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Abstract. We present a sketch of the construction of the functional measure for
the SU(2) quantum chromodynamics with one generation of fermions in two-
dimensional space-time. The method is based on a detailed analysis of Wilson
loops.

Introduction

In this paper we present a sketch of the construction of the functional measure for
the simplest non-abelian gauge theory with fermions: the two-dimensional
quantum chromodynamics. We shall concentrate on the main technical steps and
estimates; for more details the reader is referred to [1].

Our methods are rather limited to the two-dimensional case since we use the
solvability of the lattice pure gauge theory. However, the way we incorporate
fermions into the theory can be, in principle, repeated in 3-dimensions. This may be
important for further research since the interaction with fermions has been much
less rigorously studied than with the Higgs fields [2], contrary to one's intuition
that non-selfinteracting fermions should be easier to treat than self-interacting
bosons. We speculate also on the implementation of the renormalization group
ideas which look quite natural in our framework.

The paper consists of three parts. Section 1 contains the description of our
methods and some preliminary constructions. Main results with sketches of proofs
are given in Sect. 2. Finally in Appendix 1 one can find the necessary facts from
measure theory and in Appendix 2 the proof of the basic estimate from lattice
gauge theory.

1. From Wilson Loops to Functional Measure

In this section we collect miscellaneous facts about the orbit space, Wilson loops
and some lattice gauge theory results and explain the main idea of our approach.

Let J / be the space of gauge potentials (connections) on R2. These are one
forms Axdx + Aydy with coefficients taking values in a Lie algebra (5 of a compact
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Lie group G. For the sake of simplicity we shall focus our attention on G = SU(2),
but we would like to underline that our methods work for a larger class of compact
groups. Let ^ be the group of local gauge transformations, i.e. the group of
functions </>:R2->G.

^ acts on srf by the usual formula

We need the following convenient parametrization of the orbit space srfjy (based
on axial gauge)

Lemma 1. a) In every orbit of & in s$ there exists a representative of the form

A = A(x,y)dy; A(0,y) = 0. (1)

b) Two representatives of the form (1) differ by a constant gauge transformation,
i.e.

Ai(x,y) = gA2(x,y)g"γ, geG.

Connections of form (1) can be parametrized by their curvatures

Conversely, any function _F:IR2->© is the curvature of a connection of form (1)
with

A(x,y) = ]F{t,y)dt.
0

Thus, there exists one to one correspondence between the orbit space sd^ and the
space B of functions on R 2 with values in © (curvatures) or more exactly with the
quotient B/G, where G acts on B by conjugation. Since G is a compact group we
shall not need to extract degrees of freedom connected with it. From now on we
consider B to be an orbit space where the functional measure should be defined [3].
We should only ascertain that the functional measure is defined invariantly under
the residual G symmetry. The specification of the class of functions in B will be
done in Sect. 2.

Of course one can rewrite the formal functional measure of the two-
dimensional Yang-Mills theory in terms of B. The corresponding Faddeev-
Popov determinant is constant, and one finds a gaussian measure which can be
defined rigorously through its Fourier transform.

Instead, we propose a different procedure which is better suited, in our opinion,
for the inclusion of fermions. Namely, we shall rather use the properties of the
expectations of the Wilson loops (W(C)} than the Fourier transform {eι<FJ>} to
prove an analogue of the Minlos theorem for Wilson loops, but as we explain
below, will be useful in the definition of the regularized fermionic determinants.
The expectation values of the Wilson loops will be taken from lattice calculations
[4] and we shall also use lattice methods to regularize the fermionic determinants
which on the lattice can be expressed by the random walk expansion in terms of
Wilson loops. This is the basic reason why we take the Wilson loops as
fundamental objects in defining the pure gauge theory functional measure.
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Since F determines A we can express the parallel transports of A in terms of F
(in our gauge fixing). This is particularly simple for rectangles with one side on the
y-axis, and more generally for rectangles with sides parallel to the coordinate axes.
It is enough for our purposes to consider only such cases. We always choose the
starting point for parallel transport to be the left, bottom corner of the rectangle.
Appropriate formulas are the following (see Fig. 1):

PC(F)=T/ jj F (easel),
S(C)

