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Dirac and Majorana Spinors
on Non-Orientable Riemann Surfaces*
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Abstract. It is well known that (Weyl) spinors cannot be consistently defined
on nonorientable manifolds. We prove that Dirac spinors can be defined on
nonorientable Riemann surfaces. It is also shown that Majorana spinors
cannot be defined consistently on closed nonorientable Riemann surfaces with
odd Euler number, but can be consistently defined in all other cases.

The recent surge of interest in string theories was triggered by the demonstration of
the one loop cancellation of anomalies in the type I S0(32) superstring [1]. This
calculation was carried out using the canonical quantization procedure. Green
and Schwarz had already realized that similar infinity cancellations must be
operative at tree level, but they could not prove the vanishing of the dilaton
tadpole at this level since it was not clear how the canonical quantization
procedure could be used to obtain this result. The alternative path integral
quantization method of Polyakov can be used for this purpose [2]. In fact, it was
recently used to show the vanishing of the dilaton tadpole for the 50(8192) type I
bosonic string theory [3].

The path integral quantization procedure for field theories is notorious for its
suitability in discussing global obstructions to the consistent formulation of the
theory. For example, Witten has shown that a class of gauge theories with spinors
is inconsistent [4], but the corresponding anomaly is much more difficult to
understand if canonical quantization methods are used [5]. Polyakov's formu-
lation of the super-string can then be expected to shed new light on possible global
inconsistencies of superstring theories.

The partition function in Polyakov's theory is a sum over two-dimensional
field theories defined on different Riemann surfaces. For the type I superstring, it
includes both open and closed, oriented and nonoriented surfaces. The formul-
ation is in Euclidean space and the action is just the integral of the supergravity
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Lagrangian discovered by Brink et al. [6], and by Deser and Zumino [7]. All the
spinors are taken to satisfy a Majorana condition, and the proofs of the
supersymmetry of the action given in [6] and [7] rely on this fact. In this work, we
will prove that Majorana spinors cannot be consistently defined on closed
unoriented manifolds with odd Euler characteristics. Therefore, Polyakov's
procedure is inconsistent as it stands.

It is well known that a spin structure cannot be defined on unoriented spaces.
This is easy to understand since it is just the statement that closed paths exist on
which a left-handed Weyl spinor can be parallel transported to come back to the
starting point as a right-handed spinor. It is not clear a priori whether Dirac
spinors, which contain both handedness, can be consistently defined on an
unoriented space. In fact, we will see that this is the case when the space is a
Riemann surface. However, the definition is incompatible with the reality
condition defining Majorana spinors in the case of odd Euler number.

We start by focusing on some simple cases. Let U = { Ua} be a good cover of the
Riemann surface M. Recall that in constructing a spin bundle, one needs first a
frame bundle. This is specified by a set of transition functions RΛβ e 0(2) defined on
the overlaps Uaβe UΛr\Uβ. On the overlaps the frames ea

Λ(a = \,2) are related by

el = (RΛβrbe
bβ. (1)

To construct the spin bundle, one then needs to lift these transition functions to
elements Laβ of the double covering of 0(2), namely Pin (2) [8]. On the overlaps,
spinors ψ^ ( ΐ=l,2) are related by

ti = (LM. (2)

Now consider the specific case of M being the project!ve plane P2, viewed as the
disk with antipodal points of its boundary identified. For simplicity, choose a
cover with double overlaps covering the entire boundary of the disk and additional
double overlaps entirely in the interior of the disk (see Fig. 1). The transition
functions Raβ can be chosen to be trivial in the overlaps interior to the disk. We can
view this situation by putting an everywhere parallel frame in the interior of the
disk. The nontrivial transition functions then lie on the boundary of the disk and
can be computed by "moving" the frame through the boundary and finding out
their orientation as they come in through the antipodal point. The situation is
depicted in Fig. 2. Parametrizing the boundary of the disk by an angular variable
φ E [0,2π), with φ = 0 on the south pole "4" of Fig. 2, one has

