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In our paper "Hyperbolicity, sinks and measure in one dimensional dynamics"
(Commun. Math. Phys. 100, 495-524 (1985)), the proof of the crucial Lemma 1.3 is
not complete. This proof is divided in two cases depending on whether Λ = N or
Λ^N. The case Λ=Nis correct. The proof of the case Λ^N begins by taking an
open interval U c Λc having an endpoint x contained in /I, and almost immediately
we apply to x a Lemma (Lemma II.2) that requires x to be non-periodic. But a point
x chosen as we did can be periodic, and, even more important, it is easy to produce
examples of sets Λ satisfying the hypothesis of 1.3 such that every xeΛ that is an
endpoint of an open interval contained in /lc, is periodic. Therefore the proof must
be extended in order to cover these cases. This can be done as follows, by a suitable
combination of tools already developed in the paper.

We have to prove Lemma 1.3 when Λ ^ N. We shall do it through the following
steps.

We have to prove Lemma 1.3 when Λ Φ N. First observe that it follows trivially
from the definition that (J, {φn}) is a coherent sequence associated to Λ if and only if
it is a coherent sequence associated to P) fn(Λ). Follows from this remark that an

n^O
interval J is adapted to Λ if and only if it is adapted to P| fn(J) because the definition

n^O
of interval adapted to a set Λ only involves the family of coherent sequences
associated to Λ, that as we said, coincides with the family of coherent sequences
associated to f j fn(Λ).

n^Q

Therefore it suffices to prove Lemma 1.3 in the surjective case, i.e. when/(/I) = /l,
because, once proved in this case, if we want to prove it in the general case of a
compact set Λ ^ N satisfying only f(A) c Λ, we apply the surjective case to P) fn(A)

^ n=°
(that obviously satisfies / ( ( ] fn(Λ)) = f ] fn(A)\ This yields an interval J adapted

n^O n^O
to P| fn(Λ)) (and then, as explained above, adapted to Λ) satisfying the properties in

n^O
Lemma 1.3 for P| fn(Λ). Since these properties only involve the family of coherent
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sequences associated to P) fn(A\ that coincides with the family of coherent
n^O

sequences associated to Λ9 it follows that J satisfies Lemma 1.3 for Λ.
Then we have to prove 1.3 when A Φ N and f ( Λ ) = Λ. We shall do it through the

following steps.

Step I. If an interval J adapted to Λ satisfies the following property:
(*) Either F(J,Λ) - 0 or there exists 0 < λ < 1 that \\l/'(x)\ < λ for all xeJ and

\l/εF(J9Λ)9 then J satisfies Lemma 1.3.
This step is just Lemma Π.4. We include it here because it reduces the proof of 1.3

to finding an interval J adapted to Λ and satisfying (*).

Step II. If there exists an open interval U c Λc having an endpoint xeΛ that is not a
periodic point, then there exists an interval J adapted to Λ satisfying (*).

This step is what is correctly and explicitly proved in the proof of 1.3 when A Φ N
(page 519).

Step HI. Let J0 be an interval adapted to Λ such that for all ε > 0 there exists
ψ0εF(JQ9 Λ) satisfying diam ψ0(J0) < ε, then there exists an interval J adapted to Λ
satisfying (*).

The proof of this property is contained in the proof of 1.3 in the case Λ = N. In
fact, to prove 1.3 when Λ = N, we use Λ = Nto show that there exists an interval J0

satisfying the hypothesis of Step III, and then (without using again the hypothesis
A = N) we prove that this hypothesis implies the existence of J satisfying (*).

Step IV. If there exists an interval J0 adapted to Λ such that F(J09Λ) contains
infinitely many maps, then there exists an interval J adapted to Λ satisfying (*).

To prove this property observe that Σ diam ψ(J0) < diam (J0), where the sum is
taken over all the maps ψeF(J0,Λ). Then, if #F(J0,Λ)=co, there exists
\l/0eF(jQ9Λ) with diam^(J0) arbitrarily small, thus proving that J0 satisfies the
hypothesis of Step III.

