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Abstract. Since there are some important systems which have constraints not
contained in their field algebras, we develop here in a C*-context the algebraic
structures of these. The constraints are defined as a group G acting as outer
automorphisms on the field algebra &, a:G— Aut %, a; & Inn %, and we find
that the selection of G-invariant states on . is the same as the selection of states
wonM(G % F)byw(U,) =1VYgeG,where U,e M(G % #)\F are the canonical
elements implementing «,. These states are taken as the physical states, and this
specifies the resulting algebraic structure of the physics in M(G %X %), and in
particular the maximal constraint free physical algebra %. A nontriviality
condition is given for £ to exist, and we extend the notion of a crossed product to
deal with a situation where G is not locally compact. This is necessary to deal
with the field theoretical aspect of the constraints. Next the C*-algebra of the
CCR is employed to define the abstract algebraic structure of Gupta—Bleuler
electromagnetism in the present framework. The indefinite inner product
representation structure is obtained, and this puts Gupta—Bleuler electromagne-
tism on a rigorous footing. Finally, as a bonus, we find that the algebraic
structures just set up, provide a blueprint for constructive quadratic algebraic
field theory.

1. Introduction

A degenerate system is defined as having a nonphysical degree of freedom, and is
usually characterised by supplementary conditions, or by the action of a gauge
group on it. The physicist has the task of extracting the physical subsystem from
such a degenerate one. Indeed, physical information such as boundary conditions or
constraints, is often injected into a theory through the use of supplementary
conditions, and one could argue (as is done in [3]), that in a Lagrangian framework
the field equations should also be imposed as supplementary conditions on the field
algebra.

In algebraic field theory, a system is described by a unital C*-algebra # as the
field algebra, together with its set of states #, and hence a supplementary condition
can be imposed either on %, or on £, called respectively algebraic and state
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conditions. We examined in previous papers [1-3] both state and algebraic
conditions of types which are known to arise often in practice. A state
condition consists generally of the specification of a closed subspace ¢, of € as the
space of all relevant physical states. Such a selection may involve objects either in or
outside of #, called respectively inner and outer constraints. In our previous paper
[17], we considered only inner constraints of the form:

Pp={weP|oU)=1VUe%},

where % < # is some specified group of unitaries. The latter set was arrived at from
the heuristic supplementary conditions of the form Ay ) =0 which imply
(Yl » = 1, s0 on applying some correspondence rule, we obtain % as the set of
objects in # which corresponds to expiid. We developed the algebraic structures
flowing from this, and called the method of obtaining the physical algebra from it,
the T-procedure.

However, we found situations in which it was very difficult to apply the T-
procedure. Two of such were linear field theories with either nonhermitian
constraints or nonlinear constraints, the Gupta—Bleuler form of electromagnetism
being an example of the former. This was because the constraints could not be
defined by unitary elements in #. Moreover, the abstract situation in which gauge
degeneracy is defined through the action of a guage group «: G- Aut 7, the physical
states §, being the gauge invariant states, was also intractable by T-procedure. It is
for these reasons, with the main one the treatment of nonlinear constraints, that we
develop the theory here of systems with outer constraints. This theory is then applied
to the Gupta—Bleuler form of electromagnetism, by imposing its constraint
y|¥> =0 in the nonlinear form {y|exp(ily*y)|¥ > =1, and so it is an example
of the treatment both of systems with nonlinear constraints, and of systems with
nonhermitian constraints.

The course of this paper runs as follows. In Sect. 2 we summarise the salient
points of the T-procedure for reference; in Sect. 3 we set up the general problem of
systems with outer constraints, followed by the development of the algebraic
structures resulting from it. We touch in Sect. 4 briefly upon the structure of the
heuristic Gupta—Bleuler formalism, and describe how it will be set up in the ensuing
theory. Then follows in Sect. 5 the promised rigorous reconstruction of Gupta—
Bleuler electromagnetism. We also develop some theorems applicable to any linear
boson field theory with constraints, and these also prove the nontriviality of a
previous example cf. [ 1], and give connecting points to other procedures used in the
literature for electromagnetism as a C*-theory [15].

2. Inner Constraints: the 7-Procedure

In this section we collect the basic algebraic structures associated with systems with
state conditions, as developed in [1, 3], which is where the interested reader can find
the proofs of the statements below. As in [4], assume:

2.1. All physical information of a specified system is contained in the pair &, 2,
where the unital C*-algebra . is the field algebra, and § is its set of states.
The degeneracy assumption is:
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2.2. There are two specified unitary groups % and ¥" in &, such that # n¥ =1,
respectively called state and algebraic conditions. All physical information is
contained in % and the set of Dirac states defined by:

Pp={we P w|U)=1VUeU)}.

Then we®piff (w|AUY =< w|A) =<{w|UAYYUe%, YVAeF, or in terms of
LU)=U—-1: we @)iff {L#)} <« Kerwiff 7 {L(%)} {L(#)}F < Kerw. If for
each Ue% we define the automorphism ¢, := Ad U, then it is clear from the above
that the Dirac states are all -invariant, £, c £ ie. {w|oy(A4)> = w| AV U,
AeZF, we ¥,

Theorem 2.3. Let o/ (L) be the C*-algebra generated by {L(%)}. Then we #,,iff </ (L)
cKerowiff [/ (L)F 0 F o/ (L)] < Ker w, where [] denotes the closed linear space
generated by its argument.

Theorem 2.4. #, #Qiff1¢.o/(L)iff 1¢[ o/ (L)F © F o/ (L)], and in this case £ con-
tains pure states.
So our nontriviality assumption is:

2.5. Henceforth assume 1¢.o/(L).
For any set 2 < %, define:

M H(Q):={FeF|FMeQ3MFYMeQ],

hence if Qis a C*-algebra, then .# ,(2) is the largest C*-algebra in & for which Qisa
two sided ideal.

Theorem 2.6. Let N = [F oA (L)], D= N O A*, then D is the largest C*-algebra
annihilated by all the Dirac states, i.e. & is the unique maximal C*-algebra in
A =) {Kerw|we ©,}.

Theorem 2.7. O:= {FeZ |[F.H]e9VHeZ} = M (2).
Then 1¢2, and & is a proper two-sided ideal for (. In [5], Dirac defines his
observables as “first-class variables” in an analogous way to the way that ¢ is here
defined, i.e. as the “weak commutant” of the constraints. The observables in
quantum theories are traditionally taken to be .o/ (LY.

Define % to be the largest set such that .«7(L)¥ < [# .</(L)]. Then 1e.o/(L)
c L NI*

Theorem 2.8. 9 = S*A(L)SF and O = S nF*.

Hence /(L) = 0, and so we could choose @ even as the set of observable quantities.
O can be considered as the largest C*-algebra on which we can consistently impose
the constraints. Define the maximal C*-algebra of physical observables as

R=0/2.
The factoring procedure is the actual step of imposing the constraints. Now it is
possible that # may not be simple, and this would not be acceptable for a physical

algebra. So, using physical arguments, one would in practice choose a C*-
subalgebra ¢, = ¢ containing /(L) such that

Ro=00DO)<R
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is simple, and then Z, is the right physical algebra. The distinction between ¢ and @,
was not made in [1]. We call the procedure for obtaining the objects above the T-
procedure.

For future use, we prove that @ consists of the “weakly gauge invariant
elements.”

Theorem 2.9. AeCiffa,(A)— Ac@VUEX, ie. (0, —1)A < D.

Proof. L(U)A=(U —1)A =oy(A)U — A =ay,(A)L(U) + (¢y(4) — A). Now Ae¥
ffL( WA c[F./(L)], ie. by the first relation, AeZ iff(x (4)— A)e
[Z o/ (L)]V Ue%. On using the adjoint of the latter expression, we get from 2.8 that
(o, —nNAcZiffAcC. R

Theorem 2.10. we #,iffn, ()2, =0, where n,, and Q2 are respectively the GNS-
representation of w and its cyclic vector.

