Communications in
Commun. Math. Phys. 119, 677-699 (1988) Mathematical
Physics

© Springer-Verlag 1988

Periodic Solutions

of Some Infinite-Dimensional Hamiltonian Systems
Associated with Non-Linear

Partial Difference Equations. 11

Claudio Albanese ! *, Jirg Frohlich!, and Thomas Spencer?

! Theoretical Physics, ETH-Honggerberg, CH-8093 Ziirich, Switzerland
2 The Institute for Advanced Study, Princeton, NJ 08540, USA

Abstract. This is our second paper devoted to the study of some non-linear
Schrodinger equations with random potential. We study the non-linear
eigenvalue problems corresponding to these equations. We exhibit a countable
family of eigenfunctions corresponding to simple eigenvalues densely embed-
ded in the “band tails.” Contrary to our results in the first paper, the results
established in the present paper hold for an arbitrary strength of the non-linear
(cubic) term in the non-linear Schrodinger equation.
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5. Introduction

In this paper we continue our analysis of the non-linear eigenvalue problem

(— A4+ V(x)+ AW (u)(x))u(x) = Eu(x) (5.1)
uelXZ), |ul,=1, '
which was initiated in [1]. In (5.1), 4 is the finite difference Laplacian,
(du)x)= ¥ uy), (5.2

y:y—x|=1
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V(x) are ii.d. random variables with distribution
— T -V
do(V)= ‘/n{e av, (5.3)

and W(u)(x) is defined as follows:
W(u)(x)= ; Wy —x|)lu(y)*. (5.4)

We assume that the function W(|x|) decays exponentially fast with rate m;, > 0. To
normalize W, we impose the following condition:

W(ly—x|)Se vl (5.5)

In the first paper [ 1], we considered the problem of perturbing the solution of
the linear problem (5.1) corresponding to A=0. We found that this is possible,
provided that Ais restricted to a set, 4, which is not an interval, and we showed that
the set of eigenvalues one finds for A€ 4 is a (random) Cantor set. In this paper, we
look at the non-linear eigenvalue problem (5.1) from a different perspective: We fix
some A>0 and propose to construct solutions of (5.1), for the given value of A.
Our main result is the following theorem:

Theorem NL2. Consider the distribution (5.3), and suppose that the kernel W(|x — y|)
of the operator W decays exponentially, with rate my >0. Then there exists a
constant E(v,{) and, for every 1> 0, a set, (1), of potentials, V, of full measure with
the property that, for Ve Q(4), the non-linear Schréodinger equation (5.1) has infinitely
many solutions, and the corresponding eigenvalues form a dense subset of

{E:|EI>Ey(v. )} (5.6)

We remark that in [1] we stated this theorem under the more restrictive
assumption that W(|x|) have finite range. However, this turns out to be easily
avoidable.

This paper is fairly technical and many notations are required. Our most
important notations are summarized in Appendix D.

6. Strategy for the Proof of Theorem NL2

To explain our approach to this problem, let us fix an interval (E —¢, E +¢), with
¢>0 and with |E| large enough. What we must prove is that, for every 1> 0, the set
Q(4, E, &) of potentials, V, for which the non-linear eigenvalue problem (5.1) has a
solution (E, ), with Ee(E—¢, E+¢), has full measure. Noticing that the set
Q(4, E, &) is invariant under translations and that the group of translations acts
ergodically, we see that it is enough to prove that Q(4, E, ¢) has positive measure.
Our proof consists in an explicit construction of a subset, Q_, of Q4 E,¢) of
positive measure.

Let us fix an origin 0 in the lattice Z". Let d, >0 be a number to be chosen later
on, and let us consider the following family of blocks:

Bi={|x|=d{*"=d,}. (6.1



Periodic Solutions of Some Infinite-Dimensional Hamiltonian Systems 679

We shall define Q_ as a set of potentials V for which there is a sequence B, of blocks
close to B? such that the eigenvalue problems

1an/z(Bn)3 ”wn”2:1 s U’n|aB,.=0, '

have solutions (E,,y,) converging, as nfco, to a solution (E,y) of (5.1), with
Ee (EO — %, E,+ %), where E, is the eigenvalue of (6.2) for n=0. The set Q_ will
be constructed as the intersection

Qu= () & (6.3)

of a decreasing family of subsets
Q,002,00,D> .... 6.4

Our construction is inductive and, at each iteration step, we find a quadruple
(Q,,B,, E,,,). To pass from the n'® step to the (n+1)* step (for n>1), we need to
know some properties of the quadruples (2, By, E,,y,), with k=<n. These
properties are summarized in an induction hypothesis, #(k), to be proven
inductively, which will be introduced later on in this section.

Before describing the induction hypothesis, we introduce some other piece of
notation. Let (2,, B,, E,, v,) be one of the quadruples described above. In the
following, we shall regard 1y, as a function defined on the entire lattice Z’, by
defining it to be zero outside B,. Let HY , denote the operator

—A+V+iW(y,). 6.5)
The operator (6.5), with A=0, will be denoted by H!. If H is a Schrodinger
operator and A4 is a subset of Z", let H(A4) denote the restriction of H to £*(A4) with
Dirichlet boundary conditions. In the following we make use of the Green
functions: N

Gi"(2)=(z—Hj (A) ™", (6.6)
Gi(z)=(z—Hy(A) ™3 (6.7)

0, denotes the number exp(—]/d_,,), with d, given in (6.1), €, the circle
%,={zeC: |z—E,|=%0,}, (6.8)

and @, the disc enclosed by %,. Finally, we set 42=BX\B?_,, and 4,=B,\B,_,.
The construction of the first quadruple (2, By, E,, o) is somewhat special and
proceeds as follows: We set B,= B,

Definition of Q,. €, is contained in the (positive measure) set of potentials, V,
which have a single well of depth at least U at the origin Q€ Z’, i.e. we have

0<U< inf (V(x)—V(©0), VVeQ,. (6.9)

xe BH\{0}

In the following we shall specify the minimal size, U*(), that U must have.
Moreover, we require that the problem (6.2), for n=0, has a solution with
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eigenvalue E, e [E—Le, E+1¢]. (E,, ) is constructed as the solution of (6.2), for
n=0, on the bifurcation branch emanating from the ground state solution of the
linear problem (6.2), with n=1=0.

