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Abstract. One-dimensional mappings "at the limit of period doubling" are
studied in this paper without the use of the renormalization theory of
Feigenbaum and others. The principal result is that the attracting part of the
nonwandering set is a Cantor set of measure zero under the additional
assumption that the map has negative Schwarzian derivative.

The topological structure of unimodal maps of the interval with negative
Schwarzian derivative has been completely characterized [2]. The measure
theoretic properties of these maps are less thoroughly understood. Here we study
maps in one particular topological equivalence class, namely those topologically
equivalent to the "Feigenbaum fixed point" [1]. These maps lie at the accumu-
lation of period doubling bifurcations in one parameter families. Without appeal to
the properties of the fixed point function or renormalization arguments, we give an
elementary geometric proof that the limit sets of these mappings are Cantor sets of
Hausdorff dimension smaller than one. In particular, the limit sets of all
trajectories have Lebesgue measure zero and the mappings do not support
absolutely continuous invariant measures.

Theorem. Let f:R->R be an even C3 map with
(1) a single critical point 0 which is a nondegenerate maximum,
(2) negative Schwarzian derivative Sf = (f'"/ff) -(3/2) ( /7 / ' ) 2 , and
(3) nonwandering set the union of two unstable fixed points, one periodic orbit of

period 2n for each n>0, and a Cantor set A without periodic points.
Then A has Lebesgue measure zero.

Remark. The theorem is not the most general which can be proved. In particular,
one can allow degenerate critical points which are not flat and relax the
assumption that / is even. The proof is presented here in only the simplest case for
the sake of clarity.

The proof of the theorem proceeds in several steps which we isolate as separate
statements. First we recall some of the topological properties of an / satisfying the
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assumptions of the Theorem. Denote by c(j) the point /J(0). For each n>0,
consider the 2n~γ intervals J(nJ) = [c(j\ c(2n~i +/)]. The intervals J{nJ)9

0<j<2n~1, are disjoint. They are permuted by / and each contains exactly one
periodic point of period 2n~ \ We denote by p_ γ the fixed point of/ with positive
slope and by pn the periodic point of period 2n closest to the origin. Set p(n,j)
= fj(Pn) As n increases, we have J(n + lj#)uJ(n + l,7 + 2 ϊ l"1)cJ(n,j) and

Λ= 0 ({J J(n,j)\.
j

There is a point qn to the right of c(l) with the property that f2n 1(qn) = — pn-v

Note that f2n\(p(n, 1), qn) is a diffeomorphism. Figure 1 illustrates these definitions.
Denote the length of an interval J by /(J). To prove the theorem we establish an

upper bound α < l on {l(J(n + lJ) + l(J(n + lJ + 2n))/l(J(nJ)). We then have
χ/(J(n,j))<αn/(J(l,l)) which gives an upper bound of log(2)/log(2/α) for the
Hausdorff dimension of A. In proving these estimates we use two basic properties
of functions with negative Schwarzian derivative. The general statement of these
are formulated as two lemmas that appear in the middle of the proof of the
theorem.

Stepi. | ( / 2 7 ( 9 J > 1 .

This is proved inductively. First q0 = — /?_ l 5 so the evenness of/ implies \f'(qo)\
= |/ /(p_ 1) |>l. Assume now that \(f2n)'{qn)\>ί Then the chain rule implies
\(f2n+y(qn)M(fn\qnUf2y(p(nΛ)\>l Observe that qn+1 is contained in the
interval (p(n+l,l),^π + 1) and that f2n+1 is monotone on this interval. Since the
iterates of/ all have negative Schwarzian derivative | (/ 2 n + 1y(gn+i)| is at least as
large as the minimum of |(/ 2 n M)'(in) | and |(/2n+1y(p(n-j-l,l)|. Now
\(f2n+1y (p(n +1,1 )| > 1 since the periodic orbits are unstable, hence

l(/2"+1)'fe+1)l>i.
Step 2. pJc{2n)<0.7i for n sufficiently large.

Choose n sufficiently large that / is well approximated in the interval [0, pn _ J
by a function of the form a — bx2. This implies that

l(p(n, 1), c(l))//(c(2" +1), c{ί))K{pJc{2n))2.

Now l(c(2" + i), c(l)) = /(c(2" + l), p(n, l)) + l(p(n, 1), c(l)) and l(p(n, 1), c(l))
</(c(2" + l), p(n,l)) because |(/2")' |>1 on the interval {p(n,ί), c(l))C(p(n,l), gn).
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We conclude that

For ε = 0.002, if n is sufficiently large then \pjc(2n)\ < l/|/2 + ε<0.71.

Step 3. \Pn/c(2n)\>lβ.

A lower bound on \pjc(2n)\ is also easy to obtain. Consider f2n on the interval
[pπ_i, — Pn-i]' The evenness of/, the instability of periodic points and negative
Schwarzian derivative imply that / 2 " expands on the interval [pn, — pn-{\.
Moreover, c(2n + 1) e (0, -pn\ implying l{pmc(2n))<l{c{2n + %pn)<2\pn\.

Consequently, \c(2n)\ = \pn\ + l(pn,c(2n))<3\pn\ and |P l l/c(2")|>l/3.

Lemma 1. Let hbeaC3 diffeomorphίsm of [0,1] with S(h)<0, Λ(0) = 0andh{ί) = ί.
On the interval h~ι(δ, 1 — δ) we have \h"(x)/(h'(x))2\ < 2/δ. If x and y are in the interval
h~\δΛ-δ\ then \h'{x)lh'{y)\<e2!δ.

Assume x satisfies δ<h(x)<l —δ and \h"(x)/(h{x))2\>2/δ. We fit a hyperbola
ξ(y) to h by matching its value and first two derivatives at x: if /z"(;χ)φθ,

ξ(y) = h(x) + (y-x)h'(x)/(ί -(y-x)h"(x)βh'(x)).