This corresponds to the heuristic |y > = 0 method for imposing constraints. Define
Y= {acAut F |2 = a[Z]}, thensince O = .4 (Z), « also preserves (¢ and so defines
canonically an automorphism o« on #. Define the group homomorphism
T:Y ~ Aut Z by T(a) = o', then we expect Ker T to consist of gauge transformations:

Theorem 2.11. Ker T = {vcAut F |{w|a[A]F ) = {w|AF )VA, Fe( and Y we ¥}
Y.

Theorem 2.12. aclnnZ# N Y =«'clnn £.

The physically admissable automorphisms of # denoted by Y, are those which are
definable on Z,,i.e.(0,) = O, and (D " O,) = D " O,. Clearly,if xe Y. it is sufficient
that it satisfies a(0,) = @, for it to be physically admissable.

Next consider the algebraic conditions #". Define N(V):= V — 1, Ve¥ . Itis hard
to find an abstract interpretation of the heuristic condition N(7)=0. We
interpreted it previously [3], to mean either that by construction of & the abstract
object that would have corresponded to N(V) is identically zero (cf. [6] for an
example of this approach), or to mean that there is some *-homomorphism [ :2
c F >R, onto, with N(7") < Ker I'. Clearly in this case Z, = #/Ker I'. Now if I is
not the T-procedure above, there are ordering problems in systems where both types
of constraints need to be imposed, and so the natural conclusion is that the two best
options for dealing with algebraic conditions are:

(i) Construct # insuch a way that the objects in it which correspond to the heuristic
constraints are identically zero, or

(i) treat all constraints on the same footing, i.e. impose them according to the T-
procedure.

Finally, for later reference we sketch the structures found for a linear boson field with
linear hermitian constraints, such as the Dirac form of electromagnetism, cf. [1]. The

field algebra is taken as Manuceau’s C*-algebra of the CCR cf. [4,7]: # = A(M, B),
where ./ is the complexified test function space with the nondegenerate symplectic
form B(;,-) on it. To fix notation for the later sections, we define A(.#, B).

Definition 2.13. (i) Given a linear topological space .# with symplectic form B on it,
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let A(#, B) be the normed *-algebra such that its elements are the complex valued
functions on .# with finite support. It has the obvious linear structure, the following
multiplication law:

(f1/2)@)= Y fi(z:)fa(z —z))exp[—iB(zy,2)/2],

zyedl

involution f*(z):= f(— z) and the norm || f||,:== Z | f(2)].

zeMl

(i) Denote the completion of A(.#, B) in the latter norm by A,(.#, B). Then

A(A, B) is the enveloping C*-algebra of A, (., B), i.e. the closure in the enveloping
C*-norm: || f'| == sup || n(f) ||, where P is the set of nondegenerate representations of

neP

A (M, B).

The functions 6, of support {F} and value 1 form a generating set of unitaries for
F . The heuristic correspondence rule is d <> W(F), where W(F) is the heuristic Weyl
operator constructed from the smeared version of a set of canonical pairs p;(x), ¢;(x).
The constraint group % is then specified as the group generated by é,,:= {65|Fe®%},
where % is a real linear subspace of .# corresponding to the heuristic constraints.
With

p={He|B(H,C)=0VCe%},

we found that 6,=0,n0, and indeed C*(5,) = C*(d ,N )= o/(L). There are
additional elements to these in 0, of the form ) o,6;, with F;¢pVi, but it is very

difficult to get our hands on these, and so we make the choice: O, = C*(6,) = «/(L)".
Now o/ (L)\ 0, does not affect Z,, and hence we might as well require .«/(L) < 0, i.e.
% < p, so in this case </(L) is commutative, and % = d,. Then Z N O, = o/ (L)C*(6,),
and the physical algebra is #, = o/ (L)'/«Z (L) +Z(L). In Sect. 5 of this paper we show
that when ¥ is the degenerate part of p with respect to B, then %, =
A(p/%, B), where B is the canonical image of B on p/% (which is nondegenerate),
and so in this case %, is simple. The symplectic transformations on .# which
conserve % will define automorphisms on %,.

In [2] we exhibited the connection between the structures above, and the usual
structures of indefinite inner product representations, but we omit a discussion of
that here, since it will not be utilized.

3. General Abstract Systems with Outer Constraints

To set up the problem of outer constraints, consider two typical situations. First,
consider a concrete situation that occurs often in physics. Let the field algebra
Z be concrete on a Hilbert space #, and let there be given a constraint yeOp (#),
where Op (/) denotes the set of (bounded and unbounded) operators with their
domains and ranges in . The physical subspace is selected by #,:= {{yeA’|
xy = 0}, the physical representation space is # ,, and the physical representation
is simply restriction to 5, and closure. The physical observable algebra @ consists
of all elements for which this representation = makes sense, and this includes the
commutant of y, and consists of all elements which preserve J#,. The physical
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algebra is n(0), i.e. all elements which are zero on # , have been factored out. In the
case when y is hermitian (respectively nonhermitian), we can construct the unitaries
U, =expily (respectively U, :=expily*y). Then (i, U ;) = 1 will be an equivalent
selection condition for 2 ,. If U,e %, we have the case of inner constraints, and so,
since this is done already, consider the case U,¢.%. In this case we can extend the
field algebra # to the C*-algebra & ,:= C*(# U Uy), execute the T-procedure on U,
in #,, and intersect the resultant algebraic structures &,, 0, with #. This will
correspond to the selection of states w on &, by w(Uy) = 1, and restriction to .
This is in the spirit of what we intend to do later.

Second, we wish to consider the situation where an abstract field C*-algebra 7 is
given, and the constraints can only be specified as automorphisms on %, that is,
there is specified an action of a locally compact group G on Z, ie. a:G— Aut #.
Locally compactness, though essential for the definition of G X %, will be relaxed
later, cf. Sect. 5. In this situation, it seems that the only available selection criterion
for physical states is G-invariance, taking #%(#) as the physical states. This is
because even if oy is inner, there is generally not a unique unitary group
homomorphism U:G %, which implements o by o, = Ad U,,. The nonuniqueness
originates from the fact that Inn % =~ # ,/Z(# ), and hence given a U:G— %, as
above, and a homomorphism 4:G— Z(#,), then we find U:G Z, defined by
U,:= U,A, will also implement o, o, = Ad U, = Ad U,. So even if u; = Inn#, we
cannot choose a U:G+— # , such that « = Ad U, and then impose the T-procedure
on Ug. Information is lost in specifying a constraint as an automorphism instead of a
unitary element. This situation is clearly embedded in the inner constraint situation
of Sect. 2, where we saw that &, = % (= #9),i.e. that the selection condition w(U)
=1 is stronger than w(UAU )= w(4)VAeZ. The general theory which is
developed in this section is independent of whether the constraint automorphism
group is inner or not, but for physical reasons, we want at least a generating set of G
to be outer. If otherwise, we should still be looking for a more unique way to define
the constraints in .%. Henceforth this will be called the outer constraint situation.

On constructing the C*-algebra % ,:= M(G X %), we know that there is an
identification such that 7 = 7, cf. [8]. Moreover, there are unitaries U, satisfying
o, =Ad U, and Uy = # \Z for H a generating subset of G. Since the unitaries U
are canonically and uniquely defined, we may try to apply the T-procedure in Z# , to
Uy, 1.e. to select the physical states on # , by w(Ug) = 1, and then to restrict these to
Z . In Theorem 3.3 we prove that this selects exactly the set of G-invariant states
£29(F)on Z.Itis tempting despite the uniqueness problem, to identify U, with the
heuristic object U, of the concrete situation above, if Ad U, e Aut % . Hence we set up
the problem of outer constraints by:

Assumption 3.1. In addition to Assumption 2.1, we have the action of a locally
compact gauge group «: G~ Aut .Z such that o(G) & Inn Z. Then the physical states
on # are defined by #,:= #,,.|.7, where

Epe={weF )|o(U,) =1YgeG}.

