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Abstract. We study the two-dimensional Hall effect with a random potential.
The Hall conductivity is identified as a geometric invariant associated with an
algebra of observables. Using the pairing between K-theory and cyclic
cohomology theory, we identify this geometric invariant with a topological
index, thereby giving the Hall conductivity a new interpretation.

Introduction

Since its experimental discovery [21], the quantum Hall effect [23] has attracted
the attention of many researchers. The general approach in the theoretical work
is that one considers a one-particle theory in a two-dimensional sample of infinite
size. This leads to the study of the Hamiltonian

Hω = [K2 + K2]/2 + βω(x, y\ ωεΩ, (0.1)

with the commutation relation

Here, β accounts for the presence of a magnetic field and Q is a real function on
the state space Ω which admits a flow of translation by !R2. D. Thouless et al [28]
considered periodic potentials g, i.e. the case where Ω is the two dimensional torus
T2 = (R2/Z2 with the natural flow induced by R2. They showed that with such a
potential and a magnetic field of rational flux, the conductance of any filled, isolated
band in the spectrum of the Hamiltonian is a topological invariant which is an
integral multiple of e2/h. Since then substantial progress has been made on this
subject through the contributions of many authors [1,2,3,5-8,18,22]. Among
these references, J. Bellissard's work has a close relation with this paper.

It was first observed in [5] that the two-dimensional Hall conductivity can be
identified as the Chern character of the spectral projection of Hω corresponding
to (— oo, EF\ where EF is the Fermi level. This led to the introduction of A. Connes'
geometry-operator algebra techniques to the study of the quantum Hall effect
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[6,7,8]. In order to use these techniques, Bellissard constructed an algebra of
observables j/ω which contains sufficient information about the Hamiltonian Hω.
It was noted in [5] that a computation of the current yields that the Hall
conductivity σH equals (e2/2πh)τ(PF[_δ1(PF),δ2(PF)^)/2πi, where τ and δί9 δ2 are,
respectively, a trace and two derivations on j/ω, and PF is the Fermi projection.
(Also see [3,22].) According to Connes [14], quantities of form τ(P[^1(P), (52(P)])
are in fact a geometric invariant. This invariant can also be interpreted as the
pairing of [P]e^0(Xω) with a cyclic 2-cocycle ψ, in the sense of [15], on the
algebra of observables. The cocycle gives rise to an element [i/f] in the even cyclic
cohomology group of a smooth subalgebra jtf% which contains all the spectral
projection of Hω corresponding to gaps. Thus the proof of the quantization of the
conductivity becomes the computation of all possible pairings < [ι/r], [P] > . We will
follow Bellissard's formalism to the point of reducing the computation of the Hall
conductivity to that of these pairings. But this is also the point at which [5-8]
and our work take on divergent courses. Using a Fredholm module (ffl , G, F),
Bellissard identified the Hall conductivity as an analytical index,

where FP is a Fredholm operator. The importance of this formula is that it holds
true for projections in the Sobolev space of «$/ω [6,7].

The purpose of this paper is to identify < [ι/Γ|, [P] > and, therefore, the Hall
conductivity as a topological index which is obviously an integer. The technique
required to achieve this is quite different from Bellissard's; we use the Thorn
isomorphisms for C*-crossed products and the cyclic cohomology theory
introduced by Connes. We write the Hamiltonian in the form of

Hω = [ - 32/dx2 + ( - id/dy - /?x)2]/2 + βω(χ, y).

This particular form of the Hamiltonian makes apparent that the corresponding
algebra of observables C*(ί2, 1R2,/?) is an iterative crossed product of C(Ω) by two
copies of R. We use this fact to prove a labelling theorem for the gaps of the
spectrum of Hω. Composing the two Thorn isomorphisms involved here, one
obtains a natural isomorphism φ: KQ(C(Ω)) -> K0(C*(ί2, (R2, β)). Let μ be the ergodic
measure that induces the trace τ. It turns out that the pull back (in the sense of
the pairing between cyclic cohomology theory and JfC-theory) of the cyclic
cohomology class [ι/Γ| by the transpose of φ is the class — [μ]. Since each element
of K0(C(β)) is naturally identified with the difference of two classes of vector
bundles, we can state our main result as follows.

Theorem. Assume that β is a nonzero real number.
(i) We have < |>], [P] > - - < [μ], φ ~ 1 [P] > for smooth [P] eKQ(C*(Ω, R2, β)).
(ii) Given a real potential QeC(Ω\ if the Fermi energy EF belongs to a gap of

the spectrum of Hω, then there are vector bundles V+ and V~ on Ω such that
Φ~1{.Pp] — [y+l ~ [y"] and such that the Hall conductivity equals

σH = (e2/2πft)< [>], [P,] > = (dim V - dim V+)(e2/2πh).

The rest of the paper is organized as follows. In the first section, we discuss
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the algebra of observables associated with the random Hamiltonian and the cyclic
cocycle which will later be used to express the conductivity. In Sect. 2, we prove
the gap labelling theorem for the Hamiltonian Hω. This requires the identification
of C*(ί2, R2, β) with the iterative crossed product of C(Ω) by two copies of R. As
it turns out, this identification is crucial to the proof of our main result. We identify
the conductivity with the geometric invariant <[^],[PF]) *n Sect. 3. Section 4 is
proof of our main theorem.

1. The Random Hamiltonian and the Algebra of Observables

Throughout the paper, Ω will denote a separable, connected, compact Hausdorff
space. It will be assumed that there is a group of homeomorphisms {φXty:(x,y)eR2

acting on Ω such that for any /eC(β), (x,y) ^>f°φx,y is a continuous map from R
into C(Ω). For the sake of simplicity, φXίy(ω) will be denoted in the form of flow
translation ω + (x,y). For any feC(Ω\ we define /ω(x, y) =/(ω + (x, y)\ ωeί2,
(x,y)eR. Let dμ denote a translation invariant, ergodic, probability measure of the
flow (Ω, φ, R2). Given a real function QeC(Ω), one has a family of Hamiltonians

Hω = ί-d2/dx2 + (-id/dy - βx)2M2 + βω(x,)0 on L2(R2), ωefl.

Here, β is a real number which arises from the physical system. In the case of the
two-dimensional Hall effect with a uniform magnetic field B perpendicular to the
xy-plane, the constant β equals e\E\/hc. We will assume for the rest of the paper
that β is a nonzero real number. Under this assumption, the free Hamiltonian

H0 = [ - d2/dx2 + ( - id/dy - βx)2]/2

is in essence a linear oscillator. This can be seen in the following way. Let
K! = -id/dx and K2= -iδ/dy-βx. Let J^: L2(R2)-»L2(R2) be the Fourier trans-
form (&rf)(u9v)= J exp[-2πi(ux + υy)']f(x9y)dxdy. Then on L2(R2), we have

K1 = &K^* = 2πu, K2=^K2^* = 2πv-(β/2π)ίd/du, and, therefore, H0 =
^H0^* = [(2πu)2 + (2πv-(β/2π)id/du)2y2. Let Uβ be the unitary operator of
multiplication by exp (i(2π)2uv/β) on L2(R2). Then

K1 = υβKι 17| - Uβ&Ki &* ί/| - 2πu = k, ® 1,

K2 = UβK2 U*β = UβFK2&* U*=- (β/2π)id/du = k2®l (1.1)

where kl is the multiplication by 2πu on L2([R) and fc2 = — (β/2π)id/du on the same
space. Hence H0 is unitarily equivalent to

H0 = UβH0 O* = Uβ^H0^* t/| = [ - (β/2π)282/δu2 + (2πu)2]/2

= 2 " 1 C ~ (β/2π)2d2/du2 + (2πw)2] ® 1. (1.2)

In this paper, we use a function on a given ί2 to describe the disorder associated
with the physical system. We take this approach because of its mathematical
convenience. On the other hand, if a potential Q on R2 is given, one can think of
ί2as the hull of β and the flow on ί2as that induced by translating Q [5]. Oftentimes,
one can assume that the flow (Ω9φ, R2) is minimal and uniquely ergodic. This is
the case, for example, when the potential Q is periodic, as was considered in [28].
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For such a potential, Ω is the two-dimensional torus T2 ^ R2/Z2 and the flow is
that induced by the group structure of Ω.