The discrete version of a global bifurcation theorem, due to Rabinowitz [2],
assures one that this is possible, for all 1> 0. Moreover, B, will be chosen to be B!,
and (Q,, E,, w,) will be constructed similarly to Q,, E, v,. The details are given in
Sect. 7. An alternative construction of a suitable subset, Q,, of potentials from
which our construction can proceed is given in Appendix A.

For n=2, we shall construct solutions of (6.2) with the help of a two-step-
procedure: First, we consider the spectral problem for the linear operator H} (B,)
defined by (6.5), where B, is a set close to BZ. The set ©, is defined as the subset
of Q,_; which fulfills a suitable condition on the spectrum of the operator
HY(A%0 A2, ). On one hand, our condition will guarantee that the linear eigen-
value problem

H}j,n—l(Bn)()bn:Ei(rbn }
b.el%B),  bala=1, (6.10)

has a solutlon (E%, ¢, close to (E,_;,p,_ ;). On the other hand, it will guarantee

that Q= ﬂ Q, has positive measure.
n=0
Second, we consider the following family of eigenvalue problems connecting

(6.10) with (6.2):

{H o= 1(B,)+ BLW(ug) — W, - )]} uy = Eﬂuﬂ}

ugel*(B,),  lugl,=1. (6.11)

Here f is a parameter ranging over [0, 2], and we look for a smooth curve, (E;, up),
of solutions of (6.11) such that

(Eg ug)lp=o=(E7, dy). (6.12)

We then set (E,, ,)=(E,, u,). See [3] and [4] for other applications of this method
to the construction of solutions of non-linear eigenvalue problems.

We are now ready to describe our induction hypothesis, .#(n), for n=1. It
consists of the following statements:

Fin): Q,€Q, ,,and if n=2,

MR- \2)SAE, -1, 0d, 5, (6.13)
where o(E, {)|0, as |E|+ {1 0.
SF,(n): B{CB,CB:, ., (6.14)
and
id,  <dist(x,y,)<d,_,, Vxeyl, (6.15)

where y,=0B,, yi=0B:.
Fs(n): If A,=B,\B,_,, then, for a certain m,>0 and for all k<n, we have
dist(E,, o(HY, - 1(4))) Z 30 -1, and

G4 (x ys 2 s e,
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provided |z—E,| <36, and |x—y|=1d, _,.

Fq(n): |En—E, 1| S Sexp(—3md,_,), (6.16)
and
|E,— EY < Lexp(—3imd,_,), 6.17)
where m=min(mg, my).
Is(n): dist(E,_,o(HY ,_ (B)\{ESH =46, 1. (6.18)
Fe(n): Iu—n-1lle S Fmin(1, 27 e ot (6.19)
and
[n— @ull o < Fmin(1, A7 e ™ 2, (6.20)
I5(n): |pax)| S 2ve™ ™, Vx| 2 4d,, (6.21)
and
[pa()| <2ve™ ", V|x|24d, (6.22)

(v is the dimension of the lattice).
To conclude this section, we state a theorem that will be proven in the next
sections and from which Theorem NL2 follows.

Theorem 6.1. If |E| or { are large enough, then, for all choices of an origin Qe Z’, all
£>0 and all >0, there are constants d§(A,¢) and U§(1) such that if d,>d§(4,¢),
U > U¥(A) and for all Ve Q, (where Q, has been defined in (6.9) ), there is a sequence
of quadruples {(2,, B, E,, w,)}n>0 satzsfymg the induction hypothesis #(n), for all n,
and such that

€

L Eyy—Eil <. (6.23)
=0

n

We note that if Theorem 6.1 holds, then the sequence {(E,, y,)},» o converges in
the R x /*(Z*)-norm. In fact, thanks to .#¢(n), we have

[u—wu- 1], Smin(1, 2 ")[B,|exp(—3md, ), (6.24)

and the sequence |B,|exp(—3md,_,) converges to zero, as nfoo. Moreover, we
have

M@=k (ﬁ Q) 2 (@)~ 3 12\ )

(6.25)

"Ms

g M(QO) B < Ee [Es—uspE +e] (E O) n=0

For |E| 4 { large enough, we conclude that u(Q_)> 0. This and the ergodicity of the
action of the translation group prove Theorem NL2.
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7. The First Step

In this section we discuss the construction of (Q,, B,, E,, v,) for n=0,1 and of
(E%, ¢%). We also prove some lemmas which, together with the methods explained
in Sects. 9 and 10, imply that .#(1) holds. Our aim being to prove Theorem 6.1, it is

enough to prove our statements for d, and U large enough.
We set B,= B3, B, = B4 and choose Q, = Q, to be the set of potentials such that
0<U< inf V(x)—V(0), (7.1)

xeBA(0}

and such that the problem

Yoe/*(BY), llwola=1, wolopg=0,

has a positive solution with

~ & ~ &
Eqe| E—=,E+ = ]|. 7.3
o€ I: 2 > + 2:| ( )
To prove that our choice of Q is consistent, we need the following extension of

a global bifurcation theorem due to Rabinowitz [2]:

Lemma 7.1. Problem (7.2) admits a solution (y, E,), with p, =0, for all .=0,d,> 0,
and Vas in (7.1).

