + x, Vβ e [0, λ]. Moreover, if we set
ψn+ι= uλ, the induction hypotheses */4(n +1) and J6(n +1) hold. The second part
of J>Ί(n+\) can then be verified as the first part and this concludes the proof of

Proof of Lemma 10.1. (i) We have

~2<ίn

where co(dθ9n) 10 uniformly in n, as d 0 |oo.

(ii) For all j8e [0, A], we have

= \+co{dθ9n)9

i + l II oo

Σ jλJ/ - i
1

2πi
T § GBn+1(z)[(W(uβ)~W(ψn))GBn+ι(z)yφn +

(10.15)

, (10.16)
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where F1 and K have been defined in (10.7) and (9.18), respectively. We shall bound
the first and the second term of (10.16) separately. For the first one, we have:

\\KBn+i(Ei+1)(W(uβ)-W(ψn))φn+ΛooS\\DW\\\\uβ-ψJ

x sup Σ
xeBn+ι [yeBn+

(10.17)

The supremum on the right-hand side is bounded above by

sup \KBn + ι(E'n+ι)(x,y)\
xeBn+ι

"Σ Σ sup \κBn+ι(EUi)(χ,y)\\i
k=ί dk-1<\y\<dk xeBn+1 |_

In order to bound (10.18) we need a lemma which is quite similar to Lemma 3.1
in [1].

Lemma 10.2. // d0 is large enough, we have

χeBn+ί

where cJJJ) 10, as L/|oo, and c5(d0\ c6(d0)j0, as d0\co.

Postponing the proof of this lemma to the end of this section, let us now use it to
bound (10.18). We have

il Σ e 2

j=k

= cΊ(U,d0), (10.20)

where c7(U,do)\,0 as (U,d0)1(oo, oo) and does not depend on the iteration step n.

Lemma 10.2 allows us to bound the series appearing in (10.16). In fact, we have

Σ (•) < Σ JλJ~
J = 2. • j=2

2 ^ I GBn+1ί(W(uβ)-W(Ψn))GBn+Jφn+1

S Σ jλ^1 sup
3 = 2 ze^n

yVdn-τjmdn

= \\DW\\

^||DVF||exρ

where c 8(d 0) |0 as

- ~d0

\-λ\\DW\\

\-λ\\DW\\

-2

(10.21)



694 C. Albanese, J. Frόhlich, and T. Spencer

By summing (10.20) and (10.21) we thus get (10.12).
(iii) To prove (10.13), we can begin with a bound similar to (10.16)

ll*2llw~)= sup \\F2v\\oΰ

^ sup

xί(W(uβ)-W(ψn))GBn + Jφn+ί
(10.22)

The structure of the two terms of (10.22) is very similar to that of the two terms of
(10.16) and they can be treated in a similar way. For this reason, we shall omit the
details of these bounds.

Proof of Lemma 10.2. The method used to prove Lemma 3.1 can be applied also to
the present case and gives the following bound:

sup \GBl(x,y;z)
x,yeBo

-m(E)\x-y\

d0) for x,yeB0

for \x-y\^

\y\Sdk

otherwise,

(10.23)

where γo = dist(Eo,σ(Ho(Bo))\{Eo}), c5(d0) and c6(do)i0 as d 0 |oo, and m{E)
> ^ m ( £ 0 ) > 0 for d0 large enough. Moreover, due to Lemma 7.2, we have that the
supremum on the upper line of (10.23) JO faster than const U ~ι as l/foo. Thus
(10.19) follows from (10.23). Q.E.D.

Appendix A. Replacing "Large t/" by a "Large Gap"

To prove Theorem NL2, we have shown how to construct an infinite number of
solutions of the n.l.e.p. (5.1) whose eigenvalues form a dense subset of
{£: \E\>E'ί(v,ζ)}. Here, we wish to point out that our methods allow us to
construct further solutions.