We develop the algebraic structures resulting from 3.1. The specification of ©,
starts the T-procedure in 7, L,=U,—1,.o/(L)=C*(Lg), %= [F (L)
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(A7 ] O.=M;(2,)=multiplier algebra of %, in &, The non-
triviality requirement is /(L)$1, and &, is the largest C*-algebra in #,
annihilated by all we #,,. Then the C*-algebra ¥:= % N2, is the largest C*-
algebra in & annihilated by all we #,,, because #, = #,.|.#. Moreover, &, is the
full set of states on % which vanish on &, because any such a state can be extended to
a state on %, which vanishes on Z,. This leads one to ask whether we can now
ignore objects external to &, and carry the T-procedure through on 2 in &, i.c.
construct O:= .4 () and set Z,:= 0/2 as the maximal physical algebra? The
answer is no, because #; will not be a gauge invariant algebra, and we see this as
follows. Since 2,<10,, and & is a C*-algebra, (Z2,nF)<(0,nF), and hence
O.nF < M -(2)= 0. This inclusion is usually proper (seen through examples, cf.
Sect. 5) except if /(L) = F (cf. 3.2 below), which is the inner constraint situation.
Hence for outer constraints, the restriction of the T-procedure of # , to &, results in
a smaller algebra than the corresponding T-procedure in . For %, to be gauge
invariant, the gauge transformations must be definable and trivial on it, ie.
o, = Ad U, must preserve & and each equivalence class of €. By a previous theorem
(cf. 3.7in[1]), o, preserves Z,, by definition preserves #, and hence preserves Z. For
o, to be theidentity on #, weneed a,eKer T, i.e. (g — )00 = %. Whilstitis always true
that (ag — )0, = Z,, cf. 2.9, and hence (¢ — ) (O, N F) = (D, N F) =D, there is no
way to ensure this for the additional elements in (0. Hence in general £, is not gauge
invariant. The true restriction %#:=(0,N%)/(Z,n %) will be the proper choice for
the maximal physical algebra, because it is gauge invariant and constraint free, and
this choice is justified because ¢, % contains the gauge invariant elements
o (LY n&, which are the usual observables. Since «, preserves %, Theorem 2.9
provides an internal characterization of O,n.%, i.e. given & and #, AcO,Nn.F iff
(ag—1nAcZ.

Next we wish to examine how sensitive the previous construction is to the choice
of #,. This is because it seems equally plausible to have chosen &, = C*(&F LU Ug)
instead of M(G X &), or any other C*-algebra in M(G X #) which contains
ZF U Ug. Hence we consider the problem of extending or restricting degenerate
systems.

Theorem 3.2. Let # < %, be two unital C*-algebras and let a constraint algebra be
specified: o/ (L) = F. Execute the T-procedure in both # and F ,, and denote the
corresponding objects in the latter by the subscript ‘e’. Then

() Z.nF =[FAD)IN[LL)F]=2,

i) O.NnF =M (D)=0

and hence B =0/9 =0 ,NF)(D,nF).

Proof. (i) </(L) = % means that & ,(F):= #,(F )|, and conversely, all exten-
sions @ of we #(F) are in #,(F ,). Generally, if we P(F), beP(F,), O|F = w,
then N, =N ,nZ, where N, is the left kernel of w. Hence:

(V{N,|we Pp(F)} = ({N;lde Py(F )} T,

and so by Theorem 2.12 [1]: [FA4(L)]=|F.Z(L)InF. Then Y .NnF =
[F A LINLA LT INF = [FAL)]IN[A(L)TF1=2.



76 H. Grundling

(i) &, is the largest set in &, such that o/(L)¥,=[% ,o/(L)], and hence
S .NF isthelargest setin & such that o (L)(S . NF) = [F ./ (L)]. Now as Z is a
C*-algebra, (L)L . nF)c F,ie. ALY NF)[F AL)]NnF =[F A ()]
Hence ¥ =%,n% and so O,=%,nS*¥ implies that ¢ ,NF =S NS *=
O=,-2). 1

So the preceding T-procedure would be unaffected by the choice of 7, in M(G X #),
as long as it contains both % and Uj.

In the next Theorem 3.3, we will show that the restriction of the Dirac states of
F ,to Z is the same as the set of G-invariant states of &, i.e. the T-procedure on # ,
restricted to & only results in the structures arising from the selection of the gauge
invariant states on #.

First, to fix notation, we define the crossed product G X # cf. [8, 9]. Let there be
given an action a: G+ Aut &, where G is a locally compact group, with a left Haar
measure A, and the modular function A:G~ R is a homomorphism. Let L(G, %)
denote the Bochner integrable functions f:G+ % with relation to the symmetric
Haar measure: ds:= A(s)” 1/2dA(s). This is a Banach *-algebra with the following
operations:

(fa)(r):= [ [(5)s(g(s™ ' P)dA(s), [f*(r):= o, (SO~ 1)¥).
Then G % # is the enveloping C*-algebra of L'(G, #). The actions of G and & on
LY(G, %) defined respectively by:
(UG)N0)=AGs) Po(f(s7 1) and  (m(A)f)(r):= Af ()

extend to actions on G X #, and induce the homomorphisms
UG-M(Gx%) and m:F MG X F)

which are taken as identifications, [8]. The notation M(-) used here, refers to the
abstract multiplier algebra of the argument, cf. [19] and [8]. Then o, = Ad U(s), and
L' (G, #) has an approximate identity. Revert to the previous notation, then it is in
the sense above that we say % < % .

Theorem 3.3. ©,(M(G X Z)|F = T )= {we P(F)|w(x,(4)) = w(A)VgeG,
AeF}.

Proof. Clearly by definition £,(F,)|.# < %(F), cf. remark above 2.3. For
equality we need to show that each we ¥°(#) has an extension @e €,(Z,),
®|F = w. Let we ¥9(F), and construct @ as follows. For fel!(G, F),

= [o(f(r)Ar) " 2dAr) = [o(f(r)dr.

Check that it is a state:
B(f*# f)= ([ (™)) [~ s)Als) ™ 2 dA(r)dA(s))
=o([[ ) (r1s)A(s) " 2 dAr)dAs))
= o([[ f()*f(9)Ar) 2 A(s)” V2 dA(r)di(s) 2 0
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because w is a state. Normalisation is simple. Continuity:

BN = [la(f(NIAG) ™ 2dA0) < JILFIAE) ™ 2dA@) = 1| f | 1.

Hence @ is a positive and continuous form on the Banach *-algebra L!(G, %), and
hence by Dixmier 2.1.5 [10] is hermitian, and so by Dixmier 2.7.5 has a unique C*-
continuous extension as a state to the C*-envelope G X . This state in turn extends
uniquely to a state on &, = M(G % %) because a nonzero state on a two sided ideal
of a C*-algebra extends uniquely to a state on that C*-algebra. Next we need to
check that ®|# = w. By the uniqueness of the extension, it suffices to check its
properties on LG, #). # acts on L}(G, %) by f(r)— Af(r), AcF, and &(Af) =
o(A[ f(r)A(r)~?dA(r)). However L'(G, #) has an approximate identity {f,}, and
hence &(Af,) > w(4)VAeF.So &®|F = w. Clearly, since non G-invariant states can
also be extended to # ,, not all states of # , can be obtained in this way. Finally we
need to verify that &e #,(F ,), i.e. that ®(U(t)) = 1 YteG. Again, by uniqueness of
extension, this property is only checked on L'(G, %).

