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The Chiral Determinant and the Eta Invariant
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Abstract. For {dy},ye1R., a one parameter family of invertible Weyl operators
of possibly non-zero index acting on spinors over an even dimensional
compact manifold X, we express the phase of the chiral determinant det <3t ^d^
in terms of the η invariant of a Dirac operator acting on spinors over 1R x X.

1. Statement of Results

Let X be a compact spin manifold of even dimension with spin bundle S = S
-+X and let E-+X be a hermitian vector bundle over X. Let J = R x S, E = WLxS
be the pullbacks of S and E to R x X with the pull-back hermitian inner products,
and let VΈ be a connection on E. Thus VE = dκ + θ+Vf.), where
^eί21(R)(x)C00(X,End£), and for each weR, F* is a connection on E^X.

For w e t , let δII:C
Q0(J!f,S+®E)ι-*C00(Ar

JS_(8)E) and
Du: C°°(X, S®£) h^C°°(X, S®E) be the Weyl and Dirac operators coupled to the
metric on X and the connection Vl on E. In the decomposition defined by

( ft\S = S+®S_, Du= " . Let H be the formally self-adjoint Dirac operator on

L2(R x X, iS®E) coupled to the connection VE on E and the product metric on

R x l . Thus H = iΓ( — + θ( — I I + D,.h where Γ is the endomorphism of S with

±

Assume
1. For all weR, di[_o0du is invertible.
2. For \u\ large, θ = 0 and dVE/du = 0.
Condition 1 implies that for all u, Ker<3u = 0 and KerδJ is a finite dimensional

complement in L2 of I m δ ^ . Condition 2 implies that for \u\ large, du is
independent of u and H is invariant under translations in the R direction.
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Let P_ oo be orthogonal projection in L2(X, S(g)E) onto ImD _ ̂  and let P_ ̂  be
the translation invariant operator on L 2 ( R x X , S®E) induced by P - ^ . Let
F = I m P _ 0 0 with the induced inner product, and let H\y be the operator on V
induced by P_00HP_ „ on L 2(R x X,S(g)E).

Let y/±00, ι = l,..., dimKerδ1" be bases for Kerδ f

± o c respectively.
We will prove

Theorem (1.1). Under the assumptions above,

detail γ/2 / deta^g^ γ/2
|det<φ^,,φ_0 0>|

= lim lim

re[o,i]:

with

and B(VE- ̂  VE^ g) is a local functional of the connections V\ ̂  and the metric g. (See
below for a precise statement.)

In the definitions of det and η, the complex powers of δ^oo^oo a n d H\y2 are
defined by contour integration as in [7, 8]. φ is a smooth function on IR of compact
support acting as a multiplication operator on L 2(R x X, 5(χ) £), and φ->l is taken
through a pointwise increasing sequence of such φ. lim is understood as the value

at z = 0 of the analytic continuation of a function which is analytic for Rez>0.
In the definition of β, g is the (R-independent) metric on X, 0tq is the curvature

of the Levi-Civita connection for g, and P[0> 1 ] x E is interpreted as a connection on
the pull-back of £ to a bundle over [0, 1 ] X R X I , and ^ [ O . U X E is its curvature:

[0, l]xRxX,End([0, l ]x£)) . (1.2)

and ch are the polynomials

|/ \sinh^/4π/ '

Finally, B{VE^^ F+^g) is local in the following sense:
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There is an explicitly computable universal polynomial [JB] in (detg)"1, the
components of g, and the components of the multiple covariant derivatives (in the X
directions) of <%g, ^E^, and V^^ — V^^, such that

l 00, V\ ^g)=^ [β] (g, ?*<%„ V*^VE_oo, V\Vl - VE_ J) \dx\. (1.4)

Here #pE ̂  is the curvature of VE- o0, and F* denotes multiple covariant derivatives
with respect to the connection determined by g and VE_ O0. We investigate the exact
form of ^(F-oo, V^,g) in Sect. 4, where we find

Proposition (1.5). // dimX = 2 or 4, then lmB = 0.