Let CC(Ω x U 2 ) denote the collection of continuous functions on Ω x U2 with
compact support. For any aeCc(Ω x U 2 ) and ωe/2, let

(πω(a)f)(x,y)= f a(ω + (x9y)9ξ9η)exp(-iβxη)f(x + ξ 9 y
R2

(1.3)

For a fixed ω, the C*-algebra generated by all πω(α), aeCc(i2 x !R2), will be denoted
by C*(ί2, [R2, j8). This is the algebra of observables. If /? were 0, this algebra would
be a representation of the C*-crossed product C(Ω) x φM

2. We will later identify
C*(ί2, U2,β) as an iterative crossed product of C(Ω) by two copies of U. This
identification is absolutely essential to our work. Although the algebra of
observables constructed here has a different appearance from the algebra intro-
duced by Bellissard in [5,6,7], they are actually unitarily equivalent. We choose
this particular representation of the algebra because of our need to identify it as
a double crossed product.

For any zeC\R, the resolvent (z-HJ""1 belongs to C*(ί2,R2,β). But this is
not an obvious fact and a little explanation is in order. Using the usual power
series expansion, one sees that it suffices to show that the resolvent of the free
Hamiltonian, (z-f/o)'1, belongs to C*(Ω,U2,β). By (1.3), the C*-algebra tf
generated by all

J b^ηϊ^iξKJ^iiηKJdζdη, beCc(R2) (1-4)
u2

is contained in C*(/2, IR2,/?). On the other hand, the C*-algebra generated by

J b(ξ9η)exp(iξk1)Gxp(iηk2)dξdη9 beCc(R2) (1.5)
u2

is Jf (L2([R)), the collection of all the compact operators on L2([R). By (1.1), the map
that takes (1.4) to (1.5) extends to an isomorphism /β from JΓ onto Jf (L2([R)). It
is a well known fact that if z is a nonreal number, (z - (/c2 4- /c^/l^eJf (L2(R)).
Therefore (z - H0)~16JΓ(L2([R))(χ)C. One deduces from this, (1.1) and (1.2) that

On the space L2(Ω x R2), where the measure is dμ x dxdy, let C*(ί2, IR2,β) be
the C*-algebra generated by twisted convolution operators

(Cβ/)(ω, x, y) - J2 α(ω, ξ, »/) exp ( - iβxη)f(ω + (ξ9 η),x + ξ,y + η)dξdη,

3 x R 2 ) , feL2(ΩxR2). (1.6)

We call the function a the kernal of Ca. It is easy to verify that the kernel of (CJ* is

α*(ω, x, j;) - exp (- ίβxy)a(ω + (x, j;), - x, - y). (1.7)

For any a,beCc(Ω x 1R2), CαC& has a kernel

α*b(ω, x, ̂  = J α(ω, ξ, f?)exp(- iβξ(y - η})b(ω + (ξ, η),x-ξ,y- η)dξdη. (1.8)
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These formulas show that

τ(CJ - J a(ω, 0, 0)dμ(ω), aeCc(Ω x [R2) (1.9)
Ω

defines a trace on C*(ί2, U2,β). On L2(Ω x [R2), define (Z>ι/)(ω,x,)0 = 2πix/(ω, x, y)
and (D2f)(co,x9y) = 2πiyf(ω,x9y). These operators induce two derivations on
C*(ί2,R2,β) in the following way. For AεC*(Ω9R

2,β), define

<5i (A) = [A, DJ - v4Di - D! A and δ2(A) = [A, D2] = ,4D2 - D2>4

if these operators belong to C*(ί2,[R2,β). Obviously for every aeCc(Ωx [R2), Cα

belongs to the domain of δ^ and δ2. The operators (5t(Ca) and δ2(Ca) have
kernels 2πixa(ω, x, 3;) and 2πiya(ω, x, y) respectively. Let Ccc(Ω,R2,β) be the
collection of elements A such that δn

1(δ2(A))eC*(Ω9 1R2,/?), and such that
τ(δn

1(δ™(A))*δn

1(δ™(A)))< oo for any nonnegative integers n and m. The algebra
C°° (ί29 [R

2, /?) is a smooth subalgebra of C* (ί2, [R2, β) closed under analytic functional
calculus [13]. According to [13, Page 52], we have

Proposition 1.1. The inclusion map z:Cω(A [R2,β)-»C*(A (R2,β) induces an
isomorphism

between the K-groups.
Let i^ = W*(Ω, (R2,β) be the weak*-closure of C*(Ω9 U 2 , β ) in ^(L2(Ω x (R2)).

It is known that the von Neumann algebra W is a factor if the action of IR2 on
Ω is free and it is of type-II^ if the orbits of the flow are not closed [14]. The trace
τ naturally extends to a normal trace, which we denote by the same letter, on iff.
One can easily deduce from formulas (1.6-1.9) that the GNS representation of iff
induced by τ is unitarily equivalent to the identity representation of iff on
L2(Ωx [R2). Hence τ is always a faithful trace on Of. If AeiJf is such that
τ(A*A) < oo, then A has a square-integrable kernel a on Ω x [R2 in the sense that
for any feL2(Ω x K2), Af is given by the right-hand side of (1.6) [20].

Let Aί9A2eC*(Ω, U2, β) be two elements in the domain of δ1 and <52 such that
τ(AfAj)«x> and τ(δk(Aj)*δk(Aj))«x>J,k=l,2. Then δk(A1A2) = δk(A1)A2 +
A1δk(A2) is of τ-trace class, fe = 1,2. Since δk(Aj)9s have square-integrable kernels,
a simple computation using formulas (1.6), (1.8) and (1.9) yields τ(δk(A1)A2)^
— τ(A1δk(A2)). Hence for A1 and A2 satisfying the above condition, we have

τ(δk(A1A2)) = 0, fc=l,2. (1.10)

In other words these derivations annihilate the trace. Because <5t and δ2 commute,

Ψ(a0,a1,a2) = τ(a0lδ1(aί)δ2(a2)-δ2(al)δ1(a2)~]) (1.11)

defines a cyclic 2-cocycle on C°°(β,IR2,jS) [15].
Let 7 be the unitary operator (Vf)(ω,x,y) = f(ω + (x9y)9x,y) on L2(Ωx R2).

It is straightforward to verify that for any aeCc(Ωx IR),
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where the direct integral corresponds to the space decomposition

L2(Ωx R} =

If the flow (β, φ, (R2) is minimal, then ||πω(α)|| is independent of ω [20]. In this
case, for any ωeΩ, Cαh-»πω(α) extends to an isomorphism from C*(ί2, IR2, β) onto
C*(ί2, [R2,/?). If the flow is not minimal, one can still show, by using the ergodicity
of μ, that there is a Borel set N c= Ω of measure 0 such that πω is an isomorphism
for every ωeΩ\N. Let

Then

H=V*$®Hωdμ(ω)V.
Ω

, x, y) = [ - a2/5s2 + ( - id/dt - βx)2]/(ω + (5, ί), * + s, y

+ β(ω)/(ω,x,y). (1.12)

Thus we have

Proposition 1.2. (i) 77ιe map πω is an isomorphism from C*(Ω, R2, β) onto C*(Ω, U2, β)
for a.e. ωe/2. If the flow is minimal, then every πω is an isomorphism.

(ii) Given a real potential QeC(Ω\ for a.e. ωeΩ, the spectrum ofHω is the same
as that of H defined by (LI 2). If the flow is minimal, then every Hω has the same
spectrum as H.

Because of the isomorphism πω, for a.e. ω, τ will be regarded as a trace on
C*(ί2, R2, β). Similarly, δ^ and δ2 are regarded as derivations on C*(ί2, tR2,/?) and
\l/ defined by (1.11) as a cyclic cocycle on C%(Ω, (R2,β) = πω(C°°(β5 (R2,β)).

