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Abstract. The properties of analytic fields on a Riemann surface represented
by a branch covering of CIP! are investigated in detail. Branch points are
shown to correspond to the vertex operators with simple conformal properties.
As applications we compute determinants of d; operators for Z,-symmetric
surfaces and obtain various representations for the two-loop measure in the
bosonic string theory together with various identities for theta-functions of
hyperelliptic surfaces. We also present an integral representation for the
quantum part of the twist field correlation functions, which describe propa-
gation of the string on the orbifold background. We also calculate the quantum
part of the structure constants of the twist-field operator algebra, generalizing
the results of Dixon, Friedan, Martinec, and Shenker.

1. Introduction

The chiral pairs of anticommuting fields in two dimensions are known to play an
important role in string theory and in conformal quantum field theory. Recently it
was shown [1, 2] that the conformal theory of such fields can be constructed on an
arbitrary Riemann surface with the special singular metric, under a careful account
of all anomalies and zero modes. In the present paper we will continue the study of
analytic fields, but now it will be more convenient for us to represent the surface as
a branched covering of CIP!,
Let us denote by Z the covering map of a surface X on CP*:

Z:X-CP, (1.1)
and choose the metric on X to be
2::=8:=0, g,=1 (1.2)

the complex structure of X being induced from CIP.
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We shall show that under such a choice each branch point g; corresponds to the
primary conformal field V|(a;) with very simple properties. Actually, the addition of
V-operators to the correlation functions of fields on CIP* transforms them into the
correlation functions of fields on X. Besides, various determinants are given by the
correlation functions of V-operators, and we compute them in some special cases.

In Sect. 2 we introduce the fields V(a;) and find their conformal properties.
Further, in Sect. 3 we study in detail Riemann surfaces with Z,-symmetry, defined
by the equation

V'=(Z—-a,)..(Z—a,,) (1.3)

in ©*=(y, Z). For such surfaces the correlation functions of V{(a;) are particularly
simple.

The important case of hyperelliptic surfaces (n=2) is considered in Sects. 4-6.
In Sect. 4 we apply our approach to derive an integral representation, analogous to
the one used in minimal conformal models [3], for the quantum part of the
correlation functions of Z,-twists, which arise when one describes the string
propagation on the Z, orbifold. This representation is generalized in Sect.7 to
Z y-twists and appears to be particularly useful for the calculation of the structure
constants of twist-field operator algebra and the four-point correlation functions.

In Sect. 5 we establish connection of our formulas with the theory of theta
functions on hyperelliptic surfaces, and in Sect. 6 we find a simple expression for
the two-loop vacuum amplitude in the model of closed oriented bosonic strings
(ESVM).

From the very beginning we have to make a reservation that the impulse for the
present research was given by the paper by Alexey Zamolodchikov on correlation
functions of spin-fields in the Ashkin-Teller model [4]. Later some of his results
were independently obtained by Dixon et al. [5]. The latter paper was also very
important for us and the construction of Sect. 7 is strongly based on the results of
that paper.

2. Branch Points as Primary Conformal Fields

In this section we consider the behaviour of quantum analytic fields on an
arbitrary Riemann surface X in a small vicinity V of a branch point of the order n.
We choose the complex single valued coordinate y on V in such a way that the
covering map (1.1) on V takes the form:

Z(y)=a+y", 2.1

where a is the coordinate of the branch point on CIP'. We numerate n consecutive
sheets of the Riemann surface X of the inverse map

WZ)=(Z—a)'" (2.2)

by numbers 0, 1,...,n—1.

Thus, when a point is moved around Z =g, its inverse image move from the
/-th sheet to the /+1 (n—141=0). The operation of such analytic continuation
will be denoted by #, On each sheet / we consider a pair of analytic
anticommuting fields /) and ¢ with integer spins j and (1 —j) and with the action

SO=[ fOTHOPZ . 2.3)
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Here 0=0/0Z (also 0=0/0Z) and “XZ, Z) denotes the f-field at a point y(Z) on
the /-th sheet of the surface X.
We remind that the stress-energy tensor of the fields @), ¢ has the form

TO= —jf 09 +(—1)$ 01, 24
and under conformal transformations
Z-uZ), Z-oZ) (2.5)

these fields transform as differentials:
[0, 8) (do/dZY = fZ,2),
e, @) (dofdZ)' ™ = ¢pNZ, Z).
In (2.4) the following normalization is assumed
fNZ)NZ)~1(Z' —Z)" ' +Reg. terms, (2.7

where I denotes the identity operator.
When we move around the branch point we pass from one sheet of the surface
X to another. This implies the following boundary conditions to be satisfied”:

£ NZ)= 1 @),
7 2)= ¢ (2).

To find out the behaviour of the fields 1, ¢, /=0, ...,n—1 in the vicinity of the
branch point it is useful to choose another basis diagonalizing 7,:

(2.6)

(2.8)

n—1
—2zi(k+ j(1 —n)l/n £(£)
= e
fe= X S

(2.9)

eZﬂ:i(k +j(1 —n))l/n¢(t’) ,

¢k=

=
iNgKl
-

=0

k=0,1,..,n—1.
Here we have shifted k by j(1 —n) for reasons which will become clear below.

From (2.9) it follows that
ﬁ:af — elni(k+j(1 —n))/nf ,
‘ o (2.10)
ﬁaqsk =~ 2wi(k+ j(1 ‘n))/nd)k .