Given a set JciN and xeJ define N(x9J) as the minimum n > 0 such that
/"(x)eJ. If fn(x)φJ for all n > 0 set N(x,J) = + oo.

Step V. If J0 is an interval adapted to A such that sup{N(x, J0)|xe/ln J0} = oo,
then there exists J satisfying (*).

First suppose that there exists a sequence [xt} c J0 n Λ such that n{ = N(xh J0) <
oo for all ί and lim N(xi9J0) = oo. We can assume that nt φ HJ if i φ j. Then the

i-+ + oo

maps ι//;eF(J0,Λ) with ^(/"'(Xj)) = x, are all different. Hence #F(J0,Λ) = oo and
the existence of J follows from Step IV. Now suppose that there exists XE J0 n/1 with
N(x,JQ) = oo. When x is accumulated by points yeJ0r\Λ with N(y9J0) < oo, then,
since N(x9J)= oo, there exists a sequence (xj satisfying the hypothesis of the
previous case. When every j/eJ 0 nΛ nearby x satisfies N(y,J0)= oo, then there
exists an interval J c J0 adapted to Λ9 containing x, such that N(y9J) = oo for all
ye/In J. This means that F(J9Λ) = 0 and then (*) is satisfied.

Step VI. If there exists xeΛ such that xφω(x)9 then there exists J satisfying (*).
Suppose that xe/1 satisfies xφω(x). Take (by II. 1) an interval J0 adapted to A
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containing x and so small that fn(x)φJ0 for all n > 0. Then N(x, J0) = oo and Step VI
follows from V.

Step VII. If there exists a sequence of periodic points xt e/l with periods nt-> + ao
and {xj converging to a periodic point x, then there exists J satisfying (*).

Let y be the orbit of x. The existence of the sequence {xj with periods nt-+ + oo
implies that there exists yφy such that f ( y ) e y and the orbits of the points xt

accumulate in 3;. Hence ye A. Obviously ω(y) = y. Since yφy, we obtain yφω(y) that
by Step VI implies the existence of J satisfying (*).

Step VIII. Let Λί be the closure of the non-periodic points in A If there exists a
source xεΛ —Λl9 then there exists J satisfying (*).

Suppose first that xφA — {x}. Then we can take an open interval U containing x
and such that, if n is the period of x, fn maps U diffeomorphically onto fn(U) ^ U
and fn(U) n A = {x}. Then J = ftt(U) is obviously adapted to A and F(J, Λ) contains
only one element, namely the map ψ:J-+U such that ψ(x) = x and fnψ(y) = y for all
yeJ. Then J satisfies (*). Now suppose that x is accumulated by points in A — {x}.
Since xφA ί these points must be periodic, and since x is a source their periods must
go to oo when they approach x. Then we fall in the hypothesis of Step VII.

Step IX. If there exists a periodic point xεΛl9 then there exists J satisfying (*).
Suppose that y is the orbit of x. If there exists ye A such that f(y)εγ and yφy, then

yφω(y) = y and by Step VI we are done. Now suppose that there is no such y. There
exists an arbitrarily small neighborhood U of y and a continuous map φ:U->N
such that φ/y = (f/y)~ 1 and fφ(x) = x for all xe U. The absence of points ye A — y
with f(y)εy implies that if U is small enough then

Γl({p})nΛ = φ(p) (**)

for all pe U n A. Now take a non-periodic point zεΛ so close to x that for some m > 0
the interval (x,z) is mapped diffeomorphically onto (x = /m(x),/m(z)) and
(fj(x\ fj(z)) c U for all 0 ̂ j ^ m. When fm(z) < z the ω-limit of z is a periodic orbit
in 17, and since z is not periodic we have zφω(z), and by VI we are done. When
/(z) > z we claim that z is not recurrent. Again by VI, this proves what we want. To
prove the claim, suppose that z is recurrent. Then we can take N > n such that

m

/N(z)e(x,/m(z)). Define V=(J (fs(x\fj(z)). Then Fc [/, and it is easy to check
o

(using that /m(z) > z) that

φ(K) c= F. (***)

Moreover fN(z)eVr\A. By (***) and (**):

Continuing this argument we conclude that /J(z)e V for all O^j ^N. But then z has
all its orbit contained in V because N can be taken arbitrarily large. Then z cannot be
recurrent, thus completing the proof of the claim and Step IX.