) > (3)

where

is the "parity" matrix and

T=( ° J e Lie algebra of 80(2) (5)
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Fig. 1. P2 as the disk with antipodal points of its boundary identified. Drawn in is a cover, with
triple overlaps labeled by letters A,..., J
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Fig. 2. The transition function for the frame on the overlaps AB. Note that the frame rotates

by π as we traverse an angle π/2

is the hermitian generator of rotations. Notice that frames rotate by 4π as we
traverse the boundary of the disk. Now, in defining the corresponding transition
function L(φ) for spinors ψ, we must require that ψ^ψ and ψ*γaψ transform as
scalar and vector, respectively. Here and throughout γa = σa, the Pauli spin
matrices. This imposes the following conditions

(6)

which are solved by

eίwy1eίy3φ. (7)

The phase w can be further restricted by requiring that ιpc^γ3ψ be a scalar, where ιpc

is the charge conjugate of ψ. The extra freedom arises because the previous two
requirements were consistent with the presence of a background 17(1) gauge field;
one can eliminate this arbitrariness by requiring the charged fermion bilinear
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φcty3φ to transform as a scalar. We will come back to this point later, but for the
moment we will keep w unrestricted. Our solution for L(φ) states that

and that

ψ(2π) = ψ(0) = eίwyleίy'πιp(π) .

Here ψ(φ) refers to the spinor on the patch Ua that extends to the interior of the
disk and contains that point φ of the boundary. Combining these expressions gives
the condition

e2iw=-l. (8)

Thus Dirac spinors can be defined on P2 provided eiw= ±i. Majorana spinors
satisfy the additional constraint

ψc = ψ. (9)

Here ψc is the charge conjugate spinor. It is defined to be

ψc = eίaCψ, (10)

where α is an arbitrary phase and the charge conjugation matrix satisfies1

c~yc=γa* (ii)
and

C*C = 1. (12)

With our conventions C = yl.
If the spinor ψ is Majorana, it must satisfy

and its C conjugate relation

Thus one needs

which is impossible in light of Eq. (8). There are no Majorana spinors on P2. One
may be skeptical about this derivation since the phases w and α could have been
chosen to vary smoothly along the boundary. It is a trivial exercise to show that
this added freedom does not modify our conclusion. The fact that the cover is
somewhat special is also superfluous : we will later prove that the problem exists for
any cover and any continuous local choice of phases w and α. The exercise above
does indeed contain all the essential ingredients of the generic proof.

1 If one requires that C 1yaC = — yα*, then it is not possible to satisfy C*C = 1 and a Majorana
condition is inconsistent. The condition in Eq. (11) still implies C~1^j

abC = £flb*, where

Σab= -- [/,/] are the hermitian generators of rotations
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Fig. 3. The Klein bottle can constructed from the annulus by identifying antipodal points on
each boundary. The spinor transition function can be nontrivial across the dotted line

In the next example, we take M to be the Klein bottle K2, which can be
obtained from the above construction of P2 by removing a small open disk from its
interior and identifying antipodal points of the new boundary (i.e., the annulus
with antipodal identification of points in both boundaries, as in Fig. 3). By
retracing the argument for P2, it is obvious that one can define Dirac spinors on
K2. The fact that one can have Majorana spinors depends on a simple observation.
Consider a line £ joining the inner and outer boundaries of the annulus, as
represented by the dotted line in Fig. 3. We are still considering an everywhere
parallel frame on the annulus, so the transition function for spinors on £ is just
L= ± 1 (a phase in general, but ±1 if we want to consider Majorana spinors, for
α^O). If we parametrize the transition functions on the boundaries of the annulus
by phases φί and φ2 as before, with φi = 0 corresponding to the points where the
boundaries meet the line /, then the transition functions are (if L= — 1 across £)

and

_yVy 3*' for π<

corresponding to the case e2ιw= 1. There are Majorana spinors on K2. Note that
this procedure could not have worked on P2, since the line £ cannot end in the
interior of the disk (for then the transition function on some overlap is
discontinuous) and we gain nothing by having it end somewhere else on the
boundary (for then e2ίw= -1 still).