Let us suppose that the potential V is chosen such that the problem

admits a solution (ψ1, Ex\ and that Eγ is a simple eigenvalue of the linear operator
— A + V+λWiψi) separated by a large gap y0 from the rest of the spectrum. This is
the property established in Lemma 7.2. It plays a basic role in the estimates of
Sect. 10. For every fixed λ, such potentials, V, exist and form a subset of positive
measure. In fact, notice that there is a constant such that sup \\λW(ψ)\\^^2{Bι))

= const \λ\, for all λ. If V is a potential such that the problem (A.I) with λ = 0 has an
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eigenvalue E separated by a gap ^ y0 + const \λ\ from the rest of the spectrum, then
one can easily prove that a solution (ψί,Eί) with the properties specified above,
exists. The large gap permits us to control the exponential decay of ψ1. In fact, if x0

is the point where ψ^x) takes its maximum, we have

and the Green function appearing here can be controlled with the aid of a Combes-
Thomas argument; see Appendix C. If we adjust things in such a way that x 0 is far
away from the boundary oϊBd

u then the solution \pγ{x) can be used as the starting
point in our construction.

Appendix B. Proof of Lemma 8.3

The annulus Ak is a (k—3)-admissible set such that

AknSk-2(Ek_2,V) = Φ (B.I)

and

sup\W(ψn)(x)\^2ve~md-\ (B.2)

Since

n-Ek_2\S Σ eidj<$δ2

k_2, (B.3)
J = k-2

to prove (8.19) it will suffice to verify that

dist (σ(Hl n(Λk)l E k _ 2 ) ^ f <Sfc

2_ 2, (B.4)

as long as d0 is chosen large enough. During this proof we shall also argue that the
exponential decay estimate (8.17) is true.

Let us introduce the modified family of singular sets, Sj(Ek_2, V\ which are
defined in the same way as the singular sets 5 J (£ f c_ 2, V) were defined in Sect. 8, i.e.
they are the union of components (J C%Ek -2,V), except that the condition (8.8)

is replaced by the following one:

dist(Ek_2,σ((Hl + λW(ψM&k-3(Ek_2,V))))^δk_2. (B.5)

This condition is strictly weaker than (8.8), in the sense that from (B.I) and (B.2) it
follows that

AknSh-2(Ek-29V) = 0. (B.6)

Moreover, Λk is (k — 3)~-admissible in the following sense:

dAknUj=Q, Vj = 0,...,fc-3. (B.7)

These conditions are sufficient to apply the perturbation theory developed in [6]
to prove Theorem 2.2. In this way we can arrive at the exponential decay estimate
(8.17).
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One can also prove (B.4) following the lines of the proof of Theorem 2.2 of [6],
though, in this case, some changes are required. If we denote by (J>k) the following
induction hypothesis:

{Jk): If A CZV is a set sharing with Ak the properties (B.6) and (B.7), then (B.4)
holds, or, because of (8.17)

\GΪ»(x9y;Ek_2 + iε)\£4δϊ}2 (B.8)

for all ε real φ 0 and all x, y e A.
Then one can prove that (Jk_1)-^(Jί

k), for all fc^3. Since (</2) is evident, this
implies (B.4). We underline that although the techniques in [6] are sufficient to
prove (B.8), this result does not follow from Theorem 2.2 in [6]. In fact, this is a
decay estimate on the Green function which holds only when the arguments x and
y are enough separated, while we do not have such a restriction here.

To prove that (>fc_ i )->(*/*), l e t u s consider a subset Ra of A which satisfies the
(k — 3)~-admissibility condition (B.7), contains one and only one component Q _ 3

of Sf _ 3 and is such that

2 (B.9)

and

The existence of regions Ra with the properties above is checked in Appendix D of
[6]. We have

Lemma B.I. Let R = Ra be as above, and choose d0 and \E\ + ζ sufficiently large,
independently of k. Then

2 (B.ll)

for all ε real =(= 0.