AU f) = (JAE) Poy(f(t ')A H2dA(r))
=o(f [t A0 A(r) " V2dA(r)
=o([f()AF)~V2dAr) =a(f) V[feL'(G,ZF).
Hence o€ #,(#,). N
The nontriviality requirement easily adapts to an internal criterion on &.

Corollary 34. 1¢./(L)iff 1¢2,nF iff 96(F) # .

Proof. Since 1e€%, we have by Theorems24 and 3.3 that 1les/(L)
c2,iff1e2,nF cKeroVweP(F) N

Next we examine the various state spaces. Since #%(#) is a convex w*-closed
compact set, the Krein—-Milman theorem applies.

Theorem 3.5. (i) We have the following surjections:
PF) 5 £,(0.0F) 5> PR,
where 1 F * 1 (0,NF)* is restriction of functionals,
PONT)={weP(0,nTF)|ZeKerw}

and 8,0, F ) 0(R), the canonical map, is a w*-continuous isometric bijection.
(i) There is a bijection between £L(0,NF) and PP (R).

Proof. (i) Clearly by 3.3, if we %(F), then w|(0,N %) vanishes on &. Conversely,
for an we £0,(0, N F) we have by construction that on extension to a Dirac state on
Z ,,there are no contradictions. On using 3.3 again, we see that r is a surjection. That
f is an isometric w*-continuous bijection, follows from Dixmier 2.11.6 [10].

(i1) Apply Dixmier 2.11.8. MW

In the case of inner constraints, the statement of 2.10 expresses the connection with
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the heuristic theory, and in this situation the similar statement follows almost
trivially. First write the condition 7,(2)Q2,=0 as =, (U)Q2,=2,VUe%, and
return to the outer constraint situation. Given an we #°(%), we have a covariant
representation (z,,, U?, # ,, 2,) within which U2 Q,, = Q. Now by Pedersen 7.6.6
[8], for each covariant representation of #, there is a unique nondegenerate
representation of %, over the same representation space. Hence denote this
representation of &%, associated to (m,,U®) by p,. Then by Pedersen 7.6.4,
Uy =p,(U,)VgeGand n,(4)=p,(A)VAeF . Then p,(Ug)L2, = Q,. Conversely, if
pw(UG).Q = 0, then &():=(£2,, p,()€2,)is a Dirac state on ¥ ,, and restricted to
F is in P9(F).

Next we need to specify the automorphisms on % which are compatible with the
present construction. Let the set of all possibly relevant automorphisms on &
comprise a locally compact group H which contains the gauge group G. Retain the
previous notation for the action «:H o G Aut.#. Since the Haar measure of H
may not restrict to the Haar measure of G, it is not in general true that G X &
< H %X #. First a general theorem.

Theorem 3.6. For the situation o:H > Gt Aut F, we have identifications such that:

() GX F < M(H % 7),
(i) FUU(G)= M(G %X F)nM(H % F),
(i) C*(F L U(G)) = C*(Z U U(H)).

Proof. (i) Define a homomorphism L:G X 7 — M(H X 7) by:
LK) ()= i J(9)2,(k(g™ ' h)dA(g).

where feLY(G, %), keL'(H, %), and the right-hand side defines an element of
LY(H,Z). Then L can be taken as an identification.

(ii) We need to show that n(#) and U(G) (defined as operators on L'(H, 7)),
act in the same way on the subspace L'(G, %)< L!'(H, %) as the corresponding
operators defined on L*(G, %):

m(ANLN)R)(h) = AL(f)k)(h) = fAf 9),(k(g ™ 'h)dA(g)

(n(A) f)k)(h)
V feLNG, ), ke L'(H, #). Then with the same notation and with seG:

U(s)(L()K)(h) = U s) I 19) g~ 'h)di(g)
—iA (5)' ety (f(9)a (kg™ 's ™ h)))dA(g)
(j;A( $)' 2o (f(g))orsy (kg s~ Th))dA(g)
= iA(S V2o f(s™"9))eg(k(g™ "h)d(g)
=((

U(s) f)k)(h),
and hence we can say # v U(G) = M(G X F)nM(H X 7).
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(iii) We already have that C*(# LU U(G)) € M(G % %) and also C*(# L U(H))
< M(H %X &), and hence by (ii), we only need to show that the C*-norm of
M(G % #)isequal to the C*-norm of M(H % &) on their intersection. However we
already have that G X % < M(H % %), and the C*-norm of M (G % %) derives from
the norm of G X %. Hence the C*-norms are equal. W

Remark. From the last part of the proof of the theorem, we see that C*(F u U(G)) is
the same in both M(G % %) and M(H % &), and so we can say that

CHF LU(G)) = M(G X F)nM(H % F).

Each heH defines an automorphism Ad U(h) which restricts to «;, on &, and so we
are led to ask, can this automorphism be extended to %, = M(G X #)Vh? When
heH\G, it is not clear that this should be so, because in (U(h)f)(r):=
AW 2oy (f(h™'r)), the support of feL!(G, %) has been shifted by h~?, and so
U(h)f¢L (G, F). More precisely, for (f, k)eL'(G, #) x L*(H,#), and he H\G:

(Ad U)o LK) = Uh) ™ L(f)U (h)k(r)
=U(h™"L(f)Ah)' 2oy (k(h™ 1)
= U(h*‘)if(g)A(h)”zagh(k(h*1ghlr))di(g)

= iszri(f(g))oth-lgh(k(h”lg"hr))d?t(g)-

This can be written in the form L(t)k with re L} (G, &), only if " !Gh = G. Naturally,
that would be the case when G is a normal subgroup of H, but that excludes most
physical situations, since G is a gauge group. So a, can be extended to %, only if
heSt(G):= {heH|h™'Gh < G}. This indicates that %, may be inconvenient as a
universe to work in. Now by Theorem 3.2, the algebras 0,n.% and Z,NnZF in F
would be unaffected by the choice of & ,, as long as it contains U(G)u % . Now since
FoUG) cM(G X F)NnMH X F), we have C*(U(G)uF)c M(H X %), and
hence we could just as well have chosen %, :=M(H X %) for carrying the T-
procedure on U(G) out in, instead of & ,. Henceforth this will be the course that we
will follow, and we omit the prime on the subscript ‘e’.

The set of physically admissible automorphisms analogous to the case of inner
constraints, will consist of all the automorphisms definable on the final physical
algebra #..= 0,/%,., where on the basis of physical arguments one would have
chosen O, =« O,n% and 9..=PD,n 0. #. must be simple. As before, we are also
interested in the set of automorphisms of .# which are definable on the maximal
physical algebra #:

Y= {feAut F|p(0.nF)cONF, PDNF)SDNT}
Then clearly heSt(G)=>u,eY, and also o,eY if v, (Z,) < Z,.
Theorem 3.7. o,(2,) < 2, iff o(U(h™'Gh)) = 1Vwe ©),.

Proof. Let 0,(2,)=AdU(h)°2, < Z,. Then since L(G):=U(G)—1< 2,, we see
AdU(h)oL(g) = Ad U(h)>(U(g) - 1)=U(h™'gh) — 1€2, < KerwVwe #,,, hence
o(Uh™'gh)=1VYwe #,,, geG.
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Conversely, if o(U(h™gh)) =1 Vwe £,,, then «,(# (L)) = Z

At this point we have collected enough general structure to deal with an example.