Proof. From the general theory of bifurcation off nondegenerate eigensolutions
for finite dimensional problems [8], we know that there exists a curve
y:io> (U, E, Ay), 2€[0,1), in the space £%(B,) x R x IR, such that (u,, E,) solves
(7.2) with 2=1,. The curve y is differentiable, for € [0, 1), with initial condition
(g, Eq, A) =(ug, E5, 0), and either

(a) the projection of y onto the subspace IR xR, is unbounded; or

(b) we have

lim(uaaEa’ia)=(ulﬂEl30),
atl
where (uy, E;)=(uq, Eo); see Fig. 1. In our situation, (b) cannot occur, for the

following reason: An excited state of the Hamiltonian (— A4+ V)(B,) cannot be
everywhere non-negative, because otherwise it would not be orthogonal to u,.

Fig. 1
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Hence, if (b) held there would be a point (i, E, 1) on y with #>0 and i#(x) =0, for
every x in a non-empty set Q C B,\0B,.
But if Q +0 then Q = B,. In fact, if x, € Q then (4u)(x,) =0 and this implies that u(x)
is zero also on the sites x neighbouring x,. Since B, is connected, we conclude that
Q= B,, which contradicts (b) above.

Thus in our situation, (a) holds. Clearly, y cannot be unbounded in the
direction of R without being unbounded in the direction IR, as well. This means
that (7.2) admits a positive solution for arbitrarily large .. Q.E.D.

Remark. See Appendix A for an alternative choice of Q.
The next few lemmas illustrate some of the properties of y, which hold if U is
large. [Recall that v, is a solution of (7.2).]

Lemma 7.2. We have
dist(Eq, a(HY o(Bo)\{Eo}) 2 —6v— A+ U[2—1,(0)?] (7.4)
and py(0)*11, as U7 oo.

Proof. v, is the ground state of the Hamiltonian HY o(B,), corresponding to the
eigenvalue E,. Let x(x) be the first excited state of HY o(B,) and E'its energy. The
orthogonality relation

gx(x)wo(x) =0

gives
x0)yo(0)=— ;0 2(X)po(x),

whence

20)* =1p0(0) 2

2 )c(X)wo(X)‘2 Spe(0)? 2 wo(x)*=1(0)"*—1.

This bound and some simple inequalities yield
E'—E, =; [ — 200 (472) () + 9o(X) (A1) (%) + Apo(x)(4(x)* —o(x)*)]
+ 3 V) (1(x)* = o(x)%) + V(0) (x(0)* — o(0)°)

x*+0

>4y — )+ U[2—1p(0) 2]+ V(0)—(2—V(0). QED.

Lemma 7.3. We have

y= inf V(x)—E,=U—(/+2v). (1.5)
xeBo\{0}

Proof. Since o(x)>0, o(x) is the ground state of HY o(B,), and thus we have
Eo= inf ¥ [—p(x)(4y) () + V(x)p(x)* + Ape(x)*p(x)?]

lwll2=1 xeBg
W|€BD:O

<A+2v+ inf V(x)—U,
x€Bo\{(0}

whence (7.5) follows. Q.E.D.
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Lemma 74. If y>2v, then for all e€(0,y) we have
[po(x)| <2ve™ ' exp(—m(y, e)|x]), (7.6)

where m(y, ¢)=1n (1 + 21—‘) (y—8—2v)>.

This bound can be obtained with the help of a Combes-Thomas argument that
will be sketched in Appendix C. From the two lemmas above one can derive the
following corollary:

Corollary. There is a constant my(U) depending on U and diverging to oo, as UT oo,
such that

lpo(x) Se ™ @ vxeB,. (7.7)

The quadruple (24, B, E,,p,) will be defined in a completely analogous way.
Namely, we set B, = B4, we define Q, as the set of potentials, V, satisfying the
condition (7.1) and we define (E,, ;) to be a solution of the problem (7.2) with
Dirichlet boundary conditions on 0B, instead that on dB,. The existence of a
solution (E4, ¢4) of the linear eigenvalue problem

[(— 4+ V)+ AW (pollo, = E{ ] } 08
BB 1951=1. Bl =0, |

satisfying the induction hypothesis .#(1), can be proven easily, because V + AW (yp,)
has a deep well near the origin which enables us to prove an analogue of
Lemma 7.3 and of (7.7).

8. Construction of 2, ., and B, , ,

Let n be an integer = 1, and suppose we know (Q;, B;, E, ;) for j<n, and that the
induction hypothesis #(j) holds for every j<n. In this section we shall construct
Q... and B, such that #,(n+1), #,(n+1), and F5(n+1) are fulfilled.

Let A%, =B2, \B! where B! ={x:|x|<d,}. We define Q, . , to be the subset of
Q, of potentials, V, satisfying the following conditions in the annulus A%, ;U A%, ,:

dist(o(Ho(Ag 1 ) E,— 1) 20,4 (8.1)
and
(A3, 0 NS, (E,—, V)=0. 8.2)

The singular sets S,(E, V) appearing here are defined recursively. Namely, we
set

So(E, V)={xeZ": |V(x)—E|< 3|E| + 2v} (8.3)
and if 0k <n—2, we define

Sk+ 1(E> V)ESk(E’ V)\Si(E’ V) > (84)
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where SY(E, V)= U CYE, V) is a maximal union of components satisfying

(1) CUE, V)CSYE, V); (8.5)

(i1) diam C{E, V)<d,; (8.6)

(iii) dist(CYE, V), S{E, VI\CHE, V))>2d, . ; (8.7)

(iv) dist(E, o(H(CYE, V))))> 26, , (8.8)
where

CYE, V)={x: dist(x, C(E, V) <4d,} . (8.9)

There are two probabilistic estimates we need in order to bound
Prob(Q,.;\2,). The first one is a consequence of Wegner’s results (see [5, 6]).