An important consequence of (2.9) is that the currents
Jo=:fibr:, 0J,=0 (2.11)

are singlevalued functions of Z in the vicinity of the branch point a.
In the remaining part of this section we shall show that with respect to the
currents J, the branch point has the charge
_ k+j(1—n)

= —"— (2.12)

! We shall usually suppress the argument Z of f, ¢-fields because all their correlation functions do
not depend on Z due to the equations of motion
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which implies that the current J(Z) has the first order pole at Z=a? with the
residue g,:

J{Z)=q(Z —a)~ ' +Reg. terms. (2.13)

The above relations are solved by expressing operators f;, ¢, through n
analytic bosonic fields ¢,, k=0, ...,n—1 normalized as

{PUZL)pZ')) = — Oy l0g(Z —Z'), (2.14)
using the following bosonization rules:
fi=:6" =107
J,=idp, (2.15)
To= /iy + (1 —)didf=1/2: i+ (12100

In terms of the fields ¢, the relations (2.12), (2.13) require the following vertex
operator:

Vy(a)=:e'1%@:, (2.16)
which corresponds to the branch point with gp= Y g,¢,. From (2.12), (2.15) it is
k
easy to determine the conformal dimension 4 of the operator V,(a):
) nC 1
A=Y =Y GG +(—Da)= 53> (1 E n—)
o . (2.17)
Ci=—2(6*—6j+1),

where C=nC;is the central charge of the Virasoro algebra of Laurent components

of the total stress-energy tensor T=Y T, of the system of fields f, ¢,

k=0,...,n—1.
C 1
A= 2 (1 _ n_2> (2.18)

Note that the relation
is the consequence of the general transformation law of the stress-energy tensor T
under the analytic change of coordinates in any conformal field theory with the
central charge C [6]:

4z C[dz/dy 3 [(dZ)dy*\
T0)= (zg) T(Z”E[ dz/dy _5< iz /dy > } @19)

In coordinates y defined in (2.2) T(y) is regular at y=0 and then from (2.19) it
follows that in Z-coordinates T acquires a singularity at Z=a,

T(Z)=C24Z —a)"*(1—1/n?),
from which (2.18) follows.

2 Recall that (2.13) and the analogous relations below have to be understood as the identities
between various correlation functions
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Let us proceed now to the proof of the formulae (2.12), (2.13). We consider the
operator product expansion (OPE) f“(Z")¢"™(Z) in the vicinity of the branch

point?:
dy\*~J
) <ﬁ> o)

n Ny YO () T2y — )Tt
n—1

=n"NZ'=2)"" ¥ (Y. (2.20)

fNZ)"™(2)= (

Here with the help of (2.6) we have made the conformal transformation to the
coordinates y, y and used the triviality of the OPE in these coordinates

f0))p(y)=('~y)" ' +Reg. terms.
From (2.10) and (2.20) follows that

FAZN o Z) = Sy W2 —Z) ™1 [y)e L
zak,m((Z/—Z)‘l-}-_]{ﬂ%.'l_)(Z_a)—l)_I_O((Z,_Z))’ (2'21)

and comparing with

2V Z) =0, W Z' —2Z) ' +: filZ):+ O(Z' — Z))
for k=m we get (2.12), (2.13).

Note that according to (2.16) the product f,(Z")¢,(Z) near the branch point
contributes to correlation functions the multiplier

r__ dk
é a] GO p = i0K() pia0(a) - (2.22)
—da

H 2N Z)V(a)=(Z'—Z)™! [

also confirming (2.21).
The formulae (2.12), (2.16) constitute the main results of this section.

3. Interaction of Branch Points. Z,-Symmetric Surfaces

Let us apply now the results of Sect. 2 to the simple, but interesting enough case of
the surfaces (1.3):

V'=(z—a)..(z—ay), M=mn. (1.3)
For these surfaces the basis (2.9) diagonalizes all the operators #,, simultaneously
and the formulae (2.15), (2.16) are correct globally, i.e. everywhere on the surface X.
The number M of the branch points in (1.3) is chosen to be an integer multiple of n
so that the infinity point would not be a branch point.
The basic quantity, playing the role of the partition function for analytic fields
is the correlation function (dropping indices numerating the sheets):

2. f(Zy )YZ)... 92y, )>
= [DfDGS(Z,)...(Zy, )exp <}j{f§¢d22), (3.1)

3 It is assumed in (2.20) that the value y'(z') (y(2)) is taken on the sheet £(m)
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where the operators f(Z;) and ¢(Z;) stand to absorb all the zero modes of the
operator 0. Thus N, is the number of holomorphic j-differentials on X. Choosing
the basis { f,, «=1,...,N;} and {¢;, f=1,...,N, _;} of holomorphic j- and (1 —j)-
differentials, one can define the determinant of the Cauchy-Riemann operator,
acting on j-differentials:

SZ).-D(Z, )
det | £Z,)] det]|p,(Z)]

Here N;x N; matrix | f(Z,)| has the element f(Z,) at the intersection of the
column y and the row o and analogously for [¢4(Z;)|l. According to the basic
theorem of papers [7, 8]% the quantity (3.2) can be used to compute the
determinant of the Laplace operator 4;, acting on j-differentials:

det'A;=|detd|* detM ;det M, _;exp(C;S,), (3.3)

detd;= (3.2)

where M¥ = (f,f,dZ ndZ is the matrix of scalar products of holomorphic j-
differentials in the metric (1.2) and S, is the Liouville action for this metric. Since
the latter does not depend on a; one can represent (3.3) in the form

det' A;=(d?Z,..d*Zy, _ [{f(Zy)...0(Zy, DI (3.4)

where a constant (possibly infinite) multiplier has been dropped. To derive (3.4) we
have used the fact that (3.2) does not depend on Z, and Zj. We also recall that

det' A,=det' 4, _ . (3.5)

Let us proceed now to the calculation of the correlation functions (3.1) by using
the rules (2.12), (2.16). In accordance with (2.15) each field ¢,, has the charge 2j—1
at infinity. Accordingly only those correlators will be non-zero, for which the total
charge of all operators with respect to each field ¢,, is equal to 1—2j. Since the
operators f;, ¢, and the branch point operators have charges +d, , and g,
respectively, we get the condition

dj =N(f)— N(dy)=1—2j —mnqy, (3.6)

k=0,1,...,n—1. Here N(f,) and N(¢,) denote the numbers of operators f, and ¢,
in the correlation function under consideration. Note that by summing (3.6) over k
we obtain the Riemann-Roch theorem:

ind(@)=N,—N,_;=(2i—1)(p—1), (3.7)

where p=1—n-+mn (n—1)/2 is the genus of the surface (1.3). The latter follows
from the Riemann-Hurwitz formula stating that the genus of a surface X which is
an n-sheeted branch covering of CIP* with L branch points g; of orders n;is given by

L on—1
£ 27

Thus the formulae (2.12), (2.16) and the rules (3.6) provide the full description of all
correlation functions of analytic fields on surfaces (1.3). For the determinants of the

P=1-n+ (3.8)

* As was pointed out in [17] this theorem is a particular case of the general formula for the
determinants of Dirac operators on arbitrary compact manifolds, due to Bismut and Freed [18]
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Laplace operators 4; in the metric (1.2) we get the integral representation (3.4)
which is analogous to the feigin-Fuchs representation, used by Dotsenko and
Fateev [3] to construct correlation functions of primary fields for the minimal
conformal models of [6].