(2)

where S(C) is the area enclosed by C and Ty denotes path ordering in the y direction

) = PCι(F)'ί-PC2(F) (case 2). (3)

Wilson loops are, by definition, traces of parallel transports. For the case of
interest, i.e. G = SU{2\ let Z = O 5 ^ 9 1, | , . . . label the irreducible representations and
consider

where χt is the trace of the Z-th representation. Then, from lattice gauge theory
calculations, we know that the mean value of Wilson loops W\C) with respect to
the pure gauge theory functional measure is given by

/ \λ/' ί C^\ \ (0 / _J_ 1 \s? ~~ 1(1 ~^~ 1 )S(C) ( Λ \
\VY \\-y} / —yΔL ~T~ 1 )V . 1 fc-f-1

Here we put for simplicity the coupling constant equal to one, for its actual value
does not matter in our considerations. Moreover Wilson loops are on the lattice
known to be independent random variables for loops C with non-overlapping
areas. Using formula (4) and the Fourier transformation on G one can compute the
integrals of more general functions on B,

where / : G-^C 1 is a continuous, class function on G. Writing

= ΣaιXι(g) with α ^
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one obtains

( ^ S V (5)

The meaning of this formula is the following: (ignore for a moment that / is a class
function) transports of μ by means of Pc are given by

g- (6)

The right-hand side of (6) is manifestly invariant under conjugation as it should be
if μ is invariant under the residual G symmetry. Thus (6) is compatible with the
requirement that μ lives on B/G, The function in the parenthesis

K(g, S(Q) = ΣW+Ve~l{l+1 )SiC)Xι(g) (7)
i

is the well-known heat kernel for the Laplace-Beltrami operator on G [5]. For
t > 0, K(g, t) is a smooth, positive class function on G satisfying the equation

[in particular (6) really defines a measure]. Now the line of reasoning which we will
pursue in detail in Sect. 2 goes as follows. Knowing the "projections" of μ by Pc we
will construct the adequate projective system of measures and use the Prokhorov
theorem (see the appendix) to construct μ. The crucial point is that Pc are
randomly independent for loops with non-overlapping areas. This makes the
construction particularly simple. We shall prove (Theorem 1) that there exists only
one measure μ on the (suitably defined) space B satisfying (6). This measure
should be identified with the functional measure for pure SU(2) gauge theory.

Next, we include fermions into the model by the standard Matthews-Salam
procedure. This procedure interprets the interaction with fermions as a kind of
perturbation of pure gauge theory. From a technical point of view the Mattews-
Salam trick leads to the effective measure μ for gauge fields given by dμ = det0Adμ,
where 0A is the Dirac operator (with a mass term) and detD^ is a gauge invariant
quantity.

The determinant of the Dirac operator can be rigorously defined for the class of
sufficiently regular connections. However general wisdom tells that μ and μ are
actually orthogonal. This, in turn, means that det.0^ cannot be defined as a
function on whole B and a certain regularization procedure must be implemented.
Let us consider the determinant of the ε-lattice Dirac operator in volume V (for
Wilson fermions in the fundamental representation). It is the (lattice) gauge
invariant quantity depending polynomially on the coefficients, and thus can be
expressed as a polynomial of lattice Wilson loops. To see this, recall that the
determinant of the matrix 0A can be rewritten as a polynomial of Ύr(0A)

n,
n — 1,2,..., |F|, and the last functions have a well-known polynomial expansion in
terms of Wilson loops [6]. Consequently

d e t ^ = polynomial (TΐPc(Ά)), (8)
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where the detailed form of the polynomial in (8) will not be crucial in our
discussion. Since we consider fermions in the fundamental representation of G, Tr
stands for the character of this representation.

Formula (8) is precisely what we need since the Wilson loops carry all the
information about μ and consequently are to be defined on B. Now, we can
regularize μ simply by putting

dμυ

ε = detv

ε0Λdμ. (9)

As a result of our construction of μ, it will be a well defined measure on B. Cutoffs
ε, v can be next removed by studying the limit of measures μv

ε in a sufficiently weak
topology on the space of measures on B. It is a classical problem in probability
theory and our second main result (Theorem 2) states that the sequence μv

ε has
indeed a convergent subsequence. This establishes the existence of (a candidate for)
the functional measure for (QCD)2.