We conjecture that lmB = 0 generally.
In the language of renormalization, the functional [£] represents a "local

counterterm" depending on the data VE

±ao and g over X. Although it can be
calculated explicitly, it can be often be ignored. In contrast, although Q is a local
functional of VE, it depends not only on VE

±o0, but also on θ and VE for all weR.
Thus an exact expression for Q(VE) is relevant.

In a quantum field theory containing gauge fields A and A' coupled to positive
chirality and negative chirality Weyl Fermions respectively, the quantity Γ[A, A'~\
= logdetδj1c^r arises as result of a partial integration in the functional integral
over the Fermionic fields, and can be interpreted as the effective action for the
gauge fields due to the quantum fluctuations of the Fermions. Such determinants
can also enter via Faddeev-Popov ghosts and from bosonic integration in String
Theory. Theorem (1.1) expresses the real part of Γ [A,A'^\ in terms of the effective
actions Γ\_A, A~] and Γ\_A\ A'~\ of vector-like theories in which the gauge fields are
coupled to Dirac Fermions, and it expresses the imaginary part of Γ\_A,A'~\ in
terms of the local functional Q{VE) and the spectral asymmetry η(H\Ϋ) and zero
modes dimKerf/|^ of a Dirac operator H\Ϋ in one more dimension. With the
exception of the term involving the zero-mode eigenfunctions ψ, this expression for
ReΓ[v4, Ά~\ is formally well known, and the behavior of ImΓ[v4, Ά~\ along gauge
orbits, that is, its variation under independent gauge transformations of A and A\
has been investigated extensively in connection with perturbative gauge anomalies
[4], and references therein), in which the functional Q(VE) appears, the Witten
SU(2) anomaly [15], in which a term analogous to dim Ker(H\Ϋ) appears, and the
global gravitational anomalies [16], in which a term analogous to η(H\Ϋ) appears.
Theorem (1.1) thus represents a synthesis of these results, extended to describe the
complete behavior of Γ\_A,A'~\ including its variation across gauge orbits.

2. Previous Results

Our proof of Theorem (1.1) is based on some of the results of our previous paper
[8]. In this section we briefly review what we will need.

We first generalize the setting above by replacing IR by an arbitrary smooth
manifold Y. Thus we now let E be the pull-back t o 7 x l o f £ , let VE = dγ + θ+Vf.)

be a connection on £, and let dy, yeY, be the Weyl operator coupled to the
connection VE and the metric on X. In [8] we interpreted these data geometrically
within the framework developed by Bismut and Freed for studying families of
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elliptic operators. In the present context this is not necessary and we refer the
reader to [8] for a discussion of the geometric setting. We will, however, use the
notation of [8]. In particular, let Vd = dγd + [θ,d'].

Fix y0 6 Y and assume
Γ. For all ye Y, dloδy is ίnvertible.
Thus for all yeY, Kerδy = 0 and KerδjJo is a finite dimensional complement in
L2(X,S_®E) of Imδyo.

Let Pyo be the operator on L2(X, S_ ® £) given by orthogonal projection onto
lmdyo. Then Pyo induces an isomorphism 1 — Pyo: KerδJ i—>KerδJ0, and so we can
choose bases {ψι

y} for KerδJ, ΐ = l,2, ...,ft = dimKerδ t, ye ^depending smoothly
on y.

Define the following functions and one-forms on Y:

= exp- lim ^-Ίτ{d^d)'\ (2.1)

= exp- lim ^ T r ( ^ V ) ~ z , (2.2)

(2.3)

(VδηPyoδ), (2.5)

pjθ, (2.6)

Ao = |det (ψ, φ,0>|2/(det <φ, ψ> det <φVo, V y o » , (2.7)

Jyo = lim Tr((δf3) — 1 δ+ - (δjoδ)~'"»δjo) (dδ)

(2.8)

L θ = lim ( T Γ ί δ δ ^ - ^ - T Γ ^ δ ί - ^ ^ + T r ί l - δ ^ δ ) - ^ 1 ) ^ . (2.9)
0

The operator complex powers appearing in these expressions are defined by
contour integration as we explained in [8] (see also [13,14]). Here we must also
deal with the non-self-adjoint operator d\Jdy, but this causes no additional
problems since the principal symbol of d^od is strictly positive. It can be shown that
the spectrum of dyd

f

yo consists of isolated points corresponding to generalized
eigenspaces of finite multiplicity, and only a finite number of these points lie in any
closed sector not containing the positive real axis.