For the important particular case j=1, d, , =m(n—k—1)—1, making use of
(3.5) we get
2

n—2 d;)k
det'do={ [] T] d°Z,,
k=0 i=1

<gk WZ, )d- ,(Z)>

dyx

Il Zix—Z;4)

i<j

n=2 dyx )
=1 [[d°Z
k=0 i=1

dy,x m-n
x iUII:Y(Zi,k)]k-'—l_n D[} (aa—ap)( n

k+1—n)2 2

(3.9)

In the second equality we have dropped the infinite constant [d>Z, using the
fact that ¢,_(Z) absorbe the constant scalar zero mode and the correlation
function in (3.9) does not depend on Z.

4. Hyperelliptic Surfaces and Z,-Twists

Let us now concentrate our attention on the case n=2 of hyperelliptic surfaces,
defined by the equation

y2=(Z—a1)...(Z—a2p+2) 4.1)

in €*=(y, Z). Calculation of the determinant of the Laplace operator on such a
surface is of particular interest on connection with the problem of defining the
correlation functions of spin operators in the Ashkin-Teller model or the orbifold
Z,-twist fields [4, 5].

The Z,-twist operator o(a,d) in the theory of free massless real scalar field
2(Z,Z) with the action

S(z)=1/2n{ 0202d*Z

is characterized by the following boundary conditions on currents J =0z, J = 0:

pJ=—J, #J=—1T. (4.2)

Herewith the number of possible boundary conditions 3 on the field = itself is
infinite and to obtain the correlation function of ¢’s it is necessary to sum over all of

them:
G({a)=<0(a;,d,)...0(a5p1 2, Grps2)p = Y, [ Dzl ™5 4.3)

In each sector it is convenient to represent = as a sum
z=zyt+ zgy. (4.4)
Here = /(Z, Z) is the solution of the classical equation of motion
0020, =0 4.5)

satisfying 3, and «,, is the quantum field subject to the same boundary conditions

for all 3
RpZqu= —Zqu> 1=1,..,2p+2. (4.6)
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Then (4.3) reduces to the sum
Glfa)= [ Daye™>ew) (5 &= (4.7)
3

The first multiple here can be expressed through the determinant of the Laplace
operator 4, on the surface (4.1) with the metric (1.2). Indeed, any function z on this
surface can be decomposed into the sum

Z=z,tz_, Razi=tz;. (4.8)
Using now the property

S(@)=8(z 1)+ S(=-)
of the action § in the metric (1.2) and identifying the field z_ with =,,, we get
(det’ 4g) 2= [D3e5P = [ Do 5@ [ Doy e~ S
= [Dazg,e S, 4.9)

because the integral over =, obviously does not depend on a;. As a result

G({a,})=(det’ 4)~ 1/ {; e_S(’”&(a))}. (4.10)

It is useful to keep in mind that in the limit of the infinite radius of the orbifold
only the term with =z, =0 will survive in the sum of (4.10) and the correlation
function will be fully determined by the determinant. We also remark that this
multiplier contains all the perturbation theory o-model contribution to the
correlation function, because the sum in (4.10) describes the contribution of world-
sheet instantons.

To calculate det’ 4, we use (3.9) which for n=2 takes the form

p

det'do= 11 PZIS(Zy).. . f(Z )2

K=
p p 4 2
=i 1 2| 11 Zu-2) [ y7@) [1 (a—a)™™ . (41)

In order to transform this expression to the one obtained in [4] it is useful to return
to (3.2), which for j=1 can be written as

{Sf(Z)...f(Z)P(Z)) = detd, det |(Z))] . (4.12)

Here we put the scalar zero mode equal to 1 and p holomorphic 1-differentials w;

are normalized as
(4.13)

ijs

where a;, i=1...p is one half of 2p independent homologically nontrivial oriented
cycles a;, b; on X with the intersection matrix
a;oa;=b;ob;=0, i%j, a;°ob;=0;. 4.14)

It is well-known that the matrix MY of scalar products of such differentials is equal
to the imaginary part of the period matrix t [19]:

Mi=[w®d*Z=1Imz,;. (4.15)
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p
Applying to the left and right parts of (4.12) the operator [] ¢ dZ;, and using(4.11)

and (3.3), we get =1
detd; = detd,=detK [] (a;—a)"*, (4.16a)
i<j
det' A, =|detK|? [ |a,—a;|*detImz, (4.16b)

i<j
where the element K;; of the p x p matrix K is given by

K= § 27y Y2)dz; i,j=1,...,p. (4.17)
This is just the expression for det’ 4, obtained in [4]. Note that the case p=1 was
also treated in [5]. The methods used in [4] and [5] are analogous and totally
differ from those of the present paper.

5. Free Fermions on Hyperelliptic Surfaces and Theta Functions

In this section we consider the analytic fields with half integer spin j on
hyperelliptic surfaces (4.1). For such j’s the possibility arise to impose various
boundary conditions on the fields f and ¢: they can be periodic or antiperiodic
around basic cycles of the surface (4.1). Analyzing the order of the singularity of
fields f and ¢ at branching points for different boundary conditions, it is not
difficult to show that their choice requires now two vertex operators, correspond-
ing to the branch point:

V. (@)= cxpi (— Lot 5 %), (51a)

i
V_(a)=expi (TJ 00— ¢1>. (5.1b)

Recall that f,=e'%*, ¢, =e " k=0, 1. Herewith the total charge of all branch
points with respect to each of the fields ¢, ¢, has to be an integer, and up to the
change @,«<>¢, there are 227 possibilities, in accordance with the total number of
different boundary conditions.