Lemma 1.3. L<2ί G be the resolvent set of Hω and let Rω(z) = (z — Hω)~~ί. Then
KjRω(z),j = 1,2, are C*(ί2, (R2, β)-valued analytic functions on G and for any zeG,

Proof. Let Λ0(z) = (z-H0)"1, then for nonreal z,Kω(z) - ,R0(z) + ,R0(z)ρωΛω(z)
and, therefore, K7 Rω(z) - X^0W + KjR0(z)QωRω(z). Let S = {(n+ l/2)| j8 | :n =
0,1,2,...}, the spectrum of H0 [25]. We first show that, off the set S,KjRQ(z)
belongs to C*(Ω, U2,β). According to (1.1) and (1.2), this will follow if we can show
that for zeC\S, kj(z-(k\ + kl)/2)~l is a compact operator on L2(M). Let
p = /q 4- ΐ fc 2 . Then, by the commutation relation [kl5 fe2] = z'j8, we have p*p = /c2 +
kl-β. Since (z-(fe? + k2

2)/2Γlp*p(z -(k\ + fcD/2)"1 is a compact operator, by
polar decomposition, p(z — (k\ + kl)/2)~1 is compact. A similar argument shows
that p*(z - (k\ + fe|)/2)~ 1 is also compact. Hence fc/z - (fcf + fci)/2)~ S 7 - 1, 2, are
compact operators. Once this has been established, the analyticity of the map
z\-*KjR0(z) is obvious. Hence KjRω(z) is a C*(Ω9 R2,β)-valued analytic function
on G\S. Since S has no points of accumulation and since ( K j R ω ( z ) f , g y =
( R ω ( z ) f , K j g y for any /eL2([R2) and g in the domain of KJ9 all the singularities
of KjRω(z) in G are removable.

By the resolvent identity we used in the previous paragraph and the Cauchy
integral formula, in order to show τ(Rω(z)* Rω(z)) < oo on G, it suffices to show
τ(#0(z)*#0(z)) < oo on C\S. Since the multiplicity of (k\ + kl)/2 at every point of
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S is 1 [16], (z - (k\ + kD/2)-1 = / β(RQ(z}) is a Hubert-Schmidt operator on L2(fR)
whenever zeC\5. By (1.3), (1.4), (1.8) and a simple computation, one finds that
an element AeJΓ is of τ-trace class if and only if / β(A] is a trace class operator
on L2(R) and that

τ(A) = (\β\/2π)tr(/β(A)). (1.13)

Hence τ(R0(z)* R0(z)) < oo. Π

Remark. The key in the above proof is that the singularities of the analytic function
KjR0(z) are isolated points in C if β Φ 0. If β = 0, however, KjR0(z) does not have
analytic continuation on [0, oo) and the proof of the above lemma will fail.
Consequently, the following proposition may not be true. This is the why we must
assume β Φ 0.

Proposition 1.4. Let λ be a real number not in the spectrum of Hω and let P be the
spectral projection of Hω corresponding to the interval (— oo, A). Then

Proof. Since the spectrum of Hω in (— co,λ) is contained in some finite interval
(fc, λ), we can choose a counter-clockwise oriented contour 7" c G which encircles
(M) once. Thus P = $ Rω(z)dz/2πi. Because δj(Rω(z)) = 2πRω(z)KjRω(z), it follows

r
from Lemma 1.3 that <5/P) = - ί$Rω(z)KjRω(z)dzeC*(Ω, (R2,β). Formally, we

r
have δj(Kj) = 2π and δj(Kk) = 0 for ]Φk. Hence that δnj(δ^(P)) belongs to
C*(Ω, [R2,/?) can be proved by mathematical induction and repeated use of
Lemma 1.3. Π

2. The Integrated Density of States and the Fermi Energy

Let H = \λdPλ be the spectral decomposition of the operator (1.12). Since the
R

resolvent (z — H) belongs to the ideal generated by the τ-trace class operators
in ϋ^, every spectral projection P(— oo,A), λ< oo, is finite in 1^. As usual, the
increasing function NQ(λ) — τ(P(— oo,A)) is called the integrated density of states
(IDS) for the potential Q. Since τ is a faithful trace, the spectrum of H and, for a.e.
ω, that of Hω, is the complement in [R of the open intervals on which NQ is a
constant. If the action of IR2 action on Ω is uniquely ergodic, then NQ(λ) can be
recovered from the limit distribution of the eigenvalues of Hω restricted to finite
domains of [R2 (hence the term IDS). In the case β = 0, this was done by M. Shubin
in [27], One can trace the steps of [27] to reproduce such a result for the case
β φ 0. But since this is not essential to our investigation, we omit the details.

Like the Hamiltonians for many other disordered systems, the function NQ

provides a labelling for the gaps of the spectrum of Hω [4]. A commonly used
method for determining all the possible labels is to compute the image under the
trace map of the K0 -group of the algebra of observables. For this purpose we will
express C*(ί2, IR2, β) as an iterative C*-crossed product of C(Ω] by two copies of
[R. This idea comes from a careful inspection of (1.8). For the validity of the following
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constructions of C*-crossed product algebras, the reader is referred to [26, Sect. 7.7].
From the group {φXty:(x,y)EU2}, one obtains two one-parameter groups of

homeomorphisms on Ω:

Ot(ω) = φ0jί(ω), and αr(ω) = φίj0(ω), ωeΩ, £e(R.

The C*-crossed product C(Ω) x ΘR of C(ί2) by the one-parameter group θ can be
represented on L2(Ω x R) as follows: For αeCc(ί2 x R), and fεL2(Ω x R), let

(fl*/)(ω, y) - j α(ω, ί)/(ω 4- (0, ί), y + ί)Λ- (2-1)
u

Then for any a,beCc(Ωx R), we have

(α* Z>)(ω, y) - j α(ω, ί)b(ω + (0, ί), y - f)<*ί = j α(ω, 0 WM, y - t)dt. (2.2)
R IR

The algebra C(Ω) x ΘR is the C*-algebra generated by all aeCc(Ω x R) with the
algebraic structure described above. The invariant measure dμ gives rise to a trace
T! on C(Ω) x ΘR:

τ1(α) = fα(ω,0)dμ(ω). (2.3)
ί2

Let us now define a one-parameter group of automorphisms {y s:5G[R} on C(Ω) x ΘIR.
For an aeCc(Ωx R), let

7s(α)(ω, y) - exp ( - ij8s;y)α(αs(ω), y) - exp ( - ίβsy)a(ω 4- (s, 0), y). (2.4)

It is straightforward to verify that each ys is an automorphism. Indeed ys(a) =
UfaUs, where (Usf)(ω,y) = exp(-iβsy)f(ω +(s,0)9y) on L2(ί2xR). The C*-
crossed product [C(β) x ΘR] x yR on L2((ί2 x R) x R) is the norm-closure of
CC(R, C(ί2) x 0R), the collection of compactly supported, C(Ω) x 0R-valued
continuous functions on [R. If we view CC(Ω x R) as a dense subalgebra of C(Ω) x ΘU
in the sense of (2.1), then [C(β) x ΘR] x yR is generated by

(Cα/)(ω, y,x) = $ exp ( - iβsy) J α(s, ω, ί)/(ω + (s, t), y -h ί, x + s)dί ds, (2.5)
U \R /

where αeCc(R, Cc(ί3 x R)) - CC(R x ί2 x R) and feL2((Ω x Ry) x Ux}. Furthermore,
for any α,beCc(R, CC(Ω x R)), CaCb has a kernel

(a*b)(x, ω, ί) = j exp ( - ίj8s(y - ί))l J a(s9 ω, ί)h(x - 5, ω + (5, ί), ̂  - t)dt \ds. (2.6)
R V R /

Naturally, the trace on [C(Ω) x 0R] x yR is

τ(Cβ) = Jα(0,ω,0)dμ(ω). (2.7)
Ω

For aeCc(Ωx R2), let α(x, ω, y) = α(ω, x, y). A comparison of (1.6) and (1.8) with
(2.5) and (2.6) shows that Cαh->C~ extends to an isomorphism from C*(Ω, R2,/?)
onto \_C(Ω] x ΘR] x yR. Hence we have proved

Proposition 2.1. There is a natural isomorphism J:C*(Ω, R2, β) -» [C(ί2) x βR] x yR
which respects the traces.