It is now easy to understand the general case. A disk with 1 — χ holes with
antipodal identification on all boundaries is a closed unoriented Riemann surface
with Euler number χ [9]. Again, we put an everywhere parallel frame on this disk
with holes. If χ is even, we can have 1 — χ/2 lines joining pairs of cross-caps on
which we can choose the spinor transition function to be nontrivial and Majorana
spinors can be defined. If χ is odd, this is not possible. It is also easy to see what
happens for open unoriented surfaces. One typically imposes a boundary
condition for the spinors, but the condition being local, we can draw a line £ from a
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cross cap and have it end at the boundary without introducing discontinuous
transition functions. There is therefore no obstruction to defining Majorana
spinors on open unoriented surfaces.2

To make a proof out of the preceding argument, we need only a good
bookkeeping device to keep track of the freedom in the choices of phases. The
natural tool is Cech cohomology. An excellent introduction can be found in [10].
Choose a good cover °li — { l/α} of the closed Riemann surface M. A frame bundle is
specified by the transition functions .R^ e 0(2) on the overlaps Uaβ = Ϊ7αn Uβ; here
UΛβ is to be thought of as a two-chain in C2(^). Consistency of Eq. (1) requires Raβ

to satisfy the cocycle condition on triple overlaps UaβyEC3(^):

= RaβRtyRιa = \. (13)

As in Eq. (3), Raβ can always be written as

with

Φβ«=

and the cocycle condition becomes

γ (16)

for some integer nΛβr A bundle of Dirac spinors can be constructed if the transition
functions Lαj3ePin(2) can be chosen to satisfy a cocycle condition. Let

(17)

We will begin by showing that there are no Majorana spinors for odd Euler
number. We want to prove that the LΛβ can be chosen so that wΛβy = l. We have
already seen that the condition that ψ^ip and ιp*γΛψ transform as scalar and vector,
respectively, fixes the form of LΛβ to be

y—ώ
LΛβ = (f™**(ylγ<"e2*uβ. (18)

Using Eqs. (16) and (17), one obtains

wβ0yW*{w>«'*(- !)"«'*, (19)

the coboundary operator on phases (waβ = — wβa) is

δ(w}*βy = w*β + ™βy + wyα > (20)

and we have used

(21)

It is easy to check3 that wα/?y = ( — l)"α/37 is a two-cocycle: furthermore, it is a
representative of the second Stiefel- Whitney class w2eH2(M, Z2) [11]. Because

2 Note, however, that this choice picks out the boundary conditions satisfied by the spinor around
this boundary: on an open nonoriented Riemann surface, the number of boundaries around which
the spin structure is odd will be odd if χ is odd and even if χ is even
3 With the aid of Eq. (15) and (16) one can show that δ{n}aβγδ is an integral multiple of 4π



Dirac and Majorana Spinors 673

d = 2, w2 is the mod 2 Euler class (χmod2 times the nontrivial two-cocycle). For
Majorana spinors, one must choose the phases waβ to be multiples of π, so that the
two-boundary elδ{w}aβy takes values in Z2. One can then arrange [11] for waβy = ί
only if w2 is a trivial cohomology class, that is, if χ = 0mod2. Conversely, if the
phases wΛβ are taken to be multiples of π, then one can never arrange to have
waβy = 1 in all the overlaps if χ= 1 mod 2.