By the techniques of Seeley as discussed in [13, 14] and Appendix C of [7]
it can be shown that in the definitions (2.1H2.9), the traces involving the operator
complex powers are analytic in z for Rez sufficiently large, and these traces extend
to meromorphic functions of z for Rez> — 1 whose only singularities are simple
poles at half-integer values of z. We use the notation {f.p.a.z = 0} and lim to

indicate the finite part at z = 0 of these meromorphic continuations. In particular,
{f.p.a. z = 0} means that there is a potential pole at z = 0, while lim means that there
is no pole.
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The remaining operator traces in (2.6), (2.8), (2.9), are actually finite dimen-
sional since 1 — dy(dldy)~1dl and (dldy)~1dl — (dlody)~1dlo both vanish on the finite
co-dimensional subspace ImδJ of L2(X,S_®E).

It is easy to verify (see, e.g. Proposition (2.8) of [7]) that

δ), (2.10)

l l l (2.11)

The results of [8] which we will need are summarized in the following
Propositions.

Proposition (2.12).

The second equality does not appear explicitly in [8]. However, it is immediate
from the definitions and (2.11).

Proposition (2.13).

Lθ=- J A(@g) tr θ exp i#~Fέ/2π).

Theorem (2.14).

dγ{σl + Ίv{\ -PJΘ) = 2πi if
[X J {two form}

Finally, suppose 7 = R and that conditions 1 and 2 of Sect. 1 are satisfied.

Theorem (2.15).

In [8] we interpreted ωθ + zθ

0 geometrically in terms of the connection V{£e) on
the determinant line bundle if of the family of operators d. In this context,
Theorem (2.14) gives the curvature of V{^\ while Theorem (2.15) relates parallel
transport in J§? relative to F 7 ^ with parallel transport in the trivial bundle

3. Proof of Theorem (1.1)

We now turn to the proof of Theorem (1.1). If we take 7 = R, yo= — oo, and
integrate the formula of Proposition (2.12) using Theorem (2.15), we are reduced to
proving

Proposition (3.1). There is a universal local functional B satisfying (1.4) such that if
7 = R and conditions 1 and 2 are satisfied, then

We begin by showing, for arbitrary X that Jyo is local.
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Proposition (3.2). There is an explicitly computable universal polynomial [Jyo] in
(detg)"1, the components of g, and the components of the multiple covariant
derivatives (in the X directions) of 0ig9 ΪFVE, VE— Vyo, and dγV

E such that

Jyo= ί \dx\ UyJ (g, V*(<Xg), V*(&yε), V*{VE- VE

yo\ V*(dγV
E).

X °ί
X

Here we view &vψ VE-VE

o9 and dγV
E as elements of Ω*(Y)®Ω*(X,End£).

Thus, for example,

VE- VE

0 e Ω%Y)®Ω\X9 End£), dγV
Ee Ω^Y^Ω^X, EnάE). (3.3)

Proof of Proposition (3.2). We use Propositions (C.6) and (C.8) of Appendix C of
[7]. Observe that

gg (3.4)
; o ; o (3.5)

where ^ is the contour in C used to define the operator complex powers, and (9 is a
small counterclockwise oriented circle in C around 0. It is easy to check that
R(λ) satisfies the hypothesis of Proposition (C.6) of [7]. In particular, the
apparent λ~x pole in the complete symbol of R(λ) is removable, and the complete
symbol is analytic at λ = 0. It thus follows from Proposition (C.6) that Jyo is
expressible as the integral over X of a density which in a local coordinate system is
given by a local expression in the complete symbol of R(λ). Now this symbol has
the form

tτσ(R(λ))(λ9x,ξ)= Σ cntqtr(x9ξ)λ«(a(x9ξ)-λyr

9 (3.6)

where a{x,ξ) = g(x)ijξ
ιξJ and cnqr(x,ξ) is a polynomial of degree n — 2q + 2r in ξ

with x dependent coefficients which depend polynomially on the derivatives at x of
the components of g, Vyo, V