Proof. By (1.13), we have ()8/2π)Z - TjK0(jf)) c τ||:(A:0(C*(α R2, 0))). For the rest
of the proof, we need Connes' formula for the image of K0([C(Ω) x Θ(R] x yR)
under the trace map. According to [13, Corollary 1], τ#(K0([C(β) x
consists of numbers
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For the rest of the paper, we will identify these algebras. Thus δ1 and δ2 will
be regarded as derivations on \_C(Ω) x βIR] x yR and ψ as a cyclic cocycle on this
algebra.

Theorem 2.2.

φR
2)) + (jB/2π)Z.

x

where δy(a) = lim(γs(a) — a)/s on C(Ω) x ΘR and M is any smooth invertible element
s->0

in MΠ® C(ί2) x 0R~. By the definition (2.4) of ys, we have δy = δa + δ^, where, for
an aeCc(Ω x (R) smooth along the orbits of [R, δa(a)(ω9y) = da(txs(ω\y)/ds\s==0 and
δβ(a)(ω,y) = - iβya(ω,y). Because [C(β) x βR] x αR = C(β) x ^R, by [13],
(T! ® trJί^ίMjM-^^πίeτ^XoίCCίβ) x *R] x «R)) = ^(K0(C(Ω) x φU

2)). On the
other hand, it is obvious that δβ = ( — β/2π)δl9 where δl is the derivation induced
by the one-parameter group of automorphisms ιs(a)(ω9 y) = exp (2πisy)a(ω, y). Since
(τι®trj (^z(u)w"1)/2πieτϊί{(K0([C(ί2) x Θ(R] x μ)), which is known to be Z [13],
we have (τ1®trJ(^(w)M~1)/2πie(j?/2π)Z. Hence τ;{ί(K0([C(β) x 0IR] x y[R)) c
T*(^o(c(^) x φ^2)) + (ββπ)Z. The inclusion the other way follows from the fact
that for a smooth, invertible w, (τ1 ®tτn)(δa(u)u~ί)/2πiε(τί®trn)(δγ(u)u~1)/2πi +
(j8/2π)Z c τιIt(Xo([C(β) x flR] x yR)). D

Corollary 2.3. // A belongs to a gap of the spectrum of Hω for a.e. ω, then

The computation of τ^(KQ(C(Ω) x φlR2)) is contained in Connes' work [14].
He showed, for example, that if Ω is a smooth manifold and if the action φ is
generated by two smooth vector fields X and 7, then τ^(K0(C(Ω) x φ^

2)) consists
of numbers < C, ch 0] >, where ch:K0(C(Ω)) -+ H2(Ω, R] is the Chern character and
C is the Ruelle-Sullivan current of the foliation of Ω by the orbits of [R2. Hence
there is a large class of Ω and β for which τ4.(K0(C*(Ω9 IR2,/?))) is a dense subset
of [R. Because of this density, it is not unreasonable to speculate that the gaps of
Hω may not always correspond to Landau levels and that the Hall conductivity
may not always be identified with Landau band index. We will discuss this point
further in the next section.

Recall that the Fermi energy of the physical system can be computed from NQ

[27]. Let MQ be the "inverse" of NQ, i.e.

MQ(t) = sup{λ:NQ(λ)<t}.

If p > 0 is the electron density, then we can express the Fermi energy as the average
value of MQ on the interval [0,p], that is

[27].
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This formula tells us that if the Fermi energy belongs to a gap of the spectrum, it
will remain so if the electron density varies a small amount. If the spectrum of Hω

is a Cantor set, a small variation of the electron density could move the Fermi
energy into a gap.

3. The Conductivity and Cyclic Cohomology

Assume that the Fermi energy EF for Hω lies in a gap of its spectrum. We will
denote by PF the spectral projection oΐHω corresponding to the interval ( — oo, EF).
As was explained in [5, 6], the Hall conductivity σH can be measured in the following
way. Assuming that there is an electric field E in the direction of the Hall potential
difference at time t = 0, one calculates the evolution of the current as the electric
field is being turned off. This involves taking the limits E| -» 0 and ί -» oo. A recent
result of J. Avron, R. Seiler and L. Yaffe [3] allows the interchange of the order
of these limits. Therefore the Kubo-Greenwood formula yields that at temperature
0, the Hall conductivity equals

σH = \im^]e-*τ(PFlK1,exp(-itHJK2exp(itHωKPF)dL (3.1)
ε|0 in£ 0

The same formula was used by H. Kunz [22].
Note that exp(iί#ω) is a multiplier of C*(ί2, tR2,β). Indeed it is fairly obvious

that for any zeC\U and AεC*(QU2,β\ Q*p(itHJRω(z)AeC*(QU2,β). Hence
that Qxp(ίtHω)A belongs to C*(/2, (R2,β) follows from the resolvent identity
Rω(z) = RQ(Z) + RQ(z)QωRω(z) and the fact lim || λiR0(iλ)A -411=0, which can be

λ-> 00

easily derived from the structure of C*(Ω, (R2,/?). Lemma 1.3 say that KjPF and
P p K j 9 j = ί,2, are of τ-trace class in C*(/2, U2,β). Thus the integrand on the
right-hand side of (3.1) is well defined. We will now rewrite σH in terms of the
cyclic cocycle (1.11).

Lemma 3.1. Let P be the spectral projection ofHω corresponding to ( — oo, λ\ where
λ belongs to a gap of the spectrum of Hω. Then

ϊίtfJ^^40 0
(3.2)

Proof. Let

Aε = e~" exp ( - UHJK2 exp (itHJdt.
o

Since the trace τ has the property τ(B*) = τ(B), we have Imτ(PK1PAεP) =
- i\τ(PKι PAεP) - τ(PA,PKl P)]/2 = 0. Therefore, the left-hand side of (3.2) equals

lim 2i Im τ(PK1 AεP)/ε = lim 21 Im τ(PK1 [_Aε, P] P)/ε. (3.3)
gjO ε|0

Let Hω = J ξdPξ be the spectral decomposition. Then P = Pλ and
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dp η

Suppose that the spectrum of Hω is contained in (a + 1, oo). Let Γ be a
counter-clockwise oriented contour in C that encircles the interval (a+l,λ) once
and that crosses the real axis at a and λ. If ξ,ηe(a, + oo)\{Λ,}, we have

Using the identity Rω(z — ίε) = Rω(z) + ίεR0,(z)Rω(z — iε) and the identity above,
we have

\.At,F]=lRω(z)K2Rω(z-iε)dz/2π
r

= iδ2(P)/2π - ε j Rω(z)K2Rω(z)Rω(z - iε)dz/2πi.
Γ

Since Kjδk(P)eC*(Ω,R2,β), δj(P) is self-adjoint, and P = P2, by (1.10), we
have Im τ( - iPKίδ2(P)/2π) = Re τ(PK1 δ2(P)/2π) = τ(PK1δ2(P) + δ2(P)KίP)/2π =
τ(δ2(PKΐP))/2π = 0. Hence

LHSof(3.2)=-lim2ίIm ^τ(PK1Rω(z)K2Rω(z)Rω(z- iε)P)dz/2πί
ε|0 L^ J

= ~2ilm[^τ(PK1Rω(z)K2R
2(z)P)dz/2πi]

= - 2ilm\$τ(PRω(z)K1RJz)K2Rω(z)P)dz/2πi\. (3.4)
L^ J

Let C be a contour which is slightly larger than Γ and which still crosses the real
axis through the gap containing λ. Then

P)= -ifΛJz^ΛJzJdzlί -iίΛω(M)K2/?ω(M)d«
\ ^ / \ ζ /

For zeΓ and we£, we have Rω(z)Rω(u) = (Rω(z) - Rω(u))/(u - z). Hence

J

Γ

J

ζ

 ω 1 M ~ Z

Using the spectral decomposition of fίω and the standard contour integral tricks,
one finds J Rω(z)(u -zΓίdz = 2πίPRω(u) and j Rω(u)(u -z)~1dz = 2πίRω(z)(l - P).