2. Outline of Proofs

In this section we state our main results and outline their proofs. Let us first
describe the space on which the functional measure is to be defined. Consider a
strictly positive, self-adjoint and Hilbert-Schmidt (scalar) operator K in L2(R2).
Let J = K2 and J(x,y) denote the kernel of J,

Jf(χ) = μ(χ,y)f{y)dy. (10)

Notice that J is a strictly positive, self-adjoint and nuclear operator in L2(R2).
Moreover we shall require that the image of K in L2(JR2) contains a suf-

ficiently large family of step functions, for example characteristic functions of

elementary squares of the lattice — Z 2 .

We define the Hubert space B as a completion of L2(R2, ©) in the norm

2 R2^y (11)

Following the discussion of Sect. 1 we consider B to be the orbit space of the
2-dim. gauge-theory.

The definitions are motivated by the following consideration. The pure gauge
theory functional measure is a gaussian measure with covariance equal to the
scalar product of L2(R2, ©). By the usual argument related to the Prokhorov-
Sazanov theorem, such a measure can be constructed on B provided J is self-
adjoint and nuclear.

In electrodynamics the Wilson loop

F->e*F (12)

is a continuous function of B if and only if

χsε!mK. (13)

Thus, the above stated property of imK guarantees the continuity of Wilson loops.
We shall see that this remains true in the non-abelian case. Now we proceed to the
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definition of the parallel transports on B. Consider a rectangle C with one side on
the y-axis.

I f F e C ^ R 2 , © ) we put

Pc(F) = Tyexpί J J F [see (2)]. (14)
S(C)

The basic observation is the following:

Lemma 2. The map P c : C^(IR2,©)->>G is uniformly continuous with respect to the
norm (14).

Thus {Pc} has a unique continuous and even uniformly continuous extension
to the whole B which will be also denoted by Pc. If C is an arbitrary rectangle with
sides parallel to coordinate axes we can define Pc on B with the help of formula (3).

Lemma 3. The family of maps {Pc}, where C are rectangles with sides parallel to
coordinate axes, separates points of B.

It is useful to consider the following topology on B:

Definition. Wilson topology (W.T.) on B is the weakest topology such that Pc are
still continuous.

Observe that W.T. is Haussdorff because of Lemma 3. W.T. is given by the set
of nonlinear functions, however we expect it to coincide with the weak topology on
B. One reason for this conjecture is the following fact:

Lemma 4. Closed balls in B with center at the origin are compact in W.T.

Now we are ready to state the first of our main results.

Theorem 1. There exists a unique probabilistic, Radon measure μ on B such that

a) Pcμ = K(g,S(C))dg,

where K(g,S(C)) is the heat kernel of the Laplace-Beltrami operator on G (see
Sect. 1), S(C) is an area enclosed by C and dg is the Haar measure on G.

b) {Pc} are independent random variables for non-overlapping rectangles.

Idea of Proof. The proof requires some additional constructions related to lattice
gauge theories. Consider the space

and equip ^ ε with the Tichonoff topology. Thus ^ ε is a compact space. We
associate to any finite subset VCεZ2 the subspace ^\C^ε by

Notice that the family {V} is directed by inclusion and

\V\ times

where \V\ is the number of points in V. Let μv

ε be the measure on ^\ given by the
product of heat kernels:

: ε 2 ) d g k . (15)n
keV
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The following proposition is a direct consequence of the classical Kolmogoroff
theorem.

Proposition 1. There exists a unique probabilistic, Radon measure με on $ε such that

From now on we specify ε = — and denote ^ ε = &n. According to Proposition 1 we

have a probabilistic Radon measure μn on each cSn given by the heat kernels.
Moreover there are natural maps pn:B->$n given by the parallel transports:

Pn(F)(k) = PCnk(F), (16)

1 1
where k e — Z 2 , and Cn k is a square of side length —, and the left, bottom corner in
k.