Lemma 8.1. If A is a V-independent subset of Z' with cardinality |A] < co, then the
probability of the event

dist(E, o(Hy(A) <k (8.10)

is bounded from above by
min(cx'?g(E, {)| A, 2x{ ™| 4]), (8.11)
where ¢ is a constant and ¢,(E, ()]0, as ({+|E|)] 0.
On the basis of Theorem 2.2 in [6], we get also the following bound:

Lemma 8.2. There is a number N such that if |E|+{= N, then the probability that

S 1(Ex—, V)nA%0 (8.12)
is less than o,(E, ()| Ald; %2, and 0,(E, ()]0, as ({ +|E|)} 0.

These two lemmas permit us to bound from above the probability that (8.1) and
(8.2) fail to hold. Namely, we have

Prob {(8.1) or (8.2) do not hold} <min(c,d}/2,0,(E, O]A%, 11,20, _ L Y4%, 1)

+Q2( A uAg L ld Y, (8.13)
For sufficiently large d,,, the second term dominates the first term. We have that
|45 VALl T S eudyy 0d, 20T VS e d, (8.14)

where ¢, is a geometric constant and d,=(d,)*’*". This proves .#,(n).
Let us now pass to the construction of B,,,. Let y,,,=0B,,,; and let
y¢, ,=0B%, |, where the boundary of a set ACZ" is defined as follows:

0A={x,yeZ": |x—y|=1, xe A and yeZ"\ A or vice versa}. (8.15)
Following [6], we require the following definition.
Definition. A set ACZ’ is (k, E)-admissible if
0AnCi=0, Vo and Vj=0,1,...k. (8.16)
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From Appendix D of [6], it follows that there exists a (n—1)-admissible set
satisfying #,(n+1): B, will be such a set.
Next we need the following lemma which establishes .#3(n+1).

Lemma 8.3. For |E| 4 large enough, for all Ve Q, and every k=1, ..., n, there exists
a constant m(E, {)>0 such that

|G%"(x, y; 2)| S exp(—m(E, () [x—yl), (8.17)
provided
lz—E|<30,-1 and |x—y[Z3de,. (8.18)
Moreover, we have
dist(E,, o(H} (A))Z 107, (8.19)

for every k=2,....n

The proof of the decay estimate (8.17) is an almost immediate consequence of
the proof of Theorem 2.1 in [6], while to verify (8.19) one needs some extra
arguments. We defer the proof of this lemma to Appendix B.

9. Construction of ¢,, , ;

We now assume that we know (,, By, ;. E;) for k<n, and that these quadruples
satisfy the first n induction hypotheses. In Sect. 8 we constructed 2, ,, and B, .,
satisfying #,(n+ 1), #,(n+ 1), and .#5(n+ 1). Here, we consider the following linear
eigenvalue problem

(—A+V+AW(Wn))¢n+l=E£+1¢n+1 }
i1 €7Busy), N Ppiila=1, Gn+1los,.,=0.

Our aim is to prove that this eigenvalue problem has a solution (E%, |, ¢, + ;), which
satisfies the first part of the induction hypotheses Z,(n + 1), £(n+ 1), and F5(n + 1).
Thanks to #4(n), #5(n), and F¢(n), we have the following bound.

Lemma 9.1. We have
Gy'(2)| S[Ee Vit — | DW e 3mdn-1 ™ tmdn-i] 71 9.2)

for every ze‘gn_lz{z: |z—E,_,|=0,_.}, where DW and |DW| are defined in
Appendix D.

(9.1)

From the induction hypothesis #5(n+1), verified in Sect. 8, we also find the
lemma

Lemma 9.2. We have
”G (Z)H<25k 15 Vze(gk—l,kgn' 9.3)

The existence of a solution of (9.1) with eigenvalue close to E,, follows from the
following lemma.
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Lemma 9.3. For d, large enough (independent of n), the Hamiltonian HY, (B, )
has one and only one eigenvalue in the interval
[E,—20u E,+ 30,1, 94
and we have
G (2 eV . (9.5)

In this and in the following section, we omit writing the superscript “, n” on the
Green functions G3" and G§" .

Proof. 1t is enough to prove that G, . (z) is analytic near %, and that

L Gy ()= G )iz

1. .
i d < 9.6)

In order to establish (9.6), we shall view the couplings across B, as a
perturbation in which we propose to expand. To this end, we define coupling
matrices I, corresponding to y,=0B,, as follows:

it (xy)ey,
(X’Y)_{o otherwise . ®-

I,

n

Fig. 2
Then
H, (B,+1)=H,_(B)®H(A,.,)—1,. 9.9
Our bound on (9.6) follows from a resolvent identity. Let us define
G,+1(2)=Gp (2)DG,,. (2). ©.8)
G, 4(2) is the resolvent of H,_,(B,)®H(A,. ). From (9.9) we find
G, (2)=0,41(20)+[G6y411,G5,, ,1(2). ©.11)

Similarly, if we set
Gri1(2)=Gp, ., ag., (DG, (2) (9.12)
(see Fig. 2 for the definition of B,, 4,, ...), then we have
Gp,  (2)=Ghi (D + Gy (LI LY )Gy, (2). (9.13)
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By alternate applications of (9.11) and (9.12) we find
GBn+ 1(Z)= Got1(2)+ G,y 117.G$+ 12 +G, . 111Gﬁ+ 1(Fnd + Fnd+ )G, 1(2)
+ G 1 LG (L H T )G 16y, (2)
=F(2)+ L(2)Gg,, (2). 9.14)
Hence
G, . (2)—Gp (2)=F(2)— G, (2)+ L(2)Gp, . (2) (9.15)

where the definitions of F and L follow from (9.14).
By integrating the first term in (9.14), we obtain a result which cancels against
the second term in (9.6). In fact,

L Gy(@z= - § Gy Mzt § Gy (D)

27 ¢ 27 ¢ 27 ¢

1
= % (gn GBn(Z)dZ=Pw" .