Thus (3.5) yields

ζ

Comparing this with (3.4), we obtain
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LHS of (3.2) - 2iImτ(P<S1(P)(52(P)/(2π)2)

- τ(Pδι(P)δ2(P) - δ2(P)δl(P)P)/4π2 =

as was to be proved. Π

Corollary 3.2. The Hall conductivity can be expressed as

σ = ( β 2 2 π ^ τ ( P [ ( P ) ^

Quantities of form τ(P\_δl(P\δ2(P}~]}l'lπi were first studeid and recognized as
a geometric invariant in the irrational rotation algebra by A. Connes [14]. Here,
as it was the case in [14], we can identify this invariant as the "integral" of the
curvature of a connection associated with the algebra of observables. Given a
projection PeC™(Ω, IR2,β), <$P = PQ?(ί2, R2,β) is a finite projective modular over
C™(Ω, (R2,/?). Given the derivations δί and δ2, a compatible connection V on SP

is a pair of linear maps V l 5 V2:<fP-xίp such that Vj(ξu) = Vj(ξ)u + ξδj(u) for ξe$P

and ueC%(Ω, IR2, β). We can simply choose these maps to be Vj(ξ) = Pδ/ξ), j = 1, 2.
A simple calculation shows (VίV2-V2Vί)ξ = lPDίP9PD2P']ξ. Therefore the
curvature # = Vl V2 — V2 V x is an endomorphism on <fp, i.e. ^(ξu) = ̂ (ξ)u for ξe$P

and ueC%(Ω,U2,β). On the other hand, P[<51(P),«52(P)]P = [PD^P/^P] =
V ι V 2 - V 2 V 1 - < ^ . Hence τ(P[δ1(P),δ2(P)])/2πί = τ(<g)/2πi if one extends, or,
perhaps more appropriately, restricts τ to End $P. The main purpose of this paper
is to identify the geometric invariant τ(PF[^1(PF), <52(PF)])/2πί with a topological
invariant which is obviously an integer. To accomplish this, we need the pairing
between the X-theory and the cyclic cohomology theory of the algebra of
observables, and the Thorn isomorphisms for K-groups and those for cyclic
cohomology groups.

Recall that there is an operator S for the cyclic cohomology theory such that
for any algebra j/,S:H"(j/)-»//" + 2(j/) is a group homomorphism [15]. Using
this operator, one obtains two groups of inductive limits #Γ(^0 = um H2n(&/) and

~
= \imH2n+1 (s/\ There are pairings between K0(O and #ΓW) and

between K*(s/) and #°dd(X). That is, there are bilinear maps <.,.>:fl!v(t£/) x
KQ(J/)-*R and <.,.>:/ίJd d(j^)xK1(j/)->IR. For the exact definition of these
pairings, the reader is referred to [15]. As we have mentioned, the tri-linear
functional ψ defined by (1.11) is a cyclic 2-cocycle. Hence ψ gives rise to a class

[^]eHΓ(C°°(αR2,j8)). τhus ([lA],.):^^00^^2,^))^^ is a group homo-
morphism. We will also consider < [i/Γ], . > as a homomorphism from K0(C™ (A 1R2, β))
into R. We will show that the range of this map is Z. For a projection
PEC£(αR2,]B), <[^],[P]> = τ(P[δ1(P),δ2(P)])/2πi [15, 108]. In particular, the
Hall conductivity can be expressed as

σH = (β2/2πft)<M,[PF]>. (3.6)

In [22], Kunz considered the Hall effect where the physical units are normalized
so that β = 1, and where the potential is relatively small, i.e. \\Q\\ 00< 1/2. It follows
from general principles of analysis that, in this case, the spectrum of Hω is contained

00

in B= U Bn, where Ba = [n + (l/2)- | |βlL,π + (l/2)+ ||β|L]. He showed that
» = 0
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if λφB, that is, if λ belongs to a "natural gap" of the spectrum of the Hamiltonian,
then the conductivity corresponding to (— oo,A) is quantized and is given by the
corresponding Landau band index. Using our notations, this amounts to computing
<[ι/0, [PA]> tf Pλ is ^e spectral projection of Hω corresponding to (— co,λ). He
achieved this by approximating Q by periodic potentials. But from the viewpoint
of X-theory and cyclic cohomology theory, there is a much simpler approach. For
ίe[0, 1], define Hl

ω = HQ + ίβω. The spectrum of every H*ω is also contained in B.
The resolvent R^z) = (z — Hf

ω)' 1 is a continuous function of t. Therefore, if P\ is
the spectral projection of ίfω for the interval (— oo, λ\ then t\-+P\ is a continuous
function from [0, 1] onto C%(Ω, [R2, 1). Hence in K0(C%(Ω, (R2, 1)), [PJ = [Pi] =
[P°]. Thus <M, [PJ > = <!>], [PS] >. Since H°ω = H0,P*EJf nC£(α R2, 1) =
jf ^ = C°° (point, R2, 1), the class [PJ in K0(C£(β, [R2, 1)) belongs to the image of
the inclusion map z+:K0(jf „ )->£<) (C°°(β, (R2, 1)). It is known that the pairing of
[ι/0 with any element in X0pf ̂ ) is an integer. The main contribution of Kunz's
work is, of course, the treatment of the case where the Fermi energy lies in the
edge of one of the bands Bn, where the spectral projection is sufficiently localized.

Given a C*-dynamical system (A, IR, α), there are two Thorn isomor-
phisms φΛj:KJ{A)-*K1-.j(AxΛR),j = Q9 1 [13]. For the algebra C*(Ω, [R2, β) =
[C(β) X 0 R ] x ylR, the composition of the Thorn isomorphisms 00>0:K0(C(ί2))->
K±(C(Ω) x ΘR) and φyΛ\ K^(C(Ω) x flR)->X0([C(β) x βR] x yR) provides an iso-
morphism

βR] x yR) = K0(C*(Ω,U2

9β)). (3.7)

Because of Proposition 1.1 and because of the isomorphism πω, for a.e. ωeί2, φ"1

can be considered as an isomorphism from K0(C^(Ω, ίR2,/?)) onto X0(C(β)). The
map /(-> j f(ώ)dμ(ω) defines a 0-cocycle on C(ί2); its class in He

λ

v(C(Ω)) will be
Ω

denoted by [μ]. It is trivial that <[μ], [e] >eZ for any [e]6X0(C(β)). The following
is the main result of the paper.

Theorem 3.3. For any \_P~\e KQ(C^(Ω, R2,β)\ we have

The proof of this theorem will be presented in the next section. Since the
elements in K0(C(Ω)) can be identified as [FJ — [F2], where Vl and V2 are vector
bundles on Ω, we can interpret the Hall conductivity as follows.

Corollary 3.4. If the Fermi energy EF belongs to a gap of the spectrum of Hω, then
there are vector bundles V+ and V~ on Ω such that φ~1[_Pp] — [^+]~ [J 7 ] and

σH = (e2/2πfc)(dim V - dim V+).