For example in the simplest case of a torus, p=1, there are four variants, the
corresponding nonzero correlation functions being:

Vila)Vi(ay)V-(as)V_(as))
jG=1)

= l_l (aij) 2 (a1z'a34)1/4=det<1,0)5j: (5.2a)

i<j

Vila)V_(a,)V(as)V-(as))
Jj—-1)
= il;lj (@y) 2 (a13a24)"* = det )0}, (5.2b)
Vila)V_(ar)V_(a3)Vi(as))

JU—1) _
=[] (@) 2 (a14023)"* = detg, 1)0;, (5.2¢)
i<j

-1 1

4 1
<f0(z)d)1(z/) il;ll V+(ai)> =y 2)y’ " (2) Ll (@) > “*ay=a,—a;. (52d)
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The total charge of all operators V.(a;) in (5.2a—c) is equal to 1 —2j with respect to
each of the fields ¢, ¢, and there are no zero modes of f and ¢ fields. On the other
hand, under the boundary conditions corresponding to (5.2d) two zero modes
appear and in order to absorb them the operators f,(z) and ¢,(z") were introduced.
The index (m', m") of det,,, ,0; defines the boundary conditions: the fields f and ¢
acquire the multiplier (—1)" ((—1)™") when moved around the cycle a(b)
surrounding the points a,, a, (a,, a3).

If we transform to the coordinates u, which are defined by du=y~ (z)dz, the
torus surface above will turn into the parallelogram. The case (5.2d) and the zero
modes f(z)=y (z), ¢(z)=y'"'(z) correspond to periodic boundary condi-
tions and to constant zero modes in u-coordinates. Three other cases, described
by (5.2a—c) correspond to three types of antiperiodic boundary conditions.

Let us fix now j = 1/2. Analysis of this case makes it possible to derive a number
of identities on the theta functions of hyperelliptic surfaces. For this we shall use
the general formula for the fermionic determinant [8, 11]:

det,, 0,5 (detdy) > =0, (5.3)

where the characteristic m=(m’, m”) defines the boundary conditions imposed on
fermions, i.e. 1/2-differentials, 6,, being the corresponding theta-constant. We
recall that components of p-dimensional vectors m’, m” take values 0, 1 in such a
way that the fermion field acquires a multiplier (—1)" [or (—1)""] when moved
around the cycle a4; (or b;). The theta-function and the corresponding theta-
constant are defined by the period matrix (4.15) as follows [10]:

h®= 3 e {m- <n+ “‘7) . <n+ 921>
2 ("+ %> (“ n;) } (54)

0m=0,0), 0, ,=00,(8)/0&.-,....

In (5.3) it is assumed that there are no fermionic zero modes on a surface. If, on
the contrary, zero modes are present the det,,0,,, has to be defined with the help of
(3.1), (3.2). The relation (5.3) for such a case takes the form [2]:

<Yp(z o). .. pp(z,)» (detgo)l/z = Bm,il...inwil(zl)‘ . -wi,,(Zn) > (5.5)

where we have redenoted f'and ¢ by p and . It is obvious that the number n of
zero modes coincide with that for 1. Computing in (5.3) and (5.5) the left-hand sides
by the methods described above, one can obtain a lot of useful expressions for
theta-constants and their derivatives.

We begin with (5.3). Since for j=1/2 the fields ¢, and ¢, have no charge at
infinity, the correlation functions QH Vi(a) 11 V_(ain)) will not vanish if the

number of V,’s is equal to the number of V_’s. Denoting the corresponding
characteristic by the symbol {i'|i"} we get with the help of (5.1),
dety 0= T] (ar—ap)"® [1 (ap—ap)"® [ (az—ax)"' . (5.6)
i"<J i< ir,i”

s

J
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Substitution of this expression into (5.3) using (4.16a) gives us the Thomae formula
10]:
o] O im= n (a; —a;)'* 11 (ay—a; )4 det!2K . (5.7)
="
We stress that the characteristics {i'|i"} exhaust all types of boundary conditions
for which there are no fermion zero modes.

The cases corresponding to (5.5) are those with different numbers of V, and V_.
The condition of integer-valuedness of the total charge of V’s implies that the
difference between numbers of ¥, ’s and V_’s should be divisible by 4; for example
for genus 2 we have 6 such characteristics m;, i=1, ..., 6. For each m, there is one
zero mode for v and one for v, the correspondmg correlat10n functlons being
given by

(Po@vi@Wila) [ V(@)

=[z—a)y () —a)y ()]

X [T (@—a) "B IT (a—an)'’®; k=i (5.8)
’ k<
The analog of (5.7) has the form
(z—a)y (z) 1_[ (a,—a)"* det'* K =0, wfz); kl*i. (5.9)

With the use of these identities we shall show in the next section that the Beilinson-
Manin formula for the measure in the bosonic string theory [12] at least for genus
p=2does not depend on the choice of the basic odd characteristic and does reduce
to the expressions obtained in [13, 14].

6. The Two-Loop Measure in the Bosonic String Theory

In this section we calculate the two-loop measure for the model of closed oriented
bosonic strings at the critical dimension & =26 (ESVM) by using the methods of
the preceding sections. We also show that the result we obtain can be transformed
to the expressions found earlier by using theta-functions (12—-14). We start with the
general expression for the p-loop vacuum measure in ESVM, found in [7, 8] for
p>1:

Z,= | H dy; Ady;|F(y)*det™ 3 Imt, F(y)=detd,(detdy) *3. (6.1)

p
Mp =1

Here y;, y; are some complex analytic coordinates on the moduli space .#, of genus
p Riemann surfaces, which are determined by some basis f(Z), i=1,...,3p—3 of
holomorphic quadratic differentials on a Riemann surface, © being its period
matrix. This basis has to be used in the definition (3.2) for detd_:

detd_ = {f(z1)... fz3,-3)> det | fiz))] - (6.2)

detd, in (6.1) is defined analogously with the help of the normalized basis (4.13) of
holomorphic 1-differentials.
When p=2 all surfaces are hyperelliptic and can be defined by the equation

y*=(z—a,)...(z—ay) (6.3)
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in ©?=(y,z). The moduli space .#, can be parametrized by coordinates of any
three branch points, say a,, a,, a; with the position of three others being fixed.
Herewith ., will be covered by the hyperplane C° =(a,, a,, a;) 6! =720 times and
in order to find Z, one can integrate over full €3, dividing then the result by 720.
For the metric (1.2) we have already computed all the correlation functions
entering the definitions of the determinants in (6.1) and it remains to find the
appropriate basis f(Z), i=1, 2, 3 in (6.2). It is not difficult to check that this basis
has the following form:

@ =—a) " 1]

k=4 Z— 0y

G q,0,3. (6.4)

The determinant in the denominator of (6.2) is given by:
3
11 daydet ™| £z,

da _ _ iy 28 z;—a
= dT(a45a56a64) tdet ™! (z;—a) | I 11 —
J

or =1k=404;— 0y

da 3 6 3
=g H (Zij)_1 kl:[{ (ak{)_l i1=_[1 yz(Zi)s (6.5)

dvpr i<j

with the notations:

da=

— o

— -1
da;, dv,=dasdasdac(a,saseaes)” "

I

i=1

Zij=Zi_—Zj’ aij=ai—aj‘

The correlation function in the numerator of (6.2) can be computed by using the
general rules (2.12), (2.16). For j=2, n=2 with account of (3.6) we find

(1176 = (11, 0 [T Vs -t

6
Y~ ¥z) Il (@ —a,)°. (6.6)

—w

It

i

3

= H Zij

i<j 1

The other factors in (6.1) have already been computed in Sect. 4 — the expressions
(4.11), (4.16). Collecting all them together, one gets

d*a

Z,=[—+

2 Vpr

d*a

v
where d*a=da A da and dV,, = dv,, A dv,, denotes the volume element of the group
of projective transformations.

Since permutations of points @; do not change the complex structure of the
Riemann surface, the single valued coordinate on .#, transversal to the subvariety
a;=aj; of surfaces with a degenerate handle is y;;=(a;— a,)*. In coordinates a;, a, y;;

(k= j)Jthe holomorphic part of the measure in (6.7) obviously has the second order

6 2
T aw®det K| det”*Imz

k<¢

& 3
Il %

k<¢

2
[jd221d222|212y—1(z1)y_1(22)|2]—13 (6.7)
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pole at y;;=0, in accordance with the general theorem [7, 8]. The additional factor
(logly;;)~*? is supplied by the integral in the square brackets in (6.7). It is also not
difficult to check that the measure (6.7) has the correct behaviour when a surface
degenerates into two punctured tori.

Let us establish now the connection of (6.7) with the formulae obtained in [13,
147. In these papers the space .#, was parametrized by the elements 7,,, i < k of the
period matrix (4.15). We have to make a change of variables in (6.7). In particular,
we have to replace (6.4) by the basis, related with variations of 7. It was shown in
[13] that such a basis is formed by products of normalized 1-differentials (4.13), so
that w,w, corresponds to the variation of 7;:

dty— f = w,wy. 68)
Denoting the elements of the new basis by f: fl =w3, 7 ) =w3, f 3 =m,0,, we find
da _ ~
det™ [ fiz)| =drdet™" | /(z)
dv

pr

=dr(det] w,(z5)] det ,(z,)] det a,(z,)])

3 3
=drdet’X [[ z;" [] ¥*(z0);

i<j
p=1,2; y=23; 0=3,1; dr=dtdt,,dr,,, (6.9)

where in the last equality we made a transformation from the basis w, to the basis
formed by

w;=2z""1y"Y(2), i=1,2, (6.10)
with also the use of (4.17). Recalling (6.5), we obtain
6
99 _ 1rdetK 1] (a—ay), (6.11)
dl)p, k<¢
and (6.7) takes the form
6 2
Z,= | d*t|[](a,—a,) *det ™ '°K| (detImr)~'3. (6.12)
Mo k<t

Finally, by multiplying the identities (5.7) for all 10 even characteristics (having no
zero modes) we find the relation

6
r0®= T[] On=det'°K T[] (a—a,)?, (6.13)
evenm k<¢
from which the resullt of [13, 14] follows:
Z,= | d*t|y,0(r)] "*det*Imr. (6.14)
Mo

We proceed now to the verification of the formula obtained by Beilinson and
Manin [12]. According to [2, 12] the measure in (6.1) can be computed under a
given odd characteristic * by using the relation:

Fe det’ (R )o"(R)e(R,)...eR, - )|
[6., i (Ry)]°det [fR IR OFDRER,)... L (R, - 'R, - )II”

(6.15)
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where o is a column of p normalized 1-differentials and f is a column of 3p—3
holomorphic 2-differentials, used to define complex coordinates y; on ., in (6.1).
The points R, ...R,_, are p—1 zeroes of a holomorphic 1/2-differential with the
characteristic *, and F should not depend on the choice of *.

For p=2 there are 6 holomorphic 1/2-differentials

D) =[z—a)y '(2)]"*, a=1,...,6 (6.16)

with different odd characteristics m,. Each of them has a single 1% order zero at the
point a,. For *=m, the expression (6.15) takes the form

_ det’ | w(a)o"(a,) |
[0, 107(a,)] det [f(a,)f (@ )f¥(a,)|
Let us show how it reduces to (6.12). We substitute into (6.17),

f=(f1,f2,f3)‘, 0o=K"'w,

where f; and w; were defined in (6.8), (6.10), and we use the identity (5.9). Shifting in
(6.17) a, by a small 6 and extracting the terms most singular in J, we find
(a,+d=a)>:

F (6.17)

det|o(a)o"(a)| ~d"*det 'K [T (a,—ap) ",
B

e oVRE) ~ 0 %det™3 "(a,—ag) 3
det | f(@)f (@)f(a)| &0 AT KT (i —ap) (6.18)

O, 0} (@)~ 5> det' K 1;[/ (a,—ag) ™' pljz;' (ag—ag)'*;

B, B'£o.