4. Structure of the Heuristic Gupta—Bleuler Theory

We record here the heuristic Gupta—Bleuler structure for purposes of comparison
with the ensuing rigorous reconstruction [11,12]. The Lagrangian is

L=—%[d*xF,F"*, where F,(x)=4,,x)—A4,,x).
Then the field equation is F,,""(x) = 0 and the CCR’s are

*k
(A ()] = gD~ x), D= — 2 [ &0 sinkox,,
: “ ¢ ko

and C, is the mantle of the positive light-cone, k, = |k|. The Fourier transform is
written:

4,0 =0 j a,(k)e ™ + at(k)e)

O

with CCR’s: [a,(k),a(k)] = — guvk053(l_< — k)| C, and the other commutators
involving a are zero. At this point A4 ,(x) does not yet satisfy the field equations. On
smearing we obtain:

= [d*x A, (x) fH(x) = /7 jm 074(k) + a(l) f*(K),

where
F=(f%f1 12 [es RY),
and
fu(k) 2n)~ 2jd“’xe fex f (x)e S H(RY),
FHRY):= {FeSERY) | F(k)= F(—k)}.

The symbol ¥ (R) denotes Schwartz space on R. The operators a,(k),a’(k) and
hence A(F) act on the space ?f defined below. Equip .##(R*) with the scalar
product { f|hYM:= f(d3k/k Z fu(k)h,(k), then factor out the zero norm

part, and complete 1t {o obtain the Hilbert space #"). An indefinite sesquilinear
form is given on s# by

a3k -
(fi V== flghyV =~ | S JulR)RA(R).
¢, Ko

Then # = C@(@ (A (1)®")3>, where the subscript ‘s” means symmetric tensor

n=1
product. # is a Hilbert space with the scalar product {:|-> obtained from {-|- >,
and is a Krein space with the indefinite form (,,*) obtained from (-,))", and a, and af
act in the usual way as annihilation and creation operators on J#.
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A supplementary condition
d3k .
T, Fame
selects the physical subspace #":= {®@e A |y(x)®@ = 0}, and on #°V), this is exactly
the space of functions satisfying k*f,(k) = 0, denoted #", and moreover, () is
positive on #'. Now (-, ") is preferable to (|-, because if the Poincaré transform-
ations are defined in the natural way: (A, a) F(k) = ¢“* A F(A ~ k), we note that (-, ") is
invariant under these but {:|-> is not. So by factoring out #":= Ker(,")n "', we
can make a Hilbert space # ;= #"'/s#", which carries a unitary representation of
the orthochronous Poincaré group. This factoring is justified through imposition of
the field equations cf. [12]: In #'"), the space #V" consists of all the gradients, i.e.
fuk) =k, f(k). After smearing with F (k) = (k,k* — k*6,,) f,(k), A(F) will correspond
to F,,*(f), and since #" is defined on C,, the set of test functions
{k k1 (k)C.|f,eZ,(R*)} will represent the field equations. This is exactly # ™",
Hence F,,"*(f)#" = A", and so in the representation canonically defined on # .,
F,,*(f) will be zero, and the field equations are now satisfied. Note that the field
equations are imposed as state conditions. On smearing F,, with an antisymmetric
tensor function f,, to obtain F(f), we note that the latter corresponds to the
smearing of A, with 2k, f*". Now clearly (2k,f*'|C,)e#'V, and so F, 4"
c#W, ie. F,, is representable on # ...

To model this in rigorous field theory, we will proceed as follows. For the
canonical structure, we take & = A(#,B) cf. [7] with B the appropriate
symplectic form. For imposing the constraint y(f), we need to calculate

(Adexp idy*(f)1(f))e @) = 10,

and since this transformation G — M in #V is symplectic, it defines an automorph-
ism on & . Using the general theory of the previous section, we obtain a C*-algebra
Z , > F containing unitaries U which will implement the automorphisms above,
and these are identified with the heuristic objects exp iAy*(f)y(f). The physical
states of # are the covariant states with respect to these transformations, and the
physical algebra is obtained as C*(d , N @,) and we find that it is exactly generated
by #1) ie.itis C*(5 ,ar). Onimposing the field equation as a constraint, we obtain

R. = C*(3 ,00)/C*(d ,0r — 1)C*(d ar),
and consequently show that B is nondegenerate when defined on #V /[ # V" =
A\, and indeed that 2, = A(A}),., B), which proves that the chosen physical

hys?
algebra is simple. This is the abstr;ctyalgebraic structure. To complete the parallel
with the heuristic theory, we demonstrate that from the Fock-type generating
functional w(6;) = exp — +(F, F)") we can construct a functional on & such that its
(indefinite) GNS-construction has precisely the right structure. That is, the GNS-
representation space has a Poincaré invariant indefinite inner product (IIP), the
subspace generated by the action of C*(J ,ar) on the cyclic vector is positive with
respect to the IIP, and its null-space is exactly the space generated by
C*(0,,0r — 1)C*(0 ,0r). These algebras also contain the right abstract objects cor-

responding to the heuristic ones.

7(x)i= H AP () = — iQm)*) " |
¢,
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5. Gupta—Bleuler Electromagnetism as an Algebraic Field Theory

To prepare the ground for the abstract theory, it is necessary to calculate in the
heuristic framework the object

(Adexp iZi*(f)x( /) D).
On smearing, we obtain:
Q(f)=7*(Nr(f)= fd*xd*x 7* (x)2(x') f (x) S (x)

>k d3k N
=n | ————kMax(k)a (k) f(k)f(K).
c.c ko k

Commutators:

d*k -
[AG) ()] = x| o (@B k) — ai(k)h* (k).

where

/

h()——nk”fk)f g (KK, F(K)

k
LA(G).[A(G), 2(/)]]1 == f — (G, (k) + g, (k)h* (k)€ R,

[2(). [2(1), A(G)]1=0,

and so all higher commutators vanish. Using the Baker—Campbell-Hausdorff
formula, we find e Ye¥e' = exp(X + [ X, Y] if[X,[X,Y]]eRand [Y,[Y,X]]=0.
Hence

(Ad exp iA82([))(“49) —expzf f {a“(k (g (k) + iZh*(k))

+ ag (k) (g“(k )~1/h“(k))}

L IAM
=AM

where M is a function such that its Fourier transform satisfies:
M¥“(k) = (2m) 2 [d*xe ™ ®*M*(x) = §*(k) + iLh# (k).

For this to be acceptable in the present framework, we need to check that
Me#*(R*), i.c. that M satisfies the reality condition: m(k) = m(— k). This is seen to
hold from ¢,(k)e#}(R*), and h*(k) = — h*(— k). Hence the gauge transformation
AdexpilQ(f) is well-defined, and consists of the addition of a divergence with the
form of h. Explicitly, for each fe.%(R*), we have a gauge transformation on test
function space .##(R*), expressed by:

Gu(k) = §,(k) + 1A, (k) =:,(k) + A(G ;9),(k) = (T}9),(k)
with

P UK K.

(G 9) (k)= — ink*f (k) |

’
¢, ko
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Now in setting up the abstract theory, we take as our symplectic space
M =AY, ie factor out the zero-norm part of the scalar product { flg>1:=

j(d%/k0 Z fuh, and complete it. This disposes of the off C,-parts. The
symplectlc form B defined on .# which will correspond to the CCR’s is:

B(f.9)= k— (f(R)G (k) = F(K)g,(k)),
c, Ko
and the linear field algebra is chosen as % = A(#,B) cf. 2.13. The gauge
transformations T} are well-defined on .. The following useful facts are verified by
substitution:

() B(Gsg,h)= — Blg,Gh),
(i) G,;G,g =0. Combining these:
(iii) B(G,g,G,h) =0, and on application of these:

B(T}g,T}h) = Blg + G g, h + G ;h) = B(g, h),
ie. T} is symplectic, and so cvery T} will define an automorphism on # by:
a{(éq).: 5]-)[” = 5g+1Gfg'

Furthermore, by (ii), T}T,Y,g =g+ 4G g + 7G,g, and from this we see that the gauge
transformations commute: [T, T}] =1, and that there is a one parameter group
defined for each f e (R*) by T;T} = T;"7. Because G is nonlinear in f, we cannot
extend the group property beyond this. It appears that a natural group to construct
is