The property S{h)<0 is equivalent to the convexity of (h')~112. Denoting
g = (ft ;)~ 1 / 2-(<Π- 1 / 2, we have g">0, g(x) = 0, and g'(x) = 0. Therefore, g(y)>0 and
Λ ' M < f Cv) for all yΦx. Then ξ(y)>h(y) ify>x and ξ(y)<h(y) ify<x. If h"{x)<0,
we estimate

)7Λ"(x) < Λ(x) + ̂  < 1,

contradicting the properties of h. Similarly, if h"(x) > 0,

Λ(0) > ξ(0) > Λ(x) - 2(h'(x))2/hff(x) > h(x) -δ>0,



658 J. Guckenheimer

again contradicting properties of h. This proves the first part of the lemma. The
second part follows from the usual Denjoy estimate together with a variable
change. We have

log|Λ'(x)/ft'(jO|= f \h"(ζ)/h'(ζ)\dζ= 7 \h"(h-\η))/(h'(h-\η)))2\dη,
y Hy)

where η = h(ζ) in the passage between the two integrals.

Lemma 2. Let hbeaC3 diffeomorphίsm of [0,1] with h'(0)>0 and S(h)<0.Ifgίsa
fractional linear transformation continuous on [0,1] with g'(0) = h'(0) and g;(l)
= ft'(l), then h\x)>g\x) for all xe(0,1).

Again we use the property that S(h) < 0 is equivalent to the convexity of (h')~1/2.
Let g be a fractional linear transformation with g'(0) = h'(0) and g'(\) = h'{\). Since
(g') ~1 / 2 is linear for a fractional linear transformation g, (h') ~ 1/2(x) < (gf) ~ 1/2(x) for
all xe(0,1) and the lemma follows.

Step 4. There exists an ε>0 such that \pjpn-i\>ε independently of n.

We know that |(/27(P»)I>1 and | (/ 2 7(-Pκ-i) l>l Lemma 1 implies that
Z 2 " " 1 restricted to [/(/?„), f(pn-J] has uniformly bounded distortion on the
inverse image of the interval L= [pn_i/2, —pn-J2~\ because [/(pj, /( — pn-iί] i s

contained in an interval mapped monotonically onto [pn_ l 5 — pw_ i] by f2n~ι. If
IP«/P«-il< 1/4, then [-pn_i/4, -pn-J2~] is contained in [pπ, -pn-λβ~\ and we
assert that /2n([p«, — pπ -1/2]) C L. Observe that f2n is monotone on [/?„, — pn _ 1/2],
so the assertion can be proved by checking that /2 n(pJ, /2"( —pn_1/2)eL. First,
f2n(Pn) = Pn and |pB|<|pII-1/2|. Second,

and

implying that \f2n(pn- J2)\ < |pn_ j_/2|. Now |/;(x) y/x /'(}/)| is bounded away from
zero, so there is a constant 5 > 0 such that

l(/27M/σ27(y)l - l(/2n" ̂ '(/W)/!/2"" 7 (/(y))l l/W/'ωi > ̂  \χ/y\
for x ^ e ^ - p ^ i / 2 ] . In particular, \(f2n)'(x)\>δ\x/pnl since | ( / 2 7 ( p J > l .
Assume now \pjpn-A <δ/32. Then lp^-i/4^^8/^ and |(/ 27(x)|>8 on the
interval X = [-pπ_1/4, -pπ_i/2]. But then /((/2")(K))>2|pw_1|, contradicting
that the image of K is a subinterval of [pw-i, — pM-i]. We conclude that
\PnlPn-il><5/32 as was to be proved.

5. There is a constant β>0 such that

and
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If pn-1<0, there is the following ordering of points:

From the ratio estimate of Step 2, we have |c(2"+ 1)/pw_1 |<|pw/c(2")|<0.71 and
similarly \c(2n + 2)/pn\ <0.71. Since the ratios \pjpn-ι\ are bounded away from zero,
Steps 2 and 3 imply that \c(2n + 1)/c(2M)| is bounded away from 0. This establishes the
existence of/?. There are gaps of fixed minimum ratio on either side of J(n +1,2 n + *)

All of the estimates for the proof of the theorem are now in place. At the nth step
of the Cantor construction, we remove from the intervals [c(fc),c(fc + 211)],
0 < k< 2\ the intervals [c{k + 2n+1), c{k + 3 2")]. Now [c(fc), c(fc + 2")] is contained
in an interval which is mapped diffeomorphically by f2n~k onto [ p n - i , p n - 2 ]
D[c(2" + 1),c(2B)]. Step 5 and Lemma 1 imply that the f2n~k have uniformly
bounded distortion on the intervals [c(/c),c(7c-f 2n)] independent of n and fc. We
assert that /([c(3 2"), c(2w + 2)])//([c(2rt), c(2Λ + *)]) is bounded away from zero. This
follows from the following observations:

(1) [c(3 2"),c(2« + 2)]D[pM,c(2" + 2 )],
(2) l{[c(2n+ί\ c(2π+2)])//([c(2"), c{2n + 1)]) is bounded away from zero (Step 4),

and

(3) /([pn,c(2"+2)])//([c(2n+1),c(2 t t + 2)]) is bounded away from zero (Step 5).
There is a γ > 0 such that each step of the Cantor construction removes a minimum
proportion y from each subinterval. These facts together give a minimal ratio of the
total length of the intervals in the nth stage of the Cantor set construction that is
removed in proceeding to the (n + l)st stage. More precisely, £/(J(rc + l j ) ) < a
X l(J(nJ)) with a = 1 -γ. The theorem is proved.
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