1t follows that the power of ¢ in the numerator of (6.17) is the same as that in the
denominator, and for 6—0, (6.17) has a finite limit
6
F=det '°K J] (@x—a,) 2 (6.19)
k<¢
which does not depend on the initial choice of m,(!). After substitution into (6.1) it
gives (6.12), which reduces then to (6.14).
We end this section by giving for the p=1 the representations for the
measure analogous to (6.7) for the case of ESVM and for the model of closed
oriented superstrings. Defining the general genus 1 surface by the equation

yi=(z—a,)...z—ay,) (6.20)
in €*=(y, z), we find for the ESVM:
dza : -3 2 2 —27-14
Z,=] v ka ag”| [fd%zly@) "] ", (6.21)
pr [k=<

To compute the superstring measure one has to sum over all boundary conditions.
Periodic conditions obviously don’t contribute to the vacuum amplitude, and the

° The appearance of various singularities when 6—0 is related to the fact that the coordinates 6, &
are singular in the vicinity of the branch point §=0
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three types of antiperiodic conditions as was explained in Sect. 5 are in one to one
correspondence with the three possibilities to form two pairs (a,, 4,) and (a,, a,) out
of 4 branch points q;, k=1, 2, 3, 4.

The contribution to the measure from the sector with the conditions {s, tju, v}
imposed on the left fermions and {r, p|q,w} imposed on the right fermions can
easily be computed with the use of (5.2) and is found to be

d’a —22 2 -27-6
a0, | L))

X (as - at) ((1“ - av) (ar - dp) (aq - dw) . (622)

The relative weight of each contribution is determined unambiguously by the
condition of the cancellation of tachyons, which are second order poles over a,, in
(6.22)%, and we obtain the result of Green and Schwarz [16]:

ZSS,b.c‘ — I a
1 =

SS da | # —22 2 -27-6
Z7y =] [T ae| [fd*zly(z)|” "]
de, Kk<¢
X @y Gyq—ay3024— a1405,]* =0, (6.23)

as a consequence of the Riemann identity which takes the form
Q2034 — 013024 — 01403, =0. (6.24)

Finally, I hope that the representation of the type of (6.7) can be generalized to the
theory of open strings.

7. Twist Fields and 0-Operator

In this section we shall generalize the results of [5] and apply our methods to the
calculation of multitwist correlation functions describing the string propagation in
the orbifold background. Analogously to the Z,-case, the operators of Z y-twists
ogla,a), K=1,...,N—1,defined in the theory of a complex scalar field X(Z, Z) with
the action

S(X)=[(0X0X*+dX0X*)d*z (7.1)
are characterized by the boundary conditions
2niK - 2niK
#,J = exp 7; J, #J=exp %K J,
2miK 2miK 72
AJ¥=exp 0 k. p T*=exp _]:Tu J*,
which are imposed on the currents
J=0X, J*=0X*, J=0X, J*=0X*. (7.3)

We recall that 7, in (7.2) denotes the operation of the analytic continuation of
correlation functions containing operators (7.3) along the contour surrounding the
twist operator o(a, 4).

© This is the well-known GOS projection [15]
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As in the case of Z,-twists, any correlation function of the operators oy is the
product of two terms [5]:

M
<.1=_[1 ok {a di)> =un({ai})Zinst({ai})’ (7.4)
where the first is given by the integral

Zyl{a})=[2X 2 X3, exp[—S(Xg)] (7.5)

over the field X, satisfying for all j the conditions,
20, X gu = €XP 2miK; X (7.62)

— 27K

R, X%, = eXp # X%, (7.6b)

The second multiplier in (7.4) describes the contribution of classical string
trajectories, connecting the points of the orbifold, which corresponds to the
operators oy

Zinst= Z CXp[—S(Xcl)], a(’_}-)(CI:O (77)
{Xcl)

This quantity, in contrast to Z,,, depends essentially on the global structure of the
orbifold [5], and in the limit of infinite radius of the orbifold only the zero-action
trajectories will contribute. We remark also that singlevaluedness of the field
X(Z,Z) at infinity involves the condition

% K,;=0(modN), (1.8)
i=1

which will be supposed to be satisfied in the following.

The correlation functions (7.4) for M=4and K, =K;=N—K,=N—K, were
obtained in [S5] for various orbifolds. The initial step in the calculation of
Z,ay,...,a,) was the determination of the Green functions (J(z)J*(z)),
{J(z)J*(z')), in the presence of the operators oy (a;,@;), from the conditions of
singlevaluedness, holomorphity and known orders and positions of all the
singularities. The stress-energy tensor {T,,(z)) was then extracted from the
operator product expansion of the currents. In accordance with [6] the residue of
(T(2)> at Z=a, is equal to dInZ ,/0a;. Integrating over q; the authors of [5]
found Z , itself. This calculation, being very clear in its idea, is technically rather
involved, especially in the case K, & K, or when the number M of gx-operators is
greater than four.

Below we shall show that the transition to the analytic fields cause essential
simplifications and allows us to construct the universal integral representation for
all correlation functions of o’s for any M.

The transition to the 1** order formalism is performed with the help of the
analog of (3.3), which we give here without proof:

Z H{a;})=|detd,|* detN|detd|* det N, (7.9)
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where the operator d(d,,) acts on scalar fields, subject to the conditions [7.6 a(b)];
N(N,) is the matrix of scalar products of holomorphic 1-differentials, satisfying
(7.6a(b)). Detd in (7.9) is defined analogously to (3.2) by using a pair of
anticommuting analytic fields — the scalar ¢ and 1-differential w* satisfying
respectively the conditions (7.6a) and (7.6b) — and having the action:

S=[w*dpd*z.