G= @4 Rip)-

fes (1Y)
The cardinality of the continuous functions is the same as that of the real line. Group
multiplication is simply vector addition, and the topology is any topology induced
from the topologies of the R’s. The group action on % is defined by
g = H4 s
fesr ()
where ge G was expressed as a function 2:.%(R*)~ R with finite support. Hence the
product is finite. However, G is not locally compact, and so it is not possible to
construct G X & as prescribed by the general theory. To alleviate this difficulty, we
proceed as follows. Construct the directed set I consisting of all finite subsets of
F(R*), together with the partial ordering of set inclusion. Then for each sel, we can
construct the finite Cartesian product G,:= X R, which of course is a locally
€S

compact subgroup of G, and it has the natural action of G restricted to it, which we
denote by o°:G,—>Aut.#. Hence it is possible to define 7 =G, X #, and
FO=M(7 ). Then 7 < 7, and o ;) = Ad U3, for each A(f)€G,, fes,and also

SHEZ Y. Now by Theorem 3.6(ii), for «:H > G Aut# we have # L U(G)
o M{G X F)nM(H %X 7). Let s, pel, then we wish to check that there is an
1dent1flcat10n between F < FY and F =« F P, even though they act on different
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spaces. Since supel, we have identifications such that # c FLPAF®,
F < FPPAFP and hence F in F¢ can be identified with # in FP by
transitivity. Furthermore, if s, pel and s np # 0, we would like to identify U%,, with
U8 sy forall fesnp,in which case itis U3(§. This identification follows directly from
Theorem 3.6(ii). Henceforth omit the superscript on U. Now starting from &
c(W{ZFPlsel} and Ug, sel, we can construct a family of C*-algebras
o ® = C*F uUg;,) employing the C*-norm of # ¥, and by Theorem 3.6(iii) we
have that o/® < &/ if s = p. Hence we have obtained a structure which satisfies
Takeda’s criterion cf. [13], and so there must exist a C*-inductive limit

Fo= ) A,

sel

This will be the convenient universe % , in which we choose to work, and it illustrates

a method of generalising the locally compactness assumption of the general theory.

Note that from Theorem 3.3, #,,(F )| F = £%(F) and hence on employing

Theorem 3.2, £ (7 ,) = [ | (£ (FP)EF,) where F means “extended to.” Hence
sel

O L F)NF = 0%(F)=9%F), and so, just as before, we can carry the T-

sel

procedure through in %, and then restrict to & to obtain the algebraic structure
that result from the selection of the gauge invariant states: 2 = 2,n %, 0 =0,n %,
R =0/9. As for nontriviality, that will be demonstrated by obtaining a nontrivial
result.

Since the set § , generates #, we start by examining its behaviour. The set ¥9(%)
is characterised by (0; — )# = Kerw Vwe ¥9(F). Recall that Z is the largest C*-
algebra on which all #(#) vanish. Moreover, as was remarked above Theorem 3.2,
Ae0,nZ iff(a; —1)4 < &, and so we examine the set J ,N0,.

Lemma 5.1. ForanFe.ll,6p€0,iff (0, ;)=1Vfe F(RY), leR, we®(F),and in
this case

B(F,G,F) =0V fe s (R*).

Proof. Let (1 — a;;))0p€Z with A(f)eG. Denote T, = T}/ Now: (1 — 2, ;))0p =
Op =0y, r=0p(1 = 6,6, rexp(i4/2)B(F, G F)) = (1 — 0,5 rexp((—i4/2) B(F, G ;F)))J.

By general theory,” 2 = ({N,nN}lwep(F )}, and each N, is a left
ideal of #. Hence (1—ay,))0peN,NNi=1— 5/VG/Fexp(z//2) (F,G;F)e
Kerwsl —5chreXp(“ i2/2)B(F,G,F). So 1 =w(5A-GfF)exp(i/l/2)B(F, G F)=
a)(émﬁ)exp(— i2/2)B(F, G,F) ¥ ieR, fe¥(R*), and hence B(F,GF)=0V f, and
w(émﬂ):l YwePS(F), .eR, and fe¥(R*). Conversely, let W(0)g,,) =14, 1,
then w(ér(s;.c,r) = w(0,,r0r) = (dy) cf. statements following 2.2, and so
a)(éTW)F)exp(iiﬂ)B(F, G F)= w0y, r)exp(—i/2)B(F,G F)=w(0p) V4, [ and
so B(F,G F)=0, and w(éT}mF) = w(dz), which we know already. Moreover, from
@(0,6,r)=1 and (oy, ,— Op)* (0, ,, = 0p) =2—0,6,r— 0, We sec that
(a3 5y—1)0peN,, and in a similar way we can see that it is in N¥. Hence using
7 =(){N,nN¥ilwe #°(F)} the result follows that (a; ; — 1)0,€Z. |
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So 6,€0,=B(F,G,F)=0VY fe(R*). We find by substitution that

4k 2
B(F,G,F)=i2n jzkuf”(k)g(k) =0 VYges (R,
Cy

and hence k,f*(k)|C, =0. This is exactly the subspace #"" selected by the
supplementary condition in the heuristic situation. Henceforth denote it by 2.
Moreover, from the explicit form of G ;, we find that G ;2 = 0, i.e. these are the gauge
invariant elements. Now from 5.1, the fact that w(échﬁ):w(l)=1 and the T-
procedure will give the reverse implication, so that we can say that 6 ,n00,=4,.
This is the analogue of the inner constraint situation for linear bosons, where we
found that 6 ,n O =, =0 ,N /(L) cf. Sect. 2. We choose as our physical algebra
0, = C*(d,), because it is difficult to get our hands on the additional elements in
(O, NF)\O,. There may be for instance elements of the form ) 4,05, €0,NF such

that F;¢.2Vi. Moreover, the fact that 2 is the physical space justifies our choice.

The orthochronous Poincaré transformations (used to preserve C , ), are defined
in the natural way on .#: (A, a)F(k):=¢“*AF(A~ 'k), and as these are symplectic,
will define automorphisms on . These automorphisms will preserve (., because 2
is invariant under (A, a).

At this point, we note that B is degenerate on 2, and hence ¢, is not simple, and
also that we still have to impose the field equation as a constraint. In order to do that,
we digress here to the more general situation of linear boson fields to prove two
useful theorems.

Theorem 5.2. Given a test function space H with a degenerate symplectic form B on it,
denote its degenerate part by H, and specify a constraint set € = H,. Then B is
naturally defined on H/% because B(F + C,,G + C,)=B(F,G)=:B([F],[G])
VC,e¥ and F, GeH, where [Fl1e H/€ denotes the equivalence class of FeH. Then:

A(H, B)/C*(5, — 1)A(H, B) = A(H/%, B),

where C*(8,, — 1) is the C*-algebra in A(H, B) generated by {6, — 1|{C€%}. Since €
< H,, this latter C*-algebra is in the centre of A(H, B).

Proof. Lett:A(H,B)— A(H, B)/C*(d, — 1)A(H, B) be the canonical map, which, by
construction is a continuous *-homomorphism. Then (0 ¢)=1(6y)VCEF,
because g ¢ — 0 = (0c — 1)6,€C*(6, — 1)A(H, B) = Ker 1. Define the factor map
0:A(H,B)—~ A(H/%,B) as the linear map 0(0p,c)= Oy VCe%. Then 0(5p.,
Og+c,) = Otr + 61 €XP (—i/2)B(F,G) = 5[F]+[G] exp(—1/2)B([F], [G])= 5[F]5[G] =
B(0F+¢,)0(0¢ +¢,), and so 0 is a *-homomorphism. That it is continuous in the C*-
norm, is seen from the following argument. Each we 9(A,(H/%, B)) can be identified
with a state de#(A(H, B)) simply by w(dy) =:@(0p), and this identifies all of
$(A,(H/%, B)) with the subset of ¥ (A(H, B)) consisting of those states satisfying
(d,) =1. Hence by Dixmier 2.7.1 for the enveloping C*-norms:

10(A)[| = sup {w(A* A)'?|we P(A(H/%, B))
<sup{w(4*4)'*|we P(A(H,B))} = | A]
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VAeA,(H,B). Hence # is continuous in the C*-norms, and can be extended:
0:A(H, B)— A(H/%, B). Using the fact that 0 is a *-homomorphism: 0(C*(0,—1)
A(H, B)) = C*(0(3, — 1)) A(H, B)=0. Moreover, by 1(5, ,)=1(5;), we see that
7(Ker)=0. Hence Ker0=Kert, and hence <t(A(H,B))=~6(A(H,B)), ie.