Put the Wilson topology on B. Then we have
- pn are continuous
- pn separate points of B (compare Lemma 3).
What we need now is to "pull-back" measures μn by pn to obtain a measure of

Theorem 1. This would be done if we construct a projective system of measures
and verify the Prokhorov Condition.

L e m m a 5. There are unique continuous maps p n i n + ι : ^ n + 1-^^n such that

Pn,n+1 ' Pn+l=Pn>

Pn,n+\ ' ttn+l = Mw

(Recall that we work in the axial gauge.)

The reason that such maps actually exist is essentially equivalent to the
possibility of computing integrals of Wilson loops by the usual lattice gauge theory
methods. In consequence, the family (B, ̂ n,μn,pn,pn^n+ι) form a projective system
of measures (see the appendix). Thus we only need to verify the Prokhorov
condition.

Let KR be the closed ball in B with radius R and center in the origin. Then
Lemma 3 implies that KR is compact in W.T. We have to estimate

which is equal to

This leads us to deal with finite dimensional integrals if only we are able to
characterize pv

npnKR.

Proposition 2. Let K\CΨn be defined as follows:

with

gkeG, ίfceR1, and ΣhtAW^R2. (17)

Here σ is the third Pauli matrix (say).
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Then KRCpv

nPnKR.

This proposition is a simple exercise on locally constant functions. But now, we
have

sup pφSn - PnKR) £ sup μl{Ψn - KR).
n n,v

Expressed in terms of maximal torus generated by <5, the last expression becomes

with some computable dμv

n(t). The point is that dμv

n(t) is even since eitσ and e~itσ are
conjugate and the heat kernel is conjugation invariant. Next, notice that the
characteristic function of {tk:γtktιJ(kJ)^R2} is smaller than the function

(h)-+ψΣhtιJ(Kl). Thus

ΣAkΛ)tk

2dμv

n(tί)...dμ:(tlv{), (18)

where non-diagonal terms drop out by evenness.
Estimating

ί 2 ^C(2 — 2cost) fr \\t\^π and some positive constant C, we can return

to the original group variables, (19)

lφ\ - KR) ̂  const ̂  Σ W, k) J (2 - Tr gfc)d^(gfc)

k

K

^ const \^J(k,k)B2. (20)

Now the Prokhorov condition is satisfied because J is of trace class. Then the
Prokhorov theorem guarantees the existence and uniqueness of the desired
measure μ which is Radon in W.T. on B. Theorem A2 of the appendix finishes the
proof since B is a Polish space and we can uniquely extend μ to be Radon in the
original topology too. •

Our second main result is concerned with the functional measure for (QCD)2

after integrating out fermions. Recall that we have already defined the regularized
determinants of the Dirac operator involved

det£

ϋβF = polynom.(TrPχp)) [formula (8)].

This expression may be extended to all F e B since Pc can be extended to B and
detg$F is a polynomial.
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Proposition 3. Functions B 3 F-*dQtv

ε0F e R 1 are positive, continuous and integrable
with respect to μ.

This proposition enables us to define the sequence of measures

dμv

ε = det°e0Pdμ(F)/S defε0Fdμ(F). (21)

The following theorem states the existence of the functional measure for (QCD)2

defined as a suitable limit of measures μv

ε (for V rectangular intersecting the y-axis).

Theorem 2. The sequence {με} is a weakly compact set is the space of probabilistic,
Radon measures on B, where B is equipped with the Wilson topology.

Remarks. 1. The space B in the W.T. is not a completely regular space. We need a
subtle weak topology on the space of measures on B (see the appendix).

2. Any condensation point of {μζ] is a Radon measure also with respect to the
original topology on B. It is a consequence of Theorem A2.

Idea of Proof. We would like to use the Prokhorov-Schwartz-Topsoe theorem
(Theorem A4). Thus we need to estimate

supμv

ε(B-KR).
ε, v

This can be reduced to finite dimensional integrals because

d e t ^ - d e t ^ o p X F ) . (22)

Here det^ ^ - ^ R 1 are uniquely determined by the formula (22). The notation is
borrowed from the proof of Theorem 1.

Since we know the projections of μ by pv

εpε, we obtain (Proposition 2)

j _ det: (g)dμl(g)

μs(BKR)ϊ ^ .