For the second term in (9.14), we have

1
2mi

1
i (jﬂ Gy 16 ag.,
(ENZlpe ™o, 1, (9.16)

where we have used the induction hypothesis on i,. The integral of the third term
can be bounded in a similar way,

g Gu+ 11—;«GZ+1dZ

=Py, 1,G 44

n+1

1
“5771 g (Gp,®G 4, )Gy, . \ag, @G ag, NI+ L )Gy, @G, )
1
B H% g {GB"I—;'GAg+ 1[;ldGBn + GBnI;lGAﬁ+ 11—;ld+ 1GAn+ 1
+G 4, LGy, IGy,} 9.17)

To compute the integral in (9.17), let us introduce the pole subtracted Green
function

Ky (2)=Gp (2) P (9.18)

- 5
z—E, "

where P, is the orthogonal projection onto y,. Equation (9.17) is equal to

1Py 13Gag. (EDTK 3 (E)+ K (E)TG ay. (EJTIP,,
Py LG g (E G oy (E)+ Gty (ENLGag. (EDTIP,, |

n+1 n+1

Thanks to(8.1),(8.17),(6.17), (6.18), and (6.22), this expression can be bounded from
above by

96vly,lexp()/d, -1 +]/dysi —md,). 6.19)
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To bound (9.15), what remains to be done is to bound the operator-norm of
L(z)Gg, . (z). We shall bound
” w161 = “Fnd+ 104, X(Z)F [ (9.20)
and
113G, (D) = I1Gy (2)L] (9.21)
separately, for ze%,, ;. From Lemma 8.6 we get

“Exd+ 1GA,,+1 n” = h)n+ 1‘ “I;d+ 1M Ap+y n“
<P+l exp(—m(d, . —$d,)). (9.22)
To bound (9.21), let us observe that if x e y and y € 7, then, due to .#,(n), we have

|x—y| = 3d,. We can thus make use of Lemma 8.6 to bound the kernel of G , (z) for
ze%,, and we find

Gyl Se ™ <e 27 Vi y)erix,.
Let us now recall the following resolvent identity
GBn(x’ y> Z) = (Gn + Gnl—;l -1 Gn + Gnl—;t - lGB,.[;t -1 G,,)(X, ¥ Z)

=(G 4, + G116 I 1G4 )(x,y; 2)

for all xey?, yey,. Hence, we have
IL9G 5 3| <yl e
+[he Vh i — [DW e it e Emdn ] T Yy, 2
X e_m(dn_z‘in‘1)e—m(dn_%dn—l). (9 23)

By collecting (9.16), (9.19), (9.20), and (9.23), we find that if d,, is larger than a
certain constant independent of n, then

1L(2)Gp, , (2)]| Scqe?VTrmmny | |yd] (9.24)
and
2m Sf’ [GB,.H z)— Gy, (2)]dz

Scly,l ysle” 2. (9.25)

Moreover, if ze €, then using Lemma 9.1, (8.1) and .#,(n), we have

IIGs,. () ZIBy 1 |[IGp,(2) + 1G4, (2)]
2|y, JeV = mdn 1 8uly, | [yd] 2V~ mdn)]

<|Bn+1|[(43_ it | DW|le™ 3mdn-1_ g~ Fmdn-1)~1

ugdn_ _ g
slemvmmie ) oo ey
<e?Vdn, (9.26)

where the last step holds for d, large enough. Q.E.D.
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We can now pass to the proof of the induction hypothesis Z,(n+1),
SFo(n+1),and F,(n+1). Let us observe that ¢, ; can be represented as follows:

C
¢n+ 1= 2— § GBn+ I(Z)wndz > (927)
Tl ¢,

where c is a positive normalization constant. Using again a resolvent identity, we
find

C
Gpir1= %(j [Gus1+G110,G, 1 +G,y 1I;.GB,.+1E'Gn+1]U7n

1 dz
= — T ——
¢ |:1Pn + GA,.+ I(En)[;lwn + i (jn Gn + I(Z)I—;IGB,.+ 1(2) nWn (E" _ Z):I

(9.28)

The #?-norms of the last two terms inside the square brackets are bounded above
by
1G g (ED Il 2
+ sup {[[Gp, @)l +1G4,. (2I]11GCs,. @l e} 1Ll

z2€€n

<yl g 4oV eV iy e~ =, 9.29)

For the normalization factor ¢ we thus get the following estimates:
1—a,<c '<1+a,, (9.30)

where a, is the constant defined in (9.29). Moreover, we have

1@0+1=¥ull oo =X =) [,

1 dz
+c GAn+1(En)[;llpn+ 2_ § Gn+ 1(Z)I:.GB,‘+,(Z)I;,1Pn '
Tl %, E,—z
1 a 2a
§(1—C)+ca,,§<1—1+a>+1_"a =1_;2. (9.31)

Hence, if d,, is larger than a certain constant depending on 4 but not on n, the
bound (6.19) of the first part of #¢(n+ 1) is valid. The first part of .Z,(n+ 1) derives
from (9.29) and can be proven by writing E%, , and E, as the expectation value of
the corresponding Hamiltonian in the corresponding eigenstate. Finally, the first
part of #,(n+ 1) derives from Lemma 8.6 once we represent [¢, , ;(x)| as follows:
us1()=] ¥ (H=E; )" (% 1) [hs 1(y) = 0)]] S2ve ",

Iy=1

where H=H,(B,,,\{0}) and the last step holds provided |x|=1d,, .