Asin Sect. 3, in order to determine the partition function of the fields w*, ¢, we have
to consider the vacuum average in which operators w* and ¢ absorb all the zero
modes of d, and divide it by the appropriate zero modes determinant as in (3.2).
Obviously there are no scalar zero modes satisfying (7.6a). The number of
holomorphic 1-forms satisfying (7.6b) as will be shown below equals

M Ki
Ny = <i=21 ﬁ) —1. (7.10)
Thus by choosing a basis w(z)...wj%(z) of such forms, we can define
detd={w*(zy)...w*(z, )> det™ ! wf(z)] . (7.11)

Detd, is defined analogously by using a pair of fields w, ¢* satisfying (7.6a) and
(7.6b) respectively. The number n of zero modes of w for this case equals

n= (ii N——N—K—> —1. (7.12)

It is convenient to transform (7.8) to the form [cf. (3.2)~(3.4)]:

Z(ap)=2({a)Z,({a}),
Z({a;})=|detd,|> detN
= [d%z,...d°z,| (zy)...0(z,)) 1%, (7.13)
Z . ({a;})=|detd|* detN
={d’z,...d%z, [{0*(z,)...0*@z, )I*.
We proceed now to the calculation of the correlation functions entering Z and

Z,, and begin with Z,. The key point is that again as in Sect.2 the primary
conformal field V{a;) corresponds to each singular point g; of the fields w*, ¢. It has

i

the charge — N

takes place:

with respect to the current G* =:w*¢:, i.e. the following OPE
K; -
&*(z)Via)=— N (z—a;)” ' V{a;)+Reg. terms. (7.14)

The latter can easily be derived by comparing the expansion

0¥(Z)P2)V{a)=[(Z'—2)" " + 6*@)+ 0 —2)]V(a)
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with the relation
() ()@
—Z =) T —a) N z—a)" o @)SDVay):
- [(z'—z)-l— = (z—ai)-l] Via)
+:0*2)V{a,):+0(z' —2),

which is a consequence of (7.6).
From (7.14) the following bosonization rules follow:

. . K,
w*=:e", ¢Pp=:e7:, G*=idp, Vj=:exp<—i7\]lqo>:,

(7.15)
T=—w*d=1[:(6:*)*—06],
where the analytic scalar field ¢(z) is supposed to be normalized as
(p(2)o(2)) = —In(z—2) (7.16)
and has the charge 1 at infinity, i.e.
®O*z)~—2z"1, z-o0. (7.17)

This implies that the total charge of all operators in any nonzero correlation
function has to be equal to —1, and therefore in the average

M
<a)*(zl). 0¥z, ) il;ll V;‘(ai)>

n M
= kl;[f (zx—2,) y (z—a)~ KN H (ai_aj)K'K’/N2 > (7.18)

i<j

which we have computed using (7.15), (7.16), the number n,, of w* operators has to
be equal to (7.10).

The correlation function contained in Z can be computed in the same way,
which amounts to replacing K; by N—K;:

M
(oke-6e) [ ¥

n _N-Ki M s
=0 e [lama) L g TR, (19

where we have denoted by V;* the operators corresponding to the singular points a;
of the fields w, ¢*. The number n is determined by (7.12), in the same way as for n,,.
The dimensions of the operators V; and V;* coincide and are given by
1K, K;
= i1 7.20
which is a consequence of the general relation 4(q) = }¢(g + 1) for the dimension of
the operator ¥, =:expige:. Recalling (7.8) one finds that the dimensions &, and hy
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of the twist operator are equal to
hy=hy= ———7— (7.21)

in accordance with [5].

Thus we have constructed a simple integral representation described by (7.13),
(7.18), and (7.19) for the quantum part of the twist-field correlation functions. Now
we can proceed to the calculation of the structure constants of the twist-field
operator algebra. First we note that for the correlation function

< ﬁ ok (@ di)> =xM" 2[2({‘11'})2*({”:'})] w2 (7.22)
i=1 qu

(where we have restored the normalization constant x) there are three possibilities
to satisfy (7.8) when M =4:
4
Y Ki=¢('N, ¢=1,2,3.
i=1

Two of them — /=1 and /=3 — are related by the change
K,»N—K;. (7.23)

From the representation (7.9) it is obvious that all the correlation functions of o
are invariant with respect to (7.23). So it is sufficient to consider the cases /=1, 2.
For the same reason the structure constants C{, ., of the operator algebra of
ax’s, which determine the three-point couplings

ok (0)ax,(1)0k,(00))qu=%Ck, k,x, = C¥'k:k5 (7.24)
are also invariant with respect to (7.23):
C?(‘iKzIQ:C%u—K,,N—KZ,N—Kg‘ (7.25)

Hence it is sufficient to compute C}'x x, for K, + K, +K;=2N.1t is possible to
show that the integral representation (7.13)+7.19) gives the correct relative
normalization of the three-point functions. For K; + K, + K;=2N the numbers
n, and n in (7.13) for the factors Z and Z, of (7.22) for the function

<0'K1(a1> 51)01(2(‘12: ‘72)01(3(“3, as)y,

are equal respectively to 1 and 0. Therefore
Z(ay,a;,a35)= jdzzl<w*(z)VK1(a1)VK2(a2)VKs(a3)>|2 >
Z(ay, a,, a3)=|<V]\;k—Kl(al)VI:f—K;(aZ)Vl\,lk—Ka(GS)Nz'
On substituting a, =0, a,=1 and a;= o0, we get

CE12[(2K3= fd22|z| _ZKI/le_ 1‘—2K2/N

=7 ilfll I'(1—K;/N)/I(K;/N)K;+K,+K;=2N. (7.26)
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To find the absolute normalization x of the structure constants, it is necessary
to calculate also the four-point functions. We shall restrict ourselves to the case
K, +K,+K;+K,=2N (7.27)
and assume that
K,+K,>N.

Herewith there is one integration in both Z and Z,. Putting a,, a,, a3, and a,
respectively at 0, =, 1, and oo, we obtain (see Appendix):

Z (K} z)=[d*z|z| 2K iIN|z — z| 2KV

X }Z— l'—2K3/N|$|2K1Kz/N2|$ -1 l2K2K3/N2

N
2( CKitKs

N ) (7.28)

=I$|2K1K2/N2|1 _£|2K2K3/N2 <C1212,K2,K3+K4|$|

( K, Ky K;+K, )
Fl1——1 =3 2 4 o

2
X

N’ N’ N
_ K, K, K,+K 2
+CK32,K4.K1+K2 F<1—W4’ WZ, lN 27 fﬁ) )7

Z({K}2)=Z ({N—K}|z).