Now let us prove Lemma 1.3 when Λ^N. Take an open interval U a A\ having
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an endpoint x^EΛί. When x0 is periodic, Lemma 1.3 follows from Step IX and I.
When x0 is not periodic we apply Step II to A ί and we obtain an interval J adapted
to A t such that either F( J, A ί ) = 0 or there exists 0 < λ < 1 satisfying \\l/'(x)\<λίor
all xeJ and \l/eF(J9A^ Take a non-periodic point x^/^ nJ (recall that the non-
periodic points are dense in Λ ±). Suppose first that Λ — Λ ί doesn't accumulate at x± .
Then (by II.2) we can take an interval J0^J adapted to Λ1 containing x l 5 and so
small that J0 n(Λ — Λί) = 0. This means that J0 nΛ = J0r\Λ1 and then F( J0, Λ^) =
F(J09Λ). Then, if\l/θF(Jθ9Λ)9 it follows that ^eF^o,/^). It is easy to see that this
implies that \j/ can be written as a composition of elements of F(J9 ΛJ. Hence | \j/'(x)\
< λ for all xe J0. We have thus checked that either F(J09 Λ) = 0 or | \l/'(x) \ < λ for all
xeJ0 and \l/εF(JQ9Λ). According to Step I, this proves Lemma 1.3. Now suppose
that Λ— A^ accumulates at x t. Take a sequence of points x^Λ — Λ^ (that by
definition oϊΛl must be periodic) converging to x t. We claim that if ̂  is the orbit of
xi9 then for all ε > 0 there exists i0 such that γt c Bε(A^)^= {z\d(z9Λί)< s} for all
i ̂  z'0. To prove this first observe that the periods of x f must go to oo when ί -> + oo.
because they converge to a non-periodic point x1 . Then, if the claim were false, there
would exist points ytGyi9 for arbitrarily large values of z, converging to a point yφΛίf

Then y is periodic (because it doesn't belong to Λ^ and it is a limit of a sequence of
periodic points whose periods go to infinity. Hence, by Step VII, Lemma 1.3 is
proved. Therefore we have only to prove Lemma 1.3 when the claim is true. Now
take an interval Jl a J± c J adapted to A and containing x x (whose existence is
granted by II.2). Set δ = d(Jl9J

c). We can assume that A^0 = sup
(JV(x, J0)|xeJ0nyl} < oo, because otherwise we are done by Step V. Choose
0 < ε < δ/2 such that if aeA1 and yeN satisfy d(y,a) < ε, then d(fj(a),fj(y)) < δ/2
and the interval (fj(a)9f

j(y)) doesn't contain critical points for all 0 ̂  j ^ N0. Now
take a point xf such that its orbit is contained in Bε(A J. We shall prove that for every
xeyίr^Jί there exists n>Q satisfying /n(x)eJ1 and \(fn)'(x)\>l/λ. This easily
implies that yi is a source, and since this source is not contained in A 1 , we are done by
Step VIII. Suppose that xeyt n J t . There exists 0<n^N0 such that fn(x)εJ x . Since
y^B^A^) and 0<ε<<!>/2, there exists aeA^ such that d(a9 x) < ε < δ/2. Hence
aeA1 n J. Moreover d(fn(a\ f"(x)) < δ/2. Since fn(x)eJ0, it follows that fn(a)eJ,
and then fn(a)eJ n A t . Denote F(J, Λ J the set of maps obtained as compositions of
maps in F(J9 A 1 ). Then there exists ψ eF( J, Λ x ) with ψ(fn(ά)) = a. Since the interval
(/J(α),/J(x)) doesn't contain critical points for all O^j^n, it is easy to check

)) = x. Hence |(/»y(χ)| = | WM)!'1 > 1/1
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