E—Vyo and dγV
E. As in [2], these derivatives can in turn

be expressed in terms of covariant derivatives. The proof of the proposition is now
completed by observing that by Proposition (C.8) of Appendix C of [7] the form
(3.6) of σ(R(λ)) (A, x, ξ) implies that \_Jyo]{x) is expressible as a polynomial in
(detα)" 1 and the coefficients of cnqr(x, ξ) and a(x, ξ). •

For notational convenience, given an arbitrary connection VE = dγ + θ + VE

}

on E = Y x E9 we will write [J y o ] (VE) for [J v o] (g, V*(βg\ ..., V*(dγV
E)).

Now, for any two connections VltE and V2yE on E define

fe[0,l] X

where (3.7)

V[0>1]xE = dt~+tV1>E + (l-t)V2<E.
ot

Here we let 7 = [0, 1] and view P [ 0 ' 1 ] x £ as connection on [0, 1] x E. It follows from
the previous Proposition (3.2) that B is a complex-valued functional of VliE, V2'E,
g, which is local in the sense of (1.4).
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Thus, to prove Proposition (3.1), it remains to show that the formula of the
proposition holds with B given by (3.7). In principle, this is an algebraic
computation since Q, Lθ, and Jyo are all expressible in terms of polynomials. We
need "only" compute the polynomial [Jy o] and then perform some algebraic
manipulations. Unfortunately, but as expected, this approach is hopelessly
complicated, even if we restrict our attention to the imaginary part of [J^J, which
by Gilkey's theorem (see Sect. 4 below) is much simpler that the full [_Jyo].

We thus proceed indirectly. The idea is that even though Jyo is difficult to
compute, its exterior derivative dγJyo can be calculated from Proposition (2.12)
and Theorem (2.14). Then by Stoke's theorem, the line integral of Jyo along any
path can be expressed in terms of the line integral along a fixed path, plus a surface
integral of dγJyo. The relevant fixed path is the one that enters into the definition
(3.7) of B; i.e. the linear path in the space of connections on E from VE_ m to F7^. (It is
this use of Stoke's theorem that requires us to enlarge the parameter manifold from
R t o K )

For an arbitrary connection VE on E define

^ 0 ( ^ = ί \dχ\ IΛeJ ( ^ ) - ί ^ 0 > 0 e x p i i W 2 π . (3.8)

Thus Jθ

yo(VE) is a one-form on Y depending locally on VE, and by Propositions (3.2)
and (2.13),

if the one-forms Jyo and Lθ are defined. Note, however, that while Jyo and Lθ are a
priori defined only if d\ody is invertible, in contrast Jθ

yo(VE) is defined for any
connection without any conditions on the Weyl operators.

Proposition (3.10). For any connection VE,

dY(Jθ

yo(V~E)) = 2πi ΓJ A(®g) c h ( ^ f i ) l
|_^ Jtwo form

This proposition is to be understood as a relationship between polynomials
and as such could in principle be proved by algebraic manipulations. In the
absence of an explicit expression for [Jyo], however, we must proceed indirectly.

Proof. For geometric data E, g, VE, etc. for which condition Γ holds, the formula of
the proposition follows by taking the exterior derivative of the formula of
Proposition (2.12) and then using Theorem (2.14). This is enough to prove the
Proposition in general, since the collection of such data is sufficiently abundant
and the polynomial [Jy o] is universal. •

We can now give the

Proof of Proposition (3.1). By hypothesis we are given a connection p R x £ on
R x £ ^ R x I satisfying conditions 1 and 2 of Sect. 1. Let Y=[0,1] x R and
extend F R x £ to a connection VγxE on YxE^YxX by setting

ξ + ( 1 φ + t d + V ( ί j M ) e [0, l ]χR. (3.11)

ot \ ou 1
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(Observe that VYxE does not necessarily satisfy condition Γ.) By naturality it
follows that