At this point, it is necessary to compare our result with Bellissard's work on
the same subject. In [5, 6, 7], he considered the symmetric Hamiltonian

H(ω, β) = [( - id/dx + βy/2)2 + ( - id/dy - βx/2)2^/2 + Qω(x, y) = WβHω W$ ,

where (Wβf)(x,y) = exp( — iβxy/2)f(x,y) for /eL2(lR2). Accordingly, the algebra of
observables constructed there has the form x/ω= WβC*(Ω9U

2

9β)Wί. That is, a
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function aeCc(Ω x R2) represents an element

(πω(β)/)(x, y) = f α(ω + (x, 3;), ξ, */) exp (iβ(yξ - xη)/2)f(x + ξ, y + ιj)dξΛ;
R 2

in j^ω. To compute the Hall conductivity, he constructed a Fredholm module

2)_, G= J ° L
|_ϋ -IJ

0 (X + iy)/\X + iy\Ί d A Ό4) 0

i > l 0 ' a

for ^ej/. He then derived the formula

where Trs(T) - Tr(GF[F, T])/2. Thus for a projection

τίPtfΛP), <52(P)])/2πi - f Trs(P[F, P] [F, P])dμ. (3.7)
17

From this and a formula of Connes [15], it follows

τ(P[(51(P),(52(P)])/2πi = Index(FP),

where FP is the restriction of {PFP}+ _ to PJf, which is a Fredholm operator.
Thus Bellissard identified the Hall conductivity as an analytical index Index(FP).
The importance of the formula (3.7) is that it holds true for projections in the
Sobolev space Hv(stf\ i.e. for projections Pei^ with finite localization length

Therefore he was able to identify the Hall conductivity as an analytical index when
the Fermi energy lies in a gap of extended states in the spectrum of the Hamiltonian.

By contrast, our formula <[^],[P]>= -([μW1^]) identifies the Hall
conductivity as a topologίcal index — ([μ],^"1^]). This formula not only
provides an alternate interpretation of the Hall conductivity but also has the
following advantages. First, as it is the case for pseudo-differential operators,
topological index is generally considered to be more readily calculable. (When
6 = 0, for example, it follow immediately from the construction of the Thorn
isomorphisms that — <[μ], φ"1^^]) coincides with the Landau band index.)
Second, it suggests that the K-theory class φ~1[PF] may contain more physical
information of the quantum Hall effect than the conductivity σH. One sees from
our formula, for example, that the Hall conductivity should not be interpreted as
Landau band index unless φ~1[PF] lies in the subgroup Z[l] of K0(C(Ω)). It
would be extremely interesting if one could come up with an example where
(/)-1[PF]eX0(C(ί2))\/[l], or equivalent!^ [PF]eX0(C*(ί2, R2,^))\X0(JΓ). We
would consider such a class as a nontrivial topological invariant of the quantum
Hall effect. Given the fact that K0(C(Ω)) is generally quite larger for Ω with
sufficiently complicated topology, this is not entirely inconceivable. But while our
approach to the quantization of the Hall conductivity has its mathematical beauty,
it also has the shortcoming that the Fermi energy is required to be in a gap of the
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spectrum of the Hamiltonian. With Bellissard's results for Sobolev projections in
mind, one certainly would like to extend Theorem 3.4 to this class of projections.
But that is the task of another paper. In the meantime, combining Bellissard's
work and ours, we obtain the following analogue of the classical index theorem
(analytical index) — — (topological index):

Index(FP) = - < [μ], φ ~ * [P] > PeProj C£(fl, K2, β).

4, The Thorn Isomorphisms and the Pairing

As a first step in the proof of Theorem 3.3, let us examine how the two derivations
δί and δ2 are constructed on \_C(Ω] x ΘK] x γU when one uses this iterative crossed
product to represent C*(ί2, U2,β). On the space L2(Ω x Ry), where C(Ω) x flR lives,
one defines the operator (52/)(ω, y) = 2πiyf(ω, y). Then A *-> [A, D2] = δ2(A) extends
to a closed derivation on C(Ω) x ΘU. Since this derivation commutes with
the automorphism group {y s:selR}, it can be elevated to a derivation on
[C(β) x flR] x γR in the following way. For an element αeCc(R, C(β) x βR)), which
is the collection of compactly supported, C(Ω) x 0R- valued continuous functions,
such that a(x) belongs to the domain of S2 for every x and x *-> δ2(a(x)) is continuous,
simply define δ2(a)(x) = <52(α(x)). One can easily check that δ2 extends to a closed
derivation on [C(β) x ΘK] x yU and that it is precisely the derivation denoted by
the same symbol on C*(β, R2, β) when these algebras are identified with each other.
Similarly, at-+2πίxa (aeCc(R, C(Ω) x ΘR)) extends to the derivation δί on
[C(β) x flR] x yR. The trace τ on [C(β) x eR] x yIR can be realized as follows. For
a compactly supported, C(f2) x θ(R-valued continuous function φc), which re-
presents an element a in [C(β) x elR] x 7ίR,

τ(α) = τι(£i(0)).

In order to prove Theorem 3.3, we need the Thorn isomorphism for cyclic
cohomology introduced recently by G. Elliott, T. Natsume and R. Nest [17]. Let
us briefly recall the construction of this map. For a locally convex topo-
logical algebra j/, there is a universal differential graded algebra (Ω(jtf\d) with

= ® Ωn(jtf) [15, 17]. (In this paper, we will only consider those j/'s which

are norm dense subalgebras of C*-algebras.) Let y*(R) be the collection of smooth,
rapidly decreasing function on [R with convolution as its product. The differential
graded algebra Ω (&*(U))/® {Ωn(^*(U)): n^2} will be denote by E. Suppose that
30 is a Frechet algebra with a smooth action v of (R. Let (j/ x VIR)°° denote the set
of j/-valued smooth, rapidly decreasing function on [R with the product structure

= j a(s)vs(b(t — s))ds. (We will use the superscript oo to distinguish this smooth

crossed product from the ordinary crossed product.) The space ί2(jaf)(g)vE will be
given a structure of locally convex differential graded algebra as follows [17].

(1) For we/2 (sf) and /eE,

d(w ®f) = dw ®f + ( - l)deg w

(2) Define a left E0-module structure on ί2 (^/) (x) E0 as the one induced from
the product structure of (Ω(,tf)~ x vίR)°°.
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(3) Define a left E-module structure on Ω (stf) ® E by the formulas

(4) Define the product on ί2(j/)(χ)E by

Given a closed continuous n-trace T on Ω(stf\ define an n + 1 -trace #VT on
as follows. For

#VT(/) = 2πί J T(vλ(f(-t, £ ) ) ) ί . (4.1)
R \0 /

For other /, #vT(f) = 0. It was shown in [9] that #v induces isomorphisms

Given a smooth action v on a Frechet algebra j/, there is a dual action v on
(.s/ x VR)°°. Indeed if /e(^ x .(R)00 is regarded as an j/- valued function, then
(vs/)(ί) = e2πιsf(ή [15, 17]. It was shown in [17] that there is a natural isomorphism
Tv: si® JΓ°°^[(j/ x V[R)°° x .R] °°, where Jf00 is the collection of Hubert-Schmidt
operators on L2((R) with kernels in ^(R2). There is a map r: j/-*^®^00

such that r(α) = α®β0, where £0 is the projection corresponding to the 0th

Hermite function [17]. These maps induce an isomorphism T^'.K^jtf® JΓ°°)->
£ι([(^ x v^)00 x ί^]"0) and a homomorphism r#: K^^-^K^^/® JT00). Hence
the map T/:eβ/-^[(eβ/ x V[R)GO x .IR]00 induces an homomorphism (T/)^ = T^r^:
K ^(s/) -> K ^[(jtf x V1R)CO x 0IR]00). These maps also induce homomorphisms
between cyclic cohomologies: T*: //J([(.^ x VR)X x ^R]00)-*//^® Jf x') and

0) ->

Lemma 4.1. Let A be an odd cyclic cocycle on a Frechet algebra s$ which admits
a smooth action v ofU and let [/I ] be the class of A in H°λ

dd(^/). Then for any ι;eK1(

Proof. By the definition of the pairing between H°λ

dd and X l 5 we have
^v*V> = <r*r?#i>#v[^l^>- According to the proofs of Theorems 4.2 and 5.2
of [17], r*T*#,#v[Λ] = [SΛ] = [Λ] in H°A

dd Therefore <#^V[Λ], 7 )̂ =

<[Λ],«>. D
Let C°°(β) be the collection of functions feC(Ω) such that (x, j) ̂ f°φx ,y is a

