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Abstract. Non-local order parameters are constructed in the Z(2) Higgs model
to probe the existence or non-existence of charged states. The non-local field
corresponding to the Higgs field in a complete gauge fixing is found to be an
order parameter for the locally unobservable global gauge symmetry breaking.
This symmetry breakdown is shown to imply perfect screening for the bare
charge.

1. Introduction

In gauge theories with matter fields the characterization of the confinement-
deconfinement transition by means of an order parameter is a long-standing
problem. Its difficulty is related to the fact that the charged states, if they exist,
cannot be created from the vacuum locally, that is they do not belong to the
vacuum sector. To deal with other sectors it is therefore indispensable to study the
properties of the charged states. A proof of confinement would require even more,
namely that one should have information about "all" the possible sectors of the
theory. However this is quite an unusual task because there is no generally
accepted method to construct and deal with representations of the quantum field
algebra which are different from the vacuum representation. (But see [1-3] for an
axiomatic treatment of the charged sectors in QED.) In the path integral
formulation of the theory the problem manifests itself in the impossibility of
finding a gauge invariant functional the expectation value of which would give any
information about the charged states. Of course this does not exclude the
possibility that the limit of an appropriate sequence of expectation values yet
defines a charged state [4].

We propose a solution to these problems in the case of lattice regularized gauge
field theories. The notion of the functional integral will be generalized maintaining
its Gibbs state character in such a way that non-local fields with non-trivial
infrared asymptotics will make sense. On the example of the Z(2) Higgs model we
can show that the non-local fields - though not integrable in any path integral
measure - have all the physical properties to describe charged states. Our method
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also offers a framework to prove confinement because the non-local fields define a
class of representations of the quantum field algebra which can be handled by the
methods of classical statistical mechanics.

The charged sector of the Z(2) Higgs model was at first constructed by
Fredenhagen and Marcu [4]. There were proposals for an order parameter by
Mack and Meyer [5] and by Bricmont and Frόhlich [6]. That non-local fields
provide a method to analyse confinement and the structure of charged states in the
Z(2) Higgs model was announced in [7]. The present paper is but the detailed
version of [7]. Some steps toward constructing the charged sector in the (7(1)
Higgs model were made in [8].

Another important application of the non-local fields is the problem of global
gauge symmetry breaking. It is well known that there is an apparent contradiction
between the standard perturbative reasoning that the Higgs field must have a non-
zero expectation value in order for the Higgs mechanism to work and the non-
perturbative results related to Elitzur's theorem [9-11]. Certain non-local fields -
corresponding to the Higgs field in a complete gauge fixing - will be shown to serve
as order parameters for this symmetry breaking. However one must be careful
when interpreting this as an observable transition because of the essential non-
locality of the gauge. We have to emphasize also that we can single out a
distinguished order parameter neither for the confinement-deconfinement tran-
sition nor for the global gauge symmetry breaking. The point is rather the
construction of the class of fields which can "create" charges and/or can signal
symmetry breaking.

It is intuitively clear what is the field corresponding to a one electron state in
QED. Together with the bare electron one must create its Coulomb field too [12]:

xp(x)=Ψ(x)exv{ί$d3yE(γ)A(x°,y)}, (1.1)

where Ψ and A are the usual electron and photon fields respectively. E is a
parameter describing an electric field with charge density 3E(y) = <5(x —y); in
particular the Coulomb field. One expects that the Euclidean expectation value
(ψ(x)ψ(y)} is non-zero and that ψ(x) really describes a state Φ(ψ(xj) with finite
energy. The precise connection between classical functionals and states is provided
by the OS-construction [13-15]. This tells us that if reflection positivity is fulfilled
for the expectation value < > then any field F supported in the x° > 0 half spacetime
corresponds to a state Φ(F) with norm \\Φ(F)\\ =(θ(F)F}ί/2, where θ is the time
reflection combined with complex (Dirac) conjugation. The matrix elements of
local operators between Φ(ψ(x)) and Φ(ψ(y)) (x° > 0, j ; 0 > 0) can be obtained by
calculating (ψ( — x°,x)Bψ(y)}, where B is a local functional supported in the
region {x'elR4 |-x0<:x'0<}/0}. Disregarding such delicate problems as the
continuum limit these expectation values already define the one electron sector in
QED. The representation on the subspace spanned by the vectors Φ(Bψ(x)) (B is
local, x is fixed) is supposedly translation covariant but not "Lorentz" [that is
0(4)] covariant because of the necessary breaking of the boost symmetry [1], A
construction of the charged sector in this way presupposes, among others, the
solution of the following technical problem. If the expectation value <... > is a
functional integral Z " 1 $@A@ψ@ψQxp( — £)... then the field (1.1) has no mean-
ing. Even on the lattice ψ(x) is defined only on the zero measure set consisting of
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fields Aμ vanishing faster than r ~x at infinity. Suppose that one somehow managed
to extend ψ(x) to all configurations Aμ maintaining of course its local but not
global gauge invariance. Even then the sensitivity of ψ(x) to the configuration at
large distances - which is a consequence of Gauss' law - would contradict its
integrability. This is because the notion of the path integral is specialized for the
use of local fields which are insensitive to what is the configuration at far away
regions of spacetime. In spite of this mathematical flaw the expectation value < >
can be retained to be a Gibbs state on the (l.l)-type of fields too. The precise
statements for the Z(2) model can be found in Sect. 2.