10. Construction of v, , ;. The Proof Completed

As anticipated in Sect. 6, in this section we shall construct a solution (v, 1, E,+ 1)
to the non-linear eigenvalue problem (6.2) in the ball B,,,; by considering the
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following family of n.l.e.p.’s connecting (6.10) with (6.2):

(— A+ V A+ IW(p,)ug+ BW(ug) — W(p,)uy= E(B)u,;}

10.1
upelByey)s lugla=1, tglap,. =0, (10.1)

where f € [0, ], and we look for a solution u,(x) which depends smoothly on  and
satisfies the condition

ug(x)g=0=Pn+1(x). (10.2)
If B is so small that
1)
|Pup~wn|ioo<2ﬁ”T"WH, (10.3)
we have
and Eq. (10.1) can be rewritten in integral form
w)= B § e a v W)~ B~ W) G, (109

Cn

where c(f,up) is a p051tive normalization constant. Recalling the definition (6.6)
and (6.7) of the Green functions and the convention stated in Sect. 9 to omit the
superscript n, we can expand (10.5) in a geometric series as follows:

“ﬂ(x)zc[¢n+1+ Z ﬂj—§ By L(W(ug) = W(p,))Gy, , T ¢n+1:l (10.6)

Due to the implicit function theorem, [8], we know that the problems (10.1)
and (10.6) have a solution for f small. In this case, the solution u, obeys the
differential equation one gets by differentiating both sides of (10.6) with respect

to B:
duB

| ,
ap (x) = c(B, ug)(1 Puﬁ){j; T/ v %f Gp,. [(W(uy) = W(w,)Gs, ., L dnr

® d
8 B § G V) = WG, Y ¢,,+1}()

1

=c(p, u)( 1B, ug)(x)+ ZFa(ﬁ up)(x, y) dp (y))

—c<F +F, [‘Z;]) (10.7)

where F, and F, are defined in the obvious manner. Let [0, ;) be the maximal
interval for which a solution of (10.1) exists, (10.3) holds and

cliFoL- 1l <1. (10.8)
Then, for all fe[0, ;) we have

d
dlﬁﬂ —(1—cF,[-])"'F,. (10.9)
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Our aim is to verify a priori bounds on the right-hand side of (10.9) which
guarantee that 8, > 1 and that v, ; =u, fulfills the (n+ 1) induction hypothesis.
Let us introduce the following notation:

Uy ={ullu—y,l,<3min(1, A~ e "}, (10.10)
The estimates we need are contained in the following lemma:

Lemma 10.1. For u;e, ., and <A, we have

c(B,u)y=1+cy(dy,n), (10.11)
HFl(uwB)”oo_S.cl(dOa U’ n)”uﬁ_lpn“oov (1012)
IIF 5 (ug, Pl = ca(do, U, n), (10.13)

where ¢, ¢y, and ¢, are constants |0 uniformly in n, as both d, and U7 co.

Before proving this lemma, let us show how it can be used to control the
solutions of (10.9). We have

d
—h|luﬁ_¢n+le§

ap

d
dl; =le(l—cFy)~'F, |,
S(1+c)[1-(1 +CO)62]_101”uﬁ_wn”w

ECs”“ﬂ_’Pn”w,

o

where ¢3]0 uniformly in n, as (U,d)f(c0, 0). We thus find the differential
inequality

|,uﬁ_¢n+1”oo§63(|’uﬂ_¢n+1“oo+ “lpn_(ﬁn-Fl”oo)’

dp
which, upon integration, yields the bound
g — i1l @2 =) [y — sy [ S (P2 —1)e 2, (10.14)

From here it is clear that, if the depth, U, of the well at 0 and d,, are larger than
certain constants independent of n, then uy e %, .,V f € [0, A]. Moreover, if we set
¥, +1 =U,, the induction hypotheses .#,(n+ 1) and .#¢(n+ 1) hold. The second part
of .#;(n+1) can then be verified as the first part and this concludes the proof of
Fn+1).

Proof of Lemma 10.1. (i) We have
C(ﬁ,uﬂ)=l(¢>n+uulz)l“‘éll—lluﬂ*%“llzi_‘

_my -1
-S— \1_|Bn+1]e 2d" E1+C0(d07n)> (1015)
where ¢y(dy, )]0 uniformly in n, as d,7co.
(i) For all [0, 1], we have

HFl(uﬂa Bllw= ||KB,.+ 1(Ef;+ 1)(W(“p) ~WW)Pps 1l

SO j
D/ i $ Gp, . @ [W(up)—W(p,))Gs,. (2)VPus
2 Tl %,

j=

. (10.16)

0
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where F, and K have been defined in (10.7) and (9.18), respectively. We shall bound
the first and the second term of (10.16) separately. For the first one, we have:
HKB,,+ I(E + 1)(W(u[}) (wn))¢n+ 1 H ) é HDW“ ”uﬁ —lan ©
X sup { Y K, (Ere DY)y l(y)l}. (10.17)
y

X€By+1 €Bp+1

The supremum on the right-hand side is bounded above by

sup |Kg,, (Efi)x 0 Y [e""°‘”"y'+ Y e_id"}

X€Bn+1 Iyl =do j=0
Iyl sdo
n+1

+ 2 2 sup IKB"H(EﬁH)(x,y)I[e""'y'+ ;e—%d’} (10.18)

k=1 di_1<|y|<di xE€Bn+i

In order to bound (10.18) we need a lemma which is quite similar to Lemma 3.1
in [1].

Lemma 10.2. If d, is large enough, we have

c(U)+esdo),  VO=[yl=d,
K < -0 .
XSE’R‘| * n+1)( = {2‘3”"”4-(36(010), Vd S|yl Sdisq s (1019)

where c,(U)]0, as Utoo, and cs(dy), c(dy)l0, as dyTco.