C(/2)-valued C°° function on [R2. Then the group θt ='φ0>t acts on C°°(ί3) smoothly.
Hence we can form the smooth crossed product (C°°(ί2) x ^ίR)00. If μ denotes the
0-cocycle on C°°(ί3) of integration against the ergodic measure dμ, then #θμ is a
1-cocycle on (C°°(β) x ^[R)00. The automorphism group {ys:5eR} of C(β) x flR
defined in Sect. 2 acts smoothly on the subalgebra (C°°(ί2) x ^IR)00. Thus we have
a 2-cocycle #γ#θμ on the smooth crossed product [(C°°(β) x ^[R)00 x yfR]°°. When
Ω is a single point, this cocycle was computed in [17]. We will do the same
computation for nontrivial ίTs. But as was the case in [17], this computation is
no more than a chasing of the definition of the operator #, the constructions of
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(C°°(β) x ΘUΓ and [(C00^) x θtR)°° x ^ίR]00, and the traces and derivations
thereon.

Lemma 4.2. (i) For any b0, bίG(Cco(Ω) x ΘR)°°,

where τί is the trace defined by (2.3) and δ2 the derivation defined in the first paragraph

of this section.
(ii) For any α0,α1,α2e[(C00(ί2) x ΘRΓ x γ^T,

#γ#θμ(a0,a^ a2) = τ(α0[^2(α1)(51(α2) - δ ί ( a ί ) δ 2 ( a 2 ) ' ] ) = - ^(α0, aγ , α2).

Proof: (i) We start with the graded differential algebra (Ω (C°°(ί2)) ® ΘE, d). Because
of the linearity and continuity of #θμ on this algebra, it suffices to evaluate the
1-cocycle at elements b0dbί9 where bj = (uj®fj) with ujECco(Ω) and /}e^*(IR),
= 0, 1. (Uj®fj represents the element Uj{ω)fj(y) in (C°°(β) x 0(R)°°.) By the defini-

tions (1), . . . ,(4), we have bQdb^ = (u0 ®f0)d(uί ®fj = (uQ ®f0)(dul ®f1 + ul ® dfj =

WO(/O(<*MI ®Λ)) -f w0(/o(wι ® d/ι)) Since MO(/O(^I ®/ι))e/21(C00(jQ))(χ)E0 and, as

an ί20(C°°(ί2))-valued function on [R2, uQ(fQ(
by (4.1),

1) = 2πiJ J J θλ(uQθ^(Ul}f0(~t)
K θ ί3

= 2πi j j ίw0(ω)θ_r(ι/1(ω))/0(- t)fl(t)dtdμ(ω)
ΩU

= -2πi J J ίWoM/oίO^iίω))/^ - t)dtdμ(ω)

(ii) Once again, it suffices to evaluate #γ#θμ at a0da1da2, where aj = vj®gj

with ^e(C°°(ί2) x ΘK)°° and ^e^*(R),y - 0, 1, 2. By the definition of the product
on Ω((C^(Ω) x ΘUD®7E, we have

where the first two terms are functions in Ω^C^Ω) x
and >4 does not belong to this space. Applying (4.1) to the first two terms and using
the definitions of τ l 5 <52, τ, <5 l 5 ^2, we have

1 9a2)= - τ(

For a nonunital algebra j/, let j/ denote the algebra obtained from j/
by adjoining an identity. For a complex algebra ^/, in the pairing <. , .>:
Hodd(^) x Ki(^) -̂  IR defined in [15], Xt(^) is the algebraic Krgroup of rf. The
algebraic K^(J^) is defined as follows [14, 15]. Let GLn(,s7) denote the collection
of invertible elements in j/(x)Mn, where Mn is the collection of n x n matrices.
Let GL^(^/) denote the inductive limit of GLn(jtf) in the obvious way. If one



46 J. Xia

denotes the subgroup of GL00(^7) generated by commutators by GL^tX),
then the algebraic K^) = K\(stf} is defined to be GLJ^)/GLcJj/). If si
is a Frechet algebra and Λ is an odd cyclic cocycle on stf which is continuous
with respect to the Frechet topology, then it is possible to pair the class of A in
#odd(X) with a certain topological Ki -group of j/. We will make this statement
precise for certain subalgebras of C*-algebras.

Let B be a C*-algebra satisfying the following conditions:
(i) B has a trace τB with a dense domain and the property that \τB(ab)\ g

\\a\\τB((b*b)112) for any aeB and any retraces class element beB.
(ii) B is equipped with closed, densely defined derivations dl9...,dp which

commute with each other.
Let ̂  be the collection of aeB such that for any nonnegative integers n l 5 . . . ,np,
(iii) an^^np = d>ϊ -dn/(ά)£B and τβ« ,...,Π pfln i f... f l l p)< oo.

Define

(iv) Hlnι,... i l lp= IK,.,JI + (TjK,..,n,^i,..,nP))1/2 for αE^.
With these norms, $ becomes a Frechet algebra. The algebra $ is closed under
holomorphic functional calculus [13]. Thus each GLn(J?) contains a subgroup
exp^J?) consisting of Q\p(a1) "Qxp(am) with al9...,amε&®Mn. Let exp^J?) be
the inductive limit of expπ( J?). For an algebra & satisfying (i), (ii) and (iii), we use
the symbol K^(β} to denote GL^J^/exp^J?) rather than the usual algebraic
Xrgroup GL jJJ/GZ/jJ), which will now be denoted by K\(®\ (For Frechet
algebras stf which does not satisfy (i), (ii) and (iii) and which is not a C*-algebra,
KI(«S/) will still denote the algebraic Krgroup.) Since exp^ (j$) =3 GZ4(J), there
is a natural surjective homomorphism J\ K\(β) -^K^). If $ is a dense subalgebra
of B, then the inclusion map i: &^>B induces an isomorphism i^-.K^^-^K^B)

[15].
Let Λ be a cyclic (2/c — l)-cocycle on $ which is continuous with respect to

the Frechet topology (iv). We will now show that there is a pairing of the class of
A in H°λ

dά(@] with K^β) such that for any uEK\(dS\ the pairing of [/i] with Ju
(eK^di)) equals <[/l],u>. Because of the pairing between H°λ

dά(^) and K\(@\ it
suffices to show that the <[/!],ι>> = 0 for any ί;eexp00(J)/GL^0(J) = ker^'.
Furthermore, because of the linearity, it suffices to show that < [/I ], [exp (α)] > = 0
for any ae^®Mn. Recall that to evaluate this pairing, one first extends Λ to
J? such that y l ( l , f l 1 , . . . , f l 2 f c _ 1 ) = 0 [15]. It is a routine calculation to verify
that Λ is a cyclic cocycle on J. For any weGL^J), <[Λ],[w]> = ck(Λ#tτn) x
(w~1 — 1,w — 1, . . . ,w~ 1 — 1, w— 1), where ck is a coefficient depending only on k
[15]. Since ί H»exp(ta) is a function differentiable with respect to the topology (iv),
and since Λ is continuous with respect to this topology, one can repeat the
argument in [15, pp. 109,110] to show that <[/l],[exp(α)]> = 0. But there
is a simpler way to do this. By the linearity of the pairing, we have, for any natural
number p, < [Λ ], [exp (*)]>= p< [Λ ], [exp (fl/p)] > = ck(/l #trn)([exp (- a/p) - \]/
[(l//7)1/2fe],...,[exp(α/p)- l]/[(l/p)1/2fc]). Since lim [exp(α/p)-l]/(l/p) = fl in the

topology (iv), we have, for fc ;> 1, lim [exp(α/p)~Γ]/[(l/p)1/2/c]-0. Thus, by the
p-> oo

continuity of Λ, <[Λ],[exp(α)]>=0. Hence for any cyclic odd-cocycle Λ on &
which is continuous with respect to the topology (iv), there is a homomorphism
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< [Λ ],.>:£!(<#) ->R such that <[Λ ],./«> = <[Λ],w> for ueKl(&). In what
follows, the pairing between the K1 -group of a holomorphically closed subalgebra
of a C*-algebra equipped with a Frechet topology (iv) and a continuous cyclic
odd-cocycle will be understood in this sense.