A(H,B)/C*(3, —1)A(H,B) =~ A(H/%,B). &

Theorem 5.3. Let the symplectic form B be nondegenerate on a test function space A .
Let H < M be a degenerate subspace and specify a constraint space € = H,. Denote
the norm of A(#, B) by ||, and the norm of A(H,B) by ||*||,. Then there is a C*-
continuous *-homomorphism:

T:A(H, B)/Ci (0, — DA(H, B) > Ci(05)/Ci (0, — )CF (O ).
Proof. By Manuceau 3.8{14], | 4], < |4,V AeA,(H, B), and hence as a mapping,
II*l.:A1(H, B)y= R, is continuous in the |- ||,-topology, and hence can be extended

as a C*-seminorm to A(H, B). Then by Dixmier 1.9.13[10], C¥(6,,) = A(H, B)/.#,
where

J={AeA(H.B)|||A],=0.[A],>0} <TA(H.B).

Since |||, is a C*-norm on C¥(dy), # N C¥(0y,) = {0}. Let T: A(H, B)> A(H, B)/.7 =
C*(0y) be the canonical map. Then by the structures above, ©(Ci(0,— 1)) =
C*(d, — 1), and so since 7 is a homomorphism, ©(CF(d, — 1)A(H, B)) = C#(, — 1)
C¥(0g). Then we can define 7 in the logical way from t on the algebra A(H, B)/
C¥o,—DA(H.B). W

On using the T-procedure for a linear boson field, one always ends up with an algebra
R =C¥y)/C¥(, — 1)C¥(dy). In the case of inner constraints, a constraint set 4
<./ is specified, and we construct its “commutator” p:={Fe./|B(F,%) =0},
which can be identified with H above. One needs not have ¢ = p,. Henceforth omit
the subscripts ‘@’ and ‘b’ denoting norm.

Corollary 5.4. Let notation be as in 5.3. Then C*(dy, — 1)C*(dy) is a maximal ideal of
C*(6y) which contains C*(o, — 1)C*(0y), and hence C*(6y)/C*(0y, — 1)C*(dy) is
simple and

C*(04)/C*(Oy, — 1)C*(65) = A(H/H,, B).
Proof. Bisnondegenerate on H/H,, and so by Manuceau 4.24 [ 14], the C*-algebra
A(H/H,, B)~ A(H, B)/C*(6y, — 1)A(H, B), and the isomorphism then follows from
Theorem 5.3. The maximality of C*(0,, — 1)C*(0y) follows from the fact that the
factor algebra is simple, and the inclusion follows from ¢ < H,. B

We always assume that in nontrivial quantum mechanical systems there arc non-
commuting objects in the physical theory, and so H,# H. Corollary 5.4 then
guarantees the nontriviality of #, and also gives the condition under which it will be
simple:

Corollary 5.5. # = C*(9,)/C*(6,, — V) C*(dy) is simple if € = H ,, and conversely, if #
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is simple, then # = C*(y)/C*(0y, — 1)C*(0y), .. adding the extra elements of H, to
% does not generate any larger an ideal.

Moreover, Corollary 5.4 gives the relation between the T-procedure and the
treatment of the electromagnetic field by Carey, Gaffney and Hurst cf. [15]. In
general situations, considering the desirability of a simple physical algebra, it seems
natural to argue that the set of quantum constraints should be enlarged from % to
H,.

Return to the Gupta—Bleuler situation of before. Then 2 = {Fe.Z |k, f*|C . = 0}
corresponds to H above. The degenerate part of 2 consists of just the gradients:

2o={Fed| [,|C =k, fIC,, feF (RY)}.

As was mentioned in Sect. 4, the Maxwell equations (F,,”")(f) correspond to the set
€= {k,k*f, (k)| C |f, e} (R*)}, which is just 2,. Hence imposition of the
Maxwell equations as constraints will result in the physical algebra:

Ro=C*(0,)/C*(, —1)C*(0,) = A(2/%, B)

which is simple. Since £, is nontrivial, this proves that C*(6, — 1)%1¢2,n % . This is
the rigorous version of the usual heuristic approach to the Gupta—Bleuler theory.
There Maxwells’ equations are neither operator equations, nor equations on the
physical state vectors, because they satisfy y(x)@® = 0, rather than 0" 4 ,,(x)@ = 0. It is
well known that Maxwells” equations are only satisfied as expectation values

(@IF,,"(x)@) =0

and this is the meaning of the above considerations. %, is also the same physical
algebra as the one obtained in [ 15] by Carey, Gaffney and Hurst. Moreover, both @
and 2 are Poincaré invariant, and so the Poincaré transformations are definable as
automorphisms on %, as required. Since %, is simple, all possible constrainsts have
been factored out, and as {2k, f**| f**= — "} corresponds to [ F,, /**, and these
are in 2, the exponentials of the smeared field tensor are in C*(6,). Hence there are
nontrivial objects in £, corresponding to the field tensor as required. This completes
the algebraic side of the picture.

Finally, to obtain the full structure of the heuristic Gupta—Bleuler theory, we
need to show the existence of a cyclic representation n: # — Op (#), where H# is an
indefinite inner product space which contains a positive and bounded subspace #
preserved under n(C*(d,)), and if #” is the null-space of 5, then we must have:
n(C*(6, — 1)C*(6,))#" = A#". Moreover, #” should contain the cyclic vector @,
the Poincaré transformations must be quasiunitarily representable on #, and in
addition should preserve #, #", and @,,.

There are two approaches, both giving the same physical result, but differing in
how close we remain to the heuristic situation. The Fock-type generating functional
p(F)=exp(— 1/4)(F,F) with (-,) the Gupta—-Bleuler indefinite inner product:

3

(F,H)y= — Cj Io_( fu(k)h*(k) would seem to be associated to the heuristic situation
via a construction such as Mintchev’s [16], and the correspondence W(F)«< oy,
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where W(F) denote the Weyl operators defined on 5. About (), we observe the
following facts:

(i) ((A,a)F, (A,a)F)=(F,F)VYFe., ie. it is Poincar¢ invariant,
(i) (F,F)=0VFe2,ie. it is positive on 2,
(i) (F,C)=0VFe2, Ce¥, iec. it is 2-degenerate on ¥.

Now p(F) will define a functional w, on the *-algebra A(.#, B), but this cannot be
extended to either A ,(#, B) or to # = A(, B), because it is discontinuous in these
norms, cf. [17]: The sequence {(1/n)d,r}, neN converges to zero in |||, but
lwo((1/n)0,p)| = (1/n)| p(nF)| > oo when n— oc.