Postponing the proof of this lemma to the end of this section, let us now use it to
bound (10.18). We have

(1018)<(C4(U)+c5 dO <Ze—mo(U)|.V|+|B | Z e“2~d1>

Jj=
n * —ﬂdj
+ X (2evdkﬂ+06(d0))<e_Mdk"l+|Ak+1| Yoe? )
k=0 =k

=c,(U,d,), (10.20)

where ¢,(U,d,)]0 as (U,dg)7(c0, 00) and does not depend on the iteration step n.
Lemma 10.2 allows us to bound the series appearing in (10.16). In fact, we have

1

i GB,H. LW(ug) = W(p,))Gy, . Vbys s

8

CENZ

2, = 2

8

||/\

L iz ISUP |G, . @I IDW | llug =yl

j=2 ze%n

z 7 1r1DW||fexp<2]1Fn 2de>
=

[DW lexp (21/67"— Emdn) [(1 —A|DW ] exp (21/07,,_ %m)) B 1}
S exp<21/cTo— %do) [(1 —J|DW| exp<zl/a_ %md()))'z _1}

=cg(do), (10.21)
where cg(d,)|0 as dyT 0.

8

II/\
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By summing (10.20) and (10.21) we thus get (10.12).
(iii) To prove (10.13), we can begin with a bound similar to (10.16)
|IF2”.7(/°°): sup ) I Favl o

ol o=

follew=1

< sup {MI HKB,,+,(Eﬁ+1)DW[U]¢n+1||oo

+ 3 M
ji=2

1 0
2—ni§ > U(Y)mGBnH

bn yeBn+1

< [(Wlug) = W(p,))Gg,. Vb1 } (10.22)

The structure of the two terms of (10.22) is very similar to that of the two terms of
(10.16) and they can be treated in a similar way. For this reason, we shall omit the
details of these bounds.

Proof of Lemma 10.2. The method used to prove Lemma 3.1 can be applied also to
the present case and gives the following bound:

sup |Gy (x,y;2)|+cs(do) for x,yeB,

xéyeBo
ls—Eal= £70
[KB,,., 1(3@ y; Ei+ JIS § 28V ce(do) for |x—yl= %dk s
e (10.23)
e MBIy otherwise,

where 7, =dist(Ey, a(Ho(Bo)\{Eo}), ¢s(dy) and c4(do)l0 as dyToo, and m(E)
> im(Ey)>0 for d, large enough. Moreover, due to Lemma 7.2, we have that the
supremum on the upper line of (10.23) |0 faster than constU ' as Ufco. Thus
(10.19) follows from (10.23). Q.E.D.

Appendix A. Replacing “Large U by a “Large Gap”

To prove Theorem NL2, we have shown how to construct an infinite number of
solutions of the n.le.p. (5.1) whose ecigenvalues form a dense subset of
{E: |E|>E}(v,{)}. Here, we wish to point out that our methods allow us to
construct further solutions.

Let us suppose that the potential V' is chosen such that the problem

— Ay, + Vi + AW p, =Ep, } (A1)
W1€/2(B({): 1/’1‘an=0> lpil,=1,

admits a solution (y4, E,), and that E, is a simple eigenvalue of the linear operator
— A+ V+AW(yp,)separated by a large gap y, from the rest of the spectrum. This is
the property established in Lemma 7.2. It plays a basic role in the estimates of
Sect. 10. For every fixed 4, such potentials, V, exist and form a subset of positive

measure. In fact, notice that there is a constant such that sup [AWW)l g2,
Iyl =

pl =1
=const|A|, for all A. If V' is a potential such that the problem (A.1) with A =0 has an
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eigenvalue E separated by a gap =7y, + const || from the rest of the spectrum, then
one can easily prove that a solution (y,, E,) with the properties specified above,
exists. The large gap permits us to control the exponential decay of y,. In fact, if x,
is the point where y,(x) takes its maximum, we have

1

1
Pil)= 27 (x,)| «idzzm —V—W(yp,)

o(+ —xo),

and the Green function appearing here can be controlled with the aid of a Combes-
Thomas argument; see Appendix C. If we adjust things in such a way that x,, is far
away from the boundary of B4, then the solution y,(x) can be used as the starting
point in our construction.

Appendix B. Proof of Lemma 8.3

The annulus A, is a (k—3)-admissible set such that

AN Sy H(Ex—5, V)=0 (B.1)
and
sup |[W(ip,)(x)] < 2ve ™"t (B.2)
xe Ak
Since
E,—E,_ < Y e 2"<list,, (B.3)
j=k—-2

to prove (8.19) it will suffice to verify that
diSt(O'(H:{, A Ex-2) 2305, (B.4)

as long as d, is chosen large enough. During this proof we shall also argue that the
exponential decay estimate (8.17) is true.

Let us introduce the modified family of singular sets, § AEy—5, V), which are
defined in the same way as the singular sets S{E,_,, V) were defined in Sect. 8, i.e.

they are the union of components () CHE, _,, V), except that the condition (8.8)

a,rzj

is replaced by the following one:
dist(Ey 5, o(HE + AW )G 3By V) 20— (B.5)

This condition is strictly weaker than (8.8), in the sense that from (B.1) and (B.2) it
follows that
A0S o(Er -3, V)=0. (B.6)

Moreover, A, is (k—3)-~admissible in the following sense:
34,0 Ci=0, Vj=0,..,k—3. (B.7)

These conditions are sufficient to apply the perturbation theory developed in [6]
to prove Theorem 2.2. In this way we can arrive at the exponential decay estimate
(8.17).
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One can also prove (B.4) following the lines of the proof of Theorem 2.2 of [6],
though, in this case, some changes are required. If we denote by (.#,) the following
induction hypothesis:

(F): If ACZ is a set sharing with A, the properties (B.6) and (B.7), then (B.4)
holds, or, because of (8.17)

G5 ", y; Ey - +ie)| S 40,5 (B.8)

for all ¢ real 40 and all x, ye A.