Now we intend to repeat the steps of the analogous estimations of Theorem 1, i.e.
- reduce integrals to the maximal torus ,

-estimate the characteristic function of (^V

ε—KV

R) by — j£t^^ik,I) and

t2^ const (2-2cosί) [compare (18), (19)]
- return to the integral over ^S\.
Everything would work but for the fact that det^ is not conjugation invariant.

This however can be easily overcome by the following, simple, group-theoretic
lemma.

Lemma 6. Let μ be a conjugation invariant measure on a compact group G and
/ G-̂ IR1 a continuous function on G. Then there exists a unique conjugation
invariant function / : G—•IR1 such that

A A

for all conjugation invariant subsets ΛcG; in fact

f{g) = \f{hgh-ι)dh, (23)

where dh is the Haar measure on G.
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Lemma 6 can be directly applied in our situation since KV

R and dμv

ε are
conjugation invariant. Notice also, that by (23),

[(2 - Trgk) detJT = (2 - Trgfc) [detJTT.

Finally μKB — K^, exactly as in (20), is going to be less than

const ~ Σ J(k, *)<2 - ΊrPCk}?te Q C D

K

Let us underline that up to now our considerations were completely general, i.e.
independent on particular form of the fermionic determinant. All the information
we need is the following lattice QCD estimate:

<2 - Tr PCk>ε?" ice Q C D ύ const ε2 (24)

with constant independent on the volume and the location of plaquette Ck. The
above estimate is presumably known to specialists, but since we have not found an
exact reference, we give a proof of (24) in Appendix II.

This finishes the proof since J is of trace class. •

We end this section with some remarks and speculations.
1. Our methods cover two even simpler cases: Quantum Electrodynamics and

Scalar Chromodynamics.
2. Presented results can be easily generalized to other groups like SU(n) and to

theories with few generations of fermions as well.
3. One may also consider applying the presented ideas to 3-dim Yang-Mills

theory. Since in that case renormalization is necessary, one must add one more
crucial technical ingredient: the renormalization group. Intuitively, the projective
system will close provided μv

ε are fixed points of the R.G. Inequalities on
<2 —TrPc f c>^" i c e will control the dependence of the coupling constant on ε. Notice
also that the (extended) axial gauge provides a natural way of defining the block
spin transformation. We plan to discuss these questions in the near future.

4. We can prove the convergence of the regularized fermionic measures under
very general assumptions. One can speculate that the same strategy can be applied
in 3-dim, basically because the fermionic determinant does not need non-trivial
renormalization in this case.

Appendix A

Throughout this appendix all topological spaces (t.s.) are assumed to be Haussdorf
and all measures Borel and probabilistic. Basic references are [7,8].

Definition Ai. A measure μ on a t.s.X is called a Radon measure iff for each Borel
subset AcX,

μ(A)= sup μ(K).
KcA

K compact

Definition A2. A t.s. X is called a Polish space iff X is homeomorphic to a
metrizable, complete and separable t.s.
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Theorem Al. Any measure on a Polish space is a Radon measure.

Theorem A2. Let X be a Polish space and let f'.X-+ Y be a continuous bijection.
Then f induces a bijection between the spaces of Radon measures on X and Y

Corollary. Let X be a Polish space and let Xw be the set X equipped with weaker
topology. Then any Radon measure on Xw can be uniquely extended to X.

(Take f=id:X-^Xw and use Theorem A2.)

The main tool in constructing Radon measures in infinite dimensions is the
following theorem due to Prokhorov:

Theorem A3 (Prokhorov). Let X, X{ be t.s. - s,
{i} directed set of indices,
Pi'.X-^Xi continuous maps separating points of X,
μt - Radon measures on Xt.
Suppose that there exist maps p^iX^Xj for i^j such that

Then there exists a unique Radon measure μonX such that p{- μ = μt iff for each ε > 0
there exists a compact subset K of X such that for each i

μlXi — Pi(K)) ^ ε (Prokhorov condition) .