Let [C(Ω] x eR]^ be the collection of elements AeC(Ω) x ΘU such that for any
nonnegative integers m, n, δ^(δn

y(A)}eC(Ω) x ΘU and τ ί([δ%(δn

y(A))']* 3%(δnγ(A))) < oo.
Here, δγ is the derivation induced by the automorphism group {ys:seR}. Obviously
(i)-(iv) are satisfied by <% = [C(Ω) x fltR]^. Thus we have an isomorphism ι^:
Kί([C(Ω)xeK]ao)-+K1(C(Ω)xθR). Therefore the Thorn isomorphism φθί0:
Ko(C(Ω))-+Kί(C(Ω) x ΘU) can be regarded as an isomorphism φθ^. X0(C°°(β))U
Kι(\C(Ω) x θu]J). On the algebra [C(β) x eiR]^, define a cyclic 1-cocycle

eίS]^ (4.2)

Obviously, A θ is a continuous extention of the cyclic cocycle #θμ on (C°°(β) x
to[C(ί3)x,R]0 0.

Lemma 4.3. For αrc

It was shown in [17, Sect. 6.1] that M = φθ,0M, where [e]eK0(C°°(β)) and
is represented by a class in K^C^Ω) x eIR)°°). Therefore <[Λβ],w> =

,0e,oM> = <#aM?Φθ,oM> [15, p. 109]. By [17, Theorem 6.2],

Since the action of {ys:se[R} on [C(β) x elR]^ is smooth, we can define the
smooth crossed product

([C(fl) x eR]^ x yR)°°. (4.3)

Accordingly, one obtains a cyclic 2-cocycle #yΛθ on this algebra. By the definition
of the # operator, #yΛθ is a continuous extension of #y#θμ to ([C(Ω] x ^IR]^ x (R)°°.
Because — ̂  is the continuous extension of #y#θμ to C°°(ί2, fR2,^), which contains
([C(β) x θίR]^ x ytR)00, we have

l9a2). (4.4)

Let {f s:seR} be the automorphism group on [C(β) x ΘR] x yR = C*(β, [R2,^).
dual to the action of {ys:se[R}. The trace τ induces a trace τ the algebra
C*(ί2,IR2,β) x f R = ([C(β) x Θ[R] x 7U) x f ί R in the usual way. That is, for an
αeCc([R, C*(β, IR2,/^)) representing an element in the triple crossed product,
τ(a) = τ(a(0)). Since ^α and <52 on C*(ί2, (R2,^) commute with the action of the
automorphism group {fs:se[R}, these derivations naturally induce derivations δ^
and $2 on C*(Ω, R2, j8) x ^R. Indeed for an αeCc([R, C*(ί2, R2, j8)), we have (δj(ά))(t) =
δj(a(t)\ if this function also represents an element in the triple crossed product,
7 = 1,2. On this algebra, we define a third derivation (δ^(a))(t) = 2πita(t) if the
C*(Ω, [R2, ̂ -valued functions a(t) and 2πiία(ί) represent elements in C*(β, (R2, j8) x f R.
It is obvious that the derivations δl9δ2 and 3̂ commute. Let [C*(β? ίR2,y5) x ^[R]^
denote the collection of elements A such that for any nonnegative integers
m, n, k, An<m<k = δ\ δΐδk

3(A)eC*(Ω, R2, β) x ,,K and t(A*mιtAatmJt) < oo. This algebra
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again satisfies (i)-(iv). Since [C*(ί2, [R2, β) x f IR]^ is obviously dense in C*(ί2, [R2, β) x
,.[R, we have an isomorphism

ι^:K1(lC*(Ω9U
2

9β)x,R']a,)^Kl(C*(Ω9R
2

9β)x^). (4.5)

Since C°°(β, IR2,/?) is smooth under the action of {ys:se[R}, one has the smooth
crossed product (C°°(β, U 2 , β ) x ?(R)°°. By (4.1) and by calculations similar to those
in the proof of Lemma 4.2, the cyclic 3-cocycle #^ on (C°°(β, U 2 , β ) x f[R)co extends
continuously to a cyclic 3-cocycle f on [C*(β, [R2, /?) x . IR]^. Indeed if the
calculation in the proof of Lemma 4.2(b) is carried out one step further, one finds
that #γψ(aθ9al9a29a3) can be expressed in terms of the f-trace of a finite, linear
and multiplicative combination of α0 and derivations of al9a2 and α3. Hence we
have a closed continuous cyclic 3-cocycle Ψ on [C*(β, (R2,β) x ^IR]^ such that

Ψ(aθ9aί , α 2 > βs) = #1Φ(a0,a1 9a2,a3) (4.6)

for α0, . . . , α3 in the subalgebra (C°°(β, (R2, β) x Λ)00. It is obvious that we have an
inclusion map

r.(([C(β) x Λ x yR)0 0 x fR)°°->[C*(αiR2,/?) x ̂ J^, (4.7)

which induces a homomorphism z^ between the corresponding K-groups.

Lemma 4.4. The map

is a surjectίve homomorphism.

Proof. Let hj be /h Hermite function, j = 0, 1 , 2, . . . , and let ejk be the rank-one
operator ^-(g/z^eJΓ00) on L2([R) [17]. Let An be the algebra generated by
ejk9 j9k = Q9l9...9n. For any n, the map αι->α(x)e00 induces a surjective homo-
morphism from K^dCφ) x 9^]^) onto Xt([C(/2) x θίR]^®^). It is easy to see

that (j Ty([C(Ω] x fllRloo®^) is dense (in the C*-norm) in (([C(β) x ^K]^ x
« = o

y[R)°° x f(R)°°. Because [C*(β, [R2,^) x f[R]00 is closed under holomorphic functional
calculus, to complete the proof, it suffices to show that if Be(\_C(Ω) x Q^]^®
AnY®Mk is invertible in ([C(β) x ΘR] ®An)~ ®Mk, then B~le([_C(Ω) x e^L ®
An)~ ® Mk. But this is obvious because, by the definition of [C(β) x fllR]^, for any

be[_C(Ω)xθU']00®An®Mk with C*-norm less than 1, £ ^6[C(β) x e^]^®
7 = 1

Proof of Theorem 3.3. By [17, Theorem 6.2], we have, for any [P^eK^C™^ U2,β)\
<D/dljP]> = <[#^]?0f,o[p]>. which, according to [15, p. 109] and (4.6), equals
([^IΦyoDP])- According to Lemma 4.4, φf0[P] can be represented by T^r^v
with ί;eK1([C(ί2) x eR] J. Because of (4.6) and (4.7), we have <M,[P]> = <[^],
Γy+r+t;> = <[# ]̂, Γys|ςr#t;>. Since, by (4.4), the restriction of ^ to ([C(β) x
e^Joo x y^)00 is -#y^θ5 the restriction of #fι/f to (([C(β) x ^^^ x .(R)00 x .(R)00

equals -^#y/l,. Therefore <[<//], [P]>= -<#y*,[/\,], Γ^r^) [15, p. 109].
By Lemmas 4.1 and 4.3, we have <[^],[P]> = - <[/VL"> = ~
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prove υ = φ~ϊ [P], it suffices to consider the K-groups of the C*-algebras involved
here. Since φ,βφyΛ = Tγ^ on Kι(C(Ω) x ΘU) [13], the equation T^r^v = ̂ j0[P]
implies 0y>1ι; = [P]. Hence, by (3.7),

<M,[P]> = -<M,0β:o10M[^]>=-<M,0"1[P]>. D
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