Then one can prove that (#, _,)—(#), for all k= 3. Since (#,) is evident, this
implies (B.4). We underline that although the techniques in [6] are sufficient to
prove (B.8), this result does not follow from Theorem 2.2 in [6]. In fact, this is a
decay estimate on the Green function which holds only when the arguments x and
y are enough separated, while we do not have such a restriction here.

To prove that (., _ ) —>(#,), let us consider a subset R* of 4 which satisfies the
(k—3)-admissibility condition (B.7), contains one and only one component C?_
of §¢_ and is such that

id,_,<diamR*<3d,_, (B.9)
and
dist(0R%, C_;)>0. (B.10)

The existence of regions R* with the properties above is checked in Appendix D of
[6]. We have

Lemma B.1. Let R=R" be as above, and choose d, and |E|+( sufficiently large,
independently of k. Then

|GR(x, y; Ey— 5 +ie)| £ 20,5 (B.11)
for all & real +0.

Proof. Let us introduce the simplified notations E=E, _,, C=C?_;, C= C_Z_y
Let B be a (k—4)™-admissible set such that

Co>B>C
dist(~ B, C)=3d, s (B.12)
dist(B, ~C)2d,_,

and let 7=0C, y=0B, Q=R\B, 0=R\C. We shall distinguish three cases

(i) xeB, yeB;
(i) xeQ, yeQ;
(i) xeB, yeQ.
In case (i), our lemma is a consequence of Sublemma 2.3 of [6]. In case (ii), we
can use the following resolvent identity:

Gr= GQ@GB + (GQ@GB)F(GQ@GC) + (GQ@ GB)FGRF(GQG') Ge), (B.14)
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where I' and I are the boundary operators related to y and 7, respectively. If xe Q
and yeQ, we have

Ggr(x,y; E+ie)=Gy(x, y; E+ie)+ Gol Ge(x, y; E +ie)
+GoI'Gy(x,y; E+ie)+ Gol'GrI'Gy(x, y; E+ie).  (B.15)

Due to the induction hypothesis (%, _,), we have

|Go(x, y; E+ie) 246, 5, (B.16)
and the same inequality holds with Q replaced by Q. Thanks to (B.5), we have
|Ge(x, y; E+ie)| <6, . (B.17)

Finally, by virtue of (B.12) and Theorem 2.2 of [6], we find
ITGRI(x,y; E+ig) [y|[7le ™. (B.18)

These inequalities permit us to derive (B.11) from (B.15).
In case (iil), xe B and ye Q, we can use the resolvent identity

Gr=Go®DGp+Grl(GyDGp)
from which we find
Gr(x,y; E+ie)=Grl'Gy(x, y; E+ie). (B.19)
Thanks to Sublemma 2.3 of [6], we have
|Gr(u,v; E+ig)| £25,2, (B.20)

for all u,ve B. Hence, the bound (B.11) derives from (B.20) and Theorem 2.2 of
[6]. Q.E.D.

To complete the proof of Lemma 8.3 one can make use of a method first used in
[7], as in [6]. This method goes as follows: For every point pe A there exists a
(k—3)-admissible set R, such that

dist(p, OR,\0A)= 1d, _, , (B.21)

and (B.9) holds. This is proven in Appendix D of [6]. One starts with p=x and the
resolvent identity

GA=GRX®GA~RX+(GRX® GA\RX)[;?RXGA' (B.22)
In the second term, there are only matrix elements G ,(u, y; E +ie) withue 0R,.. For
each ue 0R, one can then apply another resolvent identity similar to (B.22), but
with x replaced by u. Iterating this process, we find a series that converges rapidly
thanks to the exponential decay estimates of [6]. The remainder of this series can
be controlled in the same way as in [6], and using Lemma B.1, instead of Lemma
3.1 in [6], we can easily complete the proof of Lemma 8.3.

Appendix C
Let H=H, ((B,\{0}). We have
(A —Eo)wo)(x)= —wo(Q)I |Z=1 o(x—y), (C.1)
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and so we find

[wo(x)| = ’—‘PO(Q) MZ: ) (A—Eo)~'(x, y)\ <2v sup |(H—Eg)~'(x, ).

IyI=1
To prove Lemma 7.4 it is sufficient to prove that
((H—Eo)~'(x, y)| <& ' exp(—m(y, &) x— ), (C2)

1
where m(y, 8)=1n<1 + E(y~s-—2v)>. To this end, let us introduce the operator

Hi=e @ >fei* = F — [ Y (ei“'y—l)T"y], (C.3)
yl=1
where T, is the operator such that (T,y)(x)=1(x +y). The norm of the operator

within the square brackets in (C.3) is bounded above by
Y Je =1 < 2v[el —1]. (C4)

I»[=1
Hence, if a=im(y, ¢) the right-hand side of (C.4) is (y—&—2v), and we have
le <" H—Eo) ™ (x5, )| =|(H* = Eo) " '(x,y)| <e ™', (C5)
from which (C.2) follows.

Appendix D

Here we collect some of the most important notations we used. If A CZ" is a subset
and A(A) is the Laplacian on #%(4) with Dirichlet boundary conditions on 64, we
set

Gi"(=(z—AA)—V—2W(p,) "

The superscripts “4,n” are omitted in Sect. 8 and Sect. 9. The operator W(y,) is
defined in (5.4) where W(|x — y|) is a function satisfying the decay estimate (5.5). If
u,ve/*Z), we denote by DW[v] the operator on /*(Z") such that

DWlvu=2 xzy W(|x— ylu(x)o(y).

We denote by ||[DW| the number
sup IDW[v]ull, -

lullz=llvll2=1

When the symbol || - || contains a linear operator on £%(A4), ACZ?", it denotes the
operator norm. Moreover || - || denotes the operator norm of an operator:
£*(A)—L*(A).
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