(3.12)

Now, by Stoke's theorem

ί Jl(?Y*E)= ί Jl(VYXE)+ ί W X £ ) ( 3 1 3 )
O x R [ O , l ] x { o o } [ O , l ] x ] R

By (3.9) and (3.12) the left-hand side of (3.13) is j Jyo + Lθ; by (3.12) the first term on
R

the right-hand side is B{VE_ ^ VξJ; and by Proposition (3.10), the second term on
the right-hand side is just Q{VE). •

4 The Counterterm B

We conclude by giving some additional information about the local counterterm
B.

Proposition (4.1). [5] can be chosen so that Im [5] \dx\ is the ring of local invariants
generated by t r ^ and trm(#pE_ oo, V

E^ - V^ ^ DγE JVξ, - F £ J ) .

Here DVE is the covariant exterior derivative on Ω*(X, End£) determined by
VE_ o0. We view 3Fvκ ̂  and VE—VELa, as elements of the ring Ω*(7 x X, End£), and m
is a monomial in these quantities.) is a non-negative integer and 0t*g is taken in the
ring Ω*(X? End TX).

Proof. By the generalized Gilkey theorem of Appendix B of [7] it suffices to show
that the assignment

(g, P £

 005 Γ
£_ „ - P i ) ^ I m β ( Γ £ _ x , Γ^, g) (4.2)

defines a weight zero, regular, form-valued invariant of the metric g, the connection
VE-^, and the endomorphism valued one-form Γ £

x — P ^ . Naturality and
regularity follow from Proposition (3.2). As for the weight, if g is scaled by α, then d
is scaled by α~x, and it follows from (3.4) and (3.5) that J y o is unchanged. Thus by
(3.7), B is also unchanged. Finally ImJ5 defines a differential form valued invariant
(as opposed to just a measure) since under a change in orientation of X, imB
changes sign. In fact, up to bundle isomorphism, a change of orientation
interchanges S+ and S_ and hence amounts to interchanging d and <3f. Then, up to
cyclic permutation of operators, R(λ) in definition (3.5) gets replaced by its adjoint,
and thus ImJ J O gets replaced by — ImJV o. •

In a similar fashion we can prove

Proposition (4.3). [_Jyo] can be chosen so that Im[J y o ] \dx\ is a differential form of
degree (1, dimX) on Y x X which is in the ring of invariants generated by iτPΛ[ and

v%, VE-VE

yo, Dv%{VE-VE

yQ\ dΎVE, DvE{dγV%
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Now m(...) is a monomial in ί2*(YxX,EndE).
For dimX = 4, a tedious but straightforward calculation using the formulae of

Propositions (C.6) and (C.I7) of [7] shows that we can take

1 \dχ = ^ 3trz;
3! (2π)

1 _ (4.4)

where sίyo= VE—Vyo and v = dγV
E.

This can be written more suggestively as

I m [ J ~\\dx\ = 2π J {trΆ(&g)ch(έFdsδ/ds+dγ+sVE +(1-~s}v
E)}(i,i,dimX)^ (4-5)

0 se[o,i] y

where the subscript {l,l,dimX} indicates the grading in Ω*'* *([0,1] xYxX).
We have verified (4.5) for dimX = 2,4 and conjecture that (4.5) formula holds in
arbitrary dimensions.

When formula (4.5) holds, lmB(V_^, V^) vanishes. In fact, assuming (4.5), we
have

X ίe[O,l]

— 2% ί ί f A(0t\Q\\{£F E E E ) (4 6)
X ίe[O, 1] se[O, 1]

Now if μ is the orientation reversing map of [0,1] x [0,1] x X into itself which
interchanges the first two factors, then Jα= — Jμ*α for any differential form α on
[0,1] x [0,1] x X. Since the integrand in (4.6) is invariant under μ*9 its integral
must vanish.

These observations prove Proposition (1.5).

Acknowledgements. We wish to thank R. Bott, M. Goulian, G. Moore, P. Nelson, and C. Taubes
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