If we allow for a phase freedom in the definition of Majorana spinors, we still
get the same result. The general Majorana condition is

V^ Cψ*. (22)

From Eq. (2) one learns that a Majorana spinor bundle satisfies

L^e^CLlβC-1 (23)

or simply, that

Therefore, wα/5 must be a multiple of π modulo an irrelevant 1-coboundary.
We still have to show that there are Dirac spinors on these manifolds. This

would be obvious if the phases wαj3 could be chosen arbitrarily. One additional and
last constraint arises from requiring that ψ*γ3ψc transforms like a scalar. This gives

Λpe-W > = γ* (25)

or

Thus

^β = δ{c}aβ+~(\-(-\γ^} + mΆβπ (27)

with maβ an integer, and finally

The first factor in Eq. (28) has an interesting derivation. The factor of 1/2 in the
exponent is all that prevents it from being trivial; {p} represents a one-dimensional
cohomology class with Z2 coefficients, calculated from the occurrences of the
orientation-changing matrix P in the transition functions, {p} is nontrivial if and
only if the manifold is nonorientable, and it represents the first Stiefel- Whitney
class \Y! e H1(M, Z2); trivially, then, δ{p} is zero as a Z2 cochain. The factor of 1/2
in Eq. (28) then corresponds to a cohomology operation known as a Steenrod
square [12, 13]. Diagram chasers may wish to peruse the following figure:

(SήfVi)) <- <5(Wl)Z4

0 -> C(2)(M,Z2) -* C(2)(M,Z4) -> C(2)(M,Z2) -> 0

ί« T ΐ « ί*
0 -> C(I)(M,Z!) ^ C(1)(M,Z4) -> C(1)(M,Z2) -> 0

(Wι)Z4 <- (wt)
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From a cochain representing a cohomology class in Hl(M,Z2) (here, {/?}) one
forms a cochain with Z4 coefficients by forgetting that the coefficients are Z2. This
cochain may not be closed, but we know that δ{p}, evaluated with Z4 coefficients,
has coefficients which are multiples of two, from the fact that δ{p} is zero as a Z2

cocycle. We can then divide the coefficients by two to get a two-cochain with Z2

coefficients, and this whole operation is written symbolically as S^1w1.
From the defining relations of Steenrod squares [13] we have the formula

This can be computed using homology cycles Poincare dual to W j and taking their
intersection. Representing a closed nonorientable surface by a sphere with 2 — χ
crosscaps, the cycle dual to wί is a sum of loops through the crosscaps, each of
which has self-intersection equal to a point. The intersection is then a set of 2 — χ
points, which is trivial if χ is even and nontrivial if χ is odd.

This gives us

for nonorientable Riemann surfaces; if we then take cohomology classes in Eq.
(28), we have [w] = [SV(wι)] + [w2] = 2[w2] =0. Thus there is no obstruction to
defining Dirac spinors.

Given that there are no Majorana spinors on odd Euler surfaces, can we still
have a path integral formulation of the type I superstring? One possibility is to
define the theory in Minkowski space and to perform the Wick rotation to
Euclidean space only after the local supersymmetry has been used up to fix the
gauge. It is not clear whether the non-existence of Majorana spinors would
introduce technical obstructions in performing the Wick rotation. Since the NSR-
superstring action contains an even number of Majorana spinors, a second
approach consists of finding a similar action with half as many Dirac spinors which
still exhibits the local supersymmetry. For example, the gauge fixed action in [6]
and [7] when viewed as a functional of five complex scalars and Dirac spinors still
presents a supersymmetry. This is generated by a conformal killing spinor which
need not be Majorana. It is hard to see how one could extend this procedure to the
full action. In particular, one would have to pair the two Majorana components of
the gravitino into a Dirac spinor.

We have proven that Dirac spinors can be defined on all Riemann surfaces, and
that Majorana spinors are inconsistent only for closed surfaces with odd Euler
number. It would be interesting to know if Majorana spinors can be consistently
defined on unoriented manifolds of higher dimensions and on unoriented two-
dimensional spaces with Minkowski metric. Also of interest is the classification of
spin structures and of Majorana spin structures on Riemann surfaces. With
Preskill we are presently pursuing these and related questions.
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