Nevertheless, because (;, ) is positive on 2, p(F) will define a Poincaré invariant
state on C*(d,). As the norm of C*(d,) differs from that of A(2, B), we verify this last
statement. p induces a positive state w,; on A,(2, B). Now |w;(dp)] =exp((— 1/4)
(F,F))< 1=yl ,YFe2. Hence w, is continuous in the #-norm, and so can be ex-
tended to a continuous functional w on C*(d,). That w is positive and a state, follows
from the fact that the extension is norm-preserving, and so |w| =w(1)=1, as
1€ A(2, B). Furthermore, from (iii) above, (C, C) = 0V Ce%, and so w(d;) = 1V Ce%.
Hence w is a Dirac state on C*(6,), and so we have C*(3,)C*(, — 1) « Kerw. Thus w
defines a Poincaré invariant state on #,, from which we can obtain a Poincaré

covariant representation of %,. Since #, = A(2/%, B), the state defined on %, by
w is a Fock-state. In the following two approaches below, we will retain this
structure on the physical algebra, but vary the objects on the nonphysical parts of 7.

In the first approach for obtaining an indefinite inner product representation
which resembles the heuristic structures, we try to remain as close to these structures
as possible. In this situation, we have an indefinite hermitian functional w, only,
on the *-algebra # .= A(.#, B) and it is Poincaré¢ invariant. This *-algebra contains
the structures: A(2, B)> A(Z2, B).«/§(0, — 1), where oZ%() denotes the *-algebra
generated in A(#, B) by its argument. Moreover, we have that objects corres-
ponding to the smeared field tensor are in A(2, B), and objects corresponding to
the smeared left-hand sides of the Maxwell equations are in A(2, B).«§(d, — 1).
Construct the GNS-type representation of w,. Let £:A(2, B)— A(2, B)/N,,, be the
canonical map, where N, = {4€F ;|wy(A* B)=0VBeZ ,}. Then the linear space
H =F /Ny, isaleft F ;-module by A, = &, VA, xeZF , with the natural indefinite
inner product: (£,&,)o:= wo(x*y). The cyclic element is &, and we identify
H' =0 A" = Epummze,-1- A quasi-unitary representation of the Poincaré
group is obtained by U ,,/(¢,):=¢& 44, and by observing that N, is Poincaré
invariant because w, is. The connection with the heuristic structures is then
obtained since we have that #” is positive with relation to (-,-),, because w, is
positive on A(Z2,B), #" is the zero-norm part of #’, and this follows from
wy(d,—1)=0, and the Cauchy-Schwartz inequality for w, on A(Z, B). More-
over, A(2,B)#" = H', A(2,B)LE(0, —1)#" < #”, which follows from A(Z2,B)
(6, —1)<TA(2, B), and we have a quasi-unitary representation of the Poincaré
group on J# which preserves #’ and . The cyclic vector e #”.

From a mathematical point of view, the limitation to *-algebras in the approach
above is quite unsatisfactory in a C*-framework, even if on the physical C*-algebra
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R, everything is well-defined. In this second approach, we deviate from the details
of the heuristic theory on the nonphysical objects, but still obtain structures which
are analogous to these for the full C*-algebras. We observe [2], that given a
situation ¥, <10, < # as outlined in Sect. 2, that the GNS-type representation of
any hermitian functional f on % satisfying the conditions: f(0g[4]) = f(A)VAeZ,
f(0..)=0, f(2,.)=0 will have the right structures of the type needed in physics.
Here o denoted a representation of the physical symmetry group G. We set out
to obtain such a functional f such that it coincides with the state @ induced by
p(F)y=exp(—1/4)(F,F) on C*(d,). This is done simply by showing that w can
always be extended to a G-invariant hermitian functional on #. Now G acts as
symplectic transformations on .# and 2 c .4 is a G-invariant subspace. Then every
G-invariant state ¢ on C*(J,) can be extended to a G-invariant state ¢ on
C*(6 ,)=Z by defining ¢(6;) =0 for F¢2. Hence the w above cannot only be
extended to a G-invariant functional on %, but it can indeed be extended to a
G-invariant state f on &%. This simplifies the structures previously obtained, in
that from &, < N, we get that # = . ,, the latter being the GNS-representation
space of f with cyclic vector &3 H' =2, =0, A =C*0,)¢, = A, and
Uaa(&:)= & a0 as before. Hence #” can be characterized as the subspace of #
consisting of all vectors annihilated by the supplementary conditions, just as is
done in heuristic physics for the physical subspace. So in this general situation
where we consider the full C*-algebras, there is no need to use indefinite inner
product representations. We do know however that none of these positive
representations can have a Fock structure, which is seen from the result by Barut
and Raczka [20], that the zero mass representation of the Poincaré group on a
space of tensor valued functions must necessarily have indefinite metric. Hence if
one wants to find Poincaré covariant Fock representations, one is forced to look
for these in the set of nonpositive extensions of w to G-invariant hermitian
functionals on #. There is no guarantee that such functionals exist.

Since both representation methods above still produce the same representation
for the physical C*-algebra #,, there is nothing to choose between them from a
physical point of view.

We summarize the final indefinite inner product (IIP) representation
structures. There is a state w on C*(d,) such that w(d;) =exp(— 1/4)(F,F), .=
C*(0,)C*(04, — 1) =« Kerw, w(og(A))=w(A). This induces a Fock-state on Z..

Outside 0,, we considered two structures on %, first, on the *-algebra
Fo=A(M,B) we extend w to w, given by wy(dp) =exp(— 1/4)(F,F). It is
discontinuous in the C*-norm and so cannot be extended to % . Then w,, is Poincaré
invariant, and its GNS-representation has the right ITP-structure. We conjecture
that it will also have a Mintchev Fock-structure.

Second, we extended the state w to a state f on % such that it is Poincaré
invariant. The GNS-representation of f has also the right structures, but now for
the full C*-algebras, not only the *-algebras contained in % . However, f differs
from the heuristic structures outside (., and it will not have a Fock-structure.

At this point the indispensability of the IIP for degenerate systems can be
discussed, for it becomes clear that any Dirac state on (), in the present model can
be extended to a G-invariant state on &, but its GNS-representation will not have
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a Fock structure. If Fock structures are obtainable at all for the full C*-algebras,
these will be associated with nonpositive extensions of the Dirac states on 0.

6. Conclusions

In this paper, we have shown the rigorous treatment of the free Gupta—Bleuler
electromagnetic field to be divided into two stages. The first stage establishes a
suitable C*-algebra formulation for the electromagnetic field when only the positive
frequency constraint is involved. This requires an extension of the theory of
quantization of linear fields in order to treat correctly the use of quadratic
expressions y*(f)y(f), albeit smeared. The second stage is the construction of a
representation of this C*-algebra theory on an indefinite inner product space.
The abstract algebraic theory of the Gupta—Bleuler field would be rounded off
by showing the Poincaré transformations to be inner on %,. This was done by
Carey and Hurst for the Fermi-gauge in [18], but since the demonstration of it
falls outside the scope of this article, we leave that for a future publication.
Clearly the type of situation which can be described by the preceding abstract
theory of outer constraints is limited by our ability to define the outer constraints

as automorphisms on the field algebra. For the above situation of # = A(.#, B)
with correspondences dp«>expiA(F), the constraints y(H) should at least let
log(exH 4P o~ ixM)) be an object linear in A. This means that quadratic constraints
can be treated, but higher degree constraints many still be only amenable in the
concrete situation.

The algebraic methods above allow us to set up quadratic field theories in a
constructive way in a C*-framework. That is, starting from the C*-algebra of the

CCR, #,= A(M,B) for the linear fields, we define specified quadratic fields as
automorphisms on %, as above. The automorphisms need not commute, and will
define a group G < Aut.#,. Since the smearing of the quadratic fields will give
locally compactness problems as above, G will not be locally compact, but will be
an inductive limit of locally compact groups. Hence as before, we can obtain:

F =)oY, where #¥:=C*F 0U(G,)).

sel

I is the directed index set, G, is locally compact for each sel, G, < G, if s < p. Then
Z can be chosen as the new field algebra of the given quadratic fields. Unfortunately,
it is not possible to define higher powers of fields as automorphisms on #, as a
glance at the CBH-formula makes clear.
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