Proof Let us introduce the simplified notations E = Ek_2, C = Cl-3, C = C%-3.
Let B be a (k — 4)~-admissible set such that

CDBjC

(B.I 2)

dist(B,

and let y = dC, y = dB, Q = R\B, Q = R\C. We shall distinguish three cases
(i) xeB, yeB;

(ii) xeQ, yeQ;
(iii) XEB, yeQ.
In case (i), our lemma is a consequence of Sublemma 2.3 of [6]. In case (ii), we

can use the following resolvent identity:
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where Γ and Γ are the boundary operators related to y and y, respectively. If x e Q
and y e g, we have

GR(x, y \ E + iε) = GQ(x, y ; E + iε) + GQΓGc(x, y ; E + is)

+ GQΓGQ(x, y ; E + ίε) + GQΓGRΓG-Q{x, y E + ίε). ( B . I 5 )

Due to the induction hypothesis G/fc-χ), we have

\GQ(x,y;E + iε)\^4δϊ}3, (B.16)

and the same inequality holds with Q replaced by Q. Thanks to (B.5), we have

\Gc(x,y;E + iε)\^δ^2. (B.17)

Finally, by virtue of (B.I2) and Theorem 2.2 of [6], we find

These inequalities permit us to derive (B.ll) from (B.I5).
In case (iii), xeB and yeQ, we can use the resolvent identity

Q Q

from which we find
GR(x,y; E + ίε) = GRΓGQ(x,y;E + ίε). (B.19)

Thanks to Sublemma 2.3 of [6], we have

\GR(u, v;E + ίε)\ ̂  2 δ k " i 2 (B.20)

for all u,veB. Hence, the bound (B.ll) derives from (B.20) and Theorem 2.2 of
[6]. Q.E.D.

To complete the proof of Lemma 8.3 one can make use of a method first used in
[7], as in [6]. This method goes as follows: For every point peΛ there exists a
(k — 3)~-admissible set Rp such that

and (B.9) holds. This is proven in Appendix D of [6]. One starts with p = x and the
resolvent identity

GA = GRχ®GA^Rχ + (GRχ® GAχRχ)ΓdRχGA . (B.22)

In the second term, there are only matrix elements GJu, y E-t- iε) with u e dRx. For
each u e δRx one can then apply another resolvent identity similar to (B.22), but
with x replaced by u. Iterating this process, we find a series that converges rapidly
thanks to the exponential decay estimates of [6]. The remainder of this series can
be controlled in the same way as in [6], and using Lemma B.I, instead of Lemma
3.1 in [6], we can easily complete the proof of Lemma 8.3.

Appendix C

Let H = HλtO(Bo\{0}). We have

((H-Eo)ψo)(x)=-ψo(0) Σ δ(x-y)9 (C.I)
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and so we find

IΨΌMI— ~ΨO(Q) Σ {H — E0)~1(x,y) ^2v sup \(H — E0)~1(x,y)\.

To prove Lemma 7.4 it is sufficient to prove that

•y\), (C2)

where m(-y,ε) = In ( 1 + —- (y ~ ε — 2v)|. To this end, let us introduce the operator1 2v /

>τa = e-ia'xHeia'x = H-\ Σ (eia'y-ί)Ty\, (C.3)

where Ty is the operator such that (Tyψ)(x) = ψ(x + y). The norm of the operator
within the square brackets in (C.3) is bounded above by

X \eia'y-l\^2v[elal-l~]. (C.4)
bl = i

Hence, if a = im(y, ε) the right-hand side of (C.4) is (y — ε — 2v), and we have

\e* <χ-y\B-Eor\x,y)\ = \(βa-Eo)-\χ9y)\£ε-\ (C.5)

from which (C.2) follows.

Appendix D

Here we collect some of the most important notations we used. If A c Z v is a subset
and A(A) is the Laplacian on £2(A) with Dirichlet boundary conditions on dA, we
set

The superscripts "/I, w" are omitted in Sect. 8 and Sect. 9. The operator W(ψn) is
defined in (5.4) where W(|x —j>|) is a function satisfying the decay estimate (5.5). If
u,veS2(Zv), we denote by DW[υ] the operator on /2(ZV) such that

We denote by \\DW\\ the number

sup
I M l 2 = I M | 2 = i

When the symbol || || contains a linear operator on ί2{A\ A<Z_TLV, it denotes the
operator norm. Moreover ||| ||| denotes the operator norm of an operator:
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