Definition A3. A sequence {μf} of Radon measures on a t.s. X converges weakly to
μ iff

for every bounded lower semicontinuous function / on X.
If X is a completely regular t.s. then the weak convergence of Definition A3

coincides with usual weak convergence

Theorem A4 (Prokhorov, Schwartz, Topsoe). Let A be a set of Radon measures
on a t.s. X satisfying the following condition: for each ε>0 there exists KcX,
K-compact, such that for each μeA:μ(X — K)^ε. Then A is relatively
(sequentially) compact in the weak topology of Definition A3.

Appendix B

In this appendix we give a proof of inequality (24).
Basic references are [5,9].
Let Hv be the space of functions on vCεΈ2 taking values in C 2 ®(C 2 . Equip Hv

with the scalar product

if,g) = Σ ΣTKχ)gKχ) = Σ /MgM (Bi)
xsv i xev

(In what follows we shall consequently omit upper indices.) Canonical matrix
elements of linear operators in Hv are given by

(B2)
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The Dirac operator we are interested in has the following matrix elements:

Pg(x, y)=\-+m) δ{Xί y)-- g(x, y)y(x, y), (B3)

where the last term is non-vanishing for the nearest neighbours only,

g(x9y)eSU(2), g(y,x) = g(x,yy
1,

and σo,σi are Pauli matrices.
Let us single out plaquette pcV and define operator 0°g by

-+m)δ{x9y)--y(x9y) for (x9y)ep.
ε / ε

Lemma.
d

-const
e ε det Jj)q ^ d e t 0 q ^ e ε d e t f ) 0 , (B5)

where gdp is a product of g{xy) along p and dist( , •) is a distance with respect to the
Killing metric on 5(7(2).

Proof. Notice that detD0 is lattice gauge invariant, i.e. invariant under

transformations

g(x,y)-+h(x)g(x, y)h{y)-ι, h(x) e SU(2).

Thus without loss of generality we can put g(x,y) = id on three bonds of p. On the
remaining bond bep we shall have gh = gd~p. Consider the one parameter family of
operators Dt obtained from 0g by replacing g^-^gi, where g| is a minimal geodesic
joining id and gh in a unit time. Thus

det^i^

We have

J-( logdetD f )Λ
o at

1 1

^f d t l T r D ^ " 1 ! ^ c o n s t ί ||Z>t|| \\D~ι\\dt. (B6)
o o

Here || || is the operator in the space of operators on Hv. Observe that const is
volume independent since Dt has only two non-vanishing matrix elements. It is
easy to see that

,10,11 = d ^ i i d l . (B7)

Moreover

|| A" Ίl ̂  - (see [9, Corollary 3.2]) (B8)

(we always assume that the mass m is strictly positive). Putting together (B6), (B7),
and (B8), we get (B5). •
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We would like to estimate

<2 - Trg, p >^ t i c e Q C D = N ~1J Π dgb(2 - Ύvgdp) det 0q fl K(gdp9 ε2), (B9)
b ' p

where

N = J γ[dgbdetjβ Π ^ ( ^ δ p ?

β 2 ) (BIO)
b P

By the lemma this is smaller than

with N equal now (B12)

To simplify the notation we shall denote by TV any denominator in formulas we get
and by const any numerical constant. These objects vary from case to case in an
obvious manner so we shall not write them down explicitly.

In (B12) the integral over p separates from the rest by independence of Wilson
loops. Cancelling between the numerator and the denominator, we have to
estimate single integrals only

μ 2 ) , (B13)

where we have used (19),

dist2 (g, id) g const (2 - Tr g).

More direct form of the right-hand side of (B13) may be obtained by passing to the
maximal torus. Using the adequate formula for the heat kernel [5, formula (9)], we
get

sin —
2 (φ + 2 Tin)1

2πn)sinφe ε2 . (B14)

Changing variables in each term of the sum and using periodicity of the integrand
one can express (B14) as integrals over R 1 . We state the formula obtained after

rescaling d-+- and suitable rearranging,
ε

(B15)

By the Lebesgue dominant convergence theorem, the expression in parenthesis is a
continuous function of ε for ε > 0 with the limit, as ε goes to 0, equal to

const \φ4econ^Φle~φ2dφ/j φ2e~consilΦ]e~φ2dφ .

This proves the inequality (24) (for sufficiently small ε).
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