Formulae (7.22), (7.28) give the quantum part of the four point correlation
functions of the operators o for the case (7.27). It is not difficult to check that for
2—0 the most singular part of the function (7.22) has the form

(og, 00k, (2)ox,(Vog (0 qu=4XZ"Z,)" '/

~ |$|2(h1<3+1<4‘hx1 ~hk,)
X %2CK1,K2,K3+K4CN—K3,N—K4,K_~,+K4a || 0. (7.29)

It follows that (7.26) in fact gives us the correct expressions for the quantum part of
the structure constants up to the overall constant multiplier » independent on K.
To find % one has to consider the case K; + K, = N, and to extract the contribution
of the identity operator to the OPE of oy (0)o ().
But there is some difficulty involved. For K, + K, =N the integrand in (7.28)
has the logarithmic singularity for |«|—0:
Z (K, N—K,K;,N—K;|z)~2n <In |y_!> || 2K (N = KDIN2 (7.30)
@€
where the constant y depends on K, K5 and is equal,
(K1, K3)=[(K,)0(K3)]"2, (731)
In8(K)=2%(1)— W(K/N)— ¥(1 —K/N). '

The function Z(z) has the same asymptotic behaviour and for the correlation
function (7.29) we obtain
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<0K1(0)6N - K1($)6K3(1)O-N - K3(00)>qu

-1
o~ || T2 [2nln y(K“Kﬂ . |z|=0. (7.32)

||

The appearance of the logarithmic singularity in this expression is connected
with the fact that in the limit of an infinite radius of the orbifold the spectrum of
conformal dimensions of fields in the OPE of g¢(0)ay _ x(=) become continuous.
Indeed, the operators (), present in the expansion

on-x(@)ox0)= % Ck(p) |2|” = 5(04(0) + -..) (7.33)

correspond to ordinary vertices
Op,=cexpip,X*, p=1,2X"'=X+X* X’=iX*-X) (7.34)
with dimension
A(p)=P?/2. (7.35)
The momentum P is taking values on the dual orbifold lattice A* with the volume
of the fundamental cell
Vil=Vu.~R™2,
where R is the orbifold radius. It is also supposed in (7.33) that the operators are
normalized as follows:
(O 0)0(2)) = | 7.
In the limit R— oo the sum in (7.33) can be replaced by the integral, and under the
choice
Cx(p)=Cn—(p)=#(2n*V,) "/ [6(K)] > (7.36)
we obtain for the four-point function the following asymptotic
ok, (0)oy -k (2)ox, (Do -k, (0))D gu
~f VAdZPCKl(P)Cm( -p) Jao[P? 4
=la| " #xu? [2n In([8(K )O(K )] 2 /l2D] 7", |2]-0, (7.37)
coinciding with (7.32).
On the whole, the asymptotic (7.32) corresponds to the structure constants

(7.36) of the algebra of operators g and O, Since 0, _, is the identity operator, it
follows from (7.36) that

CoxO)oy - k() =z| ™ **u2n*V,) " 12 (7.38)

Thus to achieve the standard normalization of the two-point functions one has to
put
x=Q2r*V,)'2. (7.39)
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The resulting expressions for the structure constants are the following:

Cp=[o(K)] 7, (7.40)
3 I“ K N 1/2
C i x, = 2nV)"? (iljl W(——T/@)VJ ,  K,+K,+K3;=2N. (7.41)

It is easy to see that for K =K, =K the expression (7.41) coincides, up to the
contribution of instantons, with the structure constant C, ., _computed in [5]

[formula (4.47)]:
o K[\'2 _T*(K/N)
C¥k.20-10 <VA tg N) FK/N—1)’ K>N/2. (7.42)

We have to point out that the constants (7.40) were also first computed in [5]. It is
also possible to check that for the case

K,=N—-K,=K,=N-K,, (7.43)

(7.28), (7.22) reduce to the corresponding expression in [5] [formula (4.39)].

Thus the general formulae (7.22), (7.28), and (7.41) complete the relations
obtained in [5] for particular cases (7.42), (7.43). Besides, the integral represen-
tation constructed above considerably simplifies all the calculations and provides
an effective description of the quantum part of multitwist correlation functions
(7.22) for M > 4. Note also that the expressions derived above describe the full sums
of the perturbation theory series for the o-model on the world-sheet of the string,
propagating in the orbifold background.

8. Conclusions

We find on the whole that analytic fields in two dimensions play an important role
in the conformal quantum field theory and in the theory of strings. Each time the
naive transition to the 1% order formalism exists it can be settled rigorously and
leads to considerable simplifications. For the partition functions and correlation
functions it provides expressions with an explicitly revealed complex analytical
structure. We think that the transition to the analytic fields in conformal quantum
field theory is analogous to the transition from real to complex analytic
coordinates in geometry. For the present this connection can be expressed even
more clearly [1, 2, 7, 8, 11, 12] and no doubt deserves further study.

Note Added. After this research had been completed, I was informed that M.
Bershadsky and A. Radul computed the determinants of Laplace operators 4; for
Z y-symmetric surfaces extending the method by Al. Zamolodchikov [4]. Our
discussions in Sects. 4 and 5 also have some intersections with their paper [19].

Appendix

For the sake of completeness we bring here the basic integrals we have met in
Sect. 7. To calculate them one has to transform the integral over the complex plane
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into the sum of products of contour integrals over dz and dz around cuts.

I(o, f)= [d?z|z|**[1 —2|**
T+l A +pI(—1—a—p).
I(—o) (= pIrR2+a+p)

I(a,b,c, z)= [d*z|z|**|z — 2|** |z — 1]**
__sinmasinzb |2, ) P
—m(j)z(z 56)(2 1)dZ
sinnesinm(a+b+c) |2, P
sinn(ci-f—b) { 2z —z)(z—1)dz

Fa+ )b+ )I(—a—b—1)
I'(—a)'(—=b)(a+b+?2)
x|Fla+1, —c,a+b+2,z)]?

I'a+b+ DI (c+1)I[(—a—b—c—1)
I'(—a—bI(—c)(a+b+c+2)
x|F(—a—b—c—1,—b, —a—b,z)?,

|m|2(a+b+ 1)

where F denotes the hypergeometric function:

I 1
F(a, B,y,2)= W)F((};l—_a) (j) T =ty T T (1 —zt) " Pdt.
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