On the lattice a generalization of (1.1) to arbitrary gauge groups and to
arbitrary spacetime dimension d can be given [16]:

)= lim Z-A\U{x0)) Π ί dg(γ)D^(g-1(x))
A-*Έd~^ yeΛ\dΛ G

g-W((x°,yM*<U))g(z))l| «"(*)• (i 2)
)\0\dΛ=ί

χ is a real character on the gauge group G, D is the matrix representation of G
according to which Ψ transforms and dg is the Haar measure. That is, M(x\U(x0))
is the magnetization (at x) in a (d — l)-dimensional nearest neighbour G-valued
spin system with boundary condition g = 1 and with frustrations given by the
actual value of the gauge field U on the x° = const hyperplane. We will see in Sect.
2.3 that it is always enough to define a field on those gauge configurations U which
satisfy U = 1 on all but a finite number of links. So (1.2) is well defined. Equation
(1.2) is locally gauge invariant but transforms according to the representation D
under the action of the global gauge group. If β is large enough then ψ(x)Φ0 in
dimensions larger than a critical dimension determined by G and D. This already
suggests that, for example, in d = 3 the compact U{\) Higgs model should confine
because there is no magnetization in the planar model in 2-dimensions. But in d = 4
it may have charged states. In the case of discrete gauge groups a similar argument
suggests that there should be charged states in dimensions d^3.

This argument, of course, is very vague for two reasons. At first there can be
charged states which are created by more sophisticated fields than (1.2). Secondly
even if ψa(x) is non-zero the dynamics may force (θ(ψa(x))ψ%x)y to vanish. In this
case no non-zero vector in the Hilbert space can be associated to the field \p\x). For
instance in the SU(2)4 gauge theory with a fundamental Higgs field (1.2) yields a
non-zero charged field because there is spontaneous magnetization in the O(4)3

spin model [17]. At the same time one expects that this model is confining.
Ending the discussion of (1.2) we mention that in the case of non-compact QED

when G is the additive group R, D is the representation /zelRi—•exp(zTz) and we
choose χ(h) = — h2/2, then (1.2) reduces to the lattice version of (1.1) up to a
constant.

Unfortunately the magnetization type ansatz (1.2) is not very practical for
analytical calculations (but may be useful in numerical simulations). One can
generalize Dirac's gauge invariant electron field (1.1) in another way which already
leads to our second topic - the spontaneous breakdown of the global gauge
symmetry. Notice that if E is the Coulomb field then ψ(x) of (1.1) is nothing but
Ψ(x) in the Coulomb gauge. So it is natural to introduce the following type of
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charged fields: ^ x ) = ^ ( m ^ x ) t (1.3)

where φ is the original bosonic or fermionic matter field and Ω( \ U) is the gauge
transformation which transforms the actual U into a specific gauge. Equation (1.3)
is locally gauge invariant but globally not just like (1.1) or (1.2). Besides the
possibility that (1.3) may define a charged state it is interesting to see whether
(ψa(x)} is non-zero in certain gauges or - if < > is globally gauge symmetric -
whether (ψ%x)ψβ(y)} fails to cluster, i.e. lim (xpΰ((x)ψβ(y)) = h2δaβ, h*0. This

happens e.g. in the 4-dimensional Stύckelberg model if the gauge is chosen to be
the Coulomb gauge [18]. Kennedy and King were able to demonstrate [19]
similar phenomenon in the Abelian Higgs model in the Landau gauge. (See also
[20,21].)

What are the consequences of such a symmetry breakdown in quantum
theory? At first we have to point out the essential non-locality of the functional
(1.3) which forbids interpreting <ip(x)> as the vacuum expectation value of any
local or quasi-local operator. This fact may be concealed in a gauge fixed
formalism but is explicitly seen in the gauge invariant formulation where the Higgs
field of any complete gauge fixing appears as a non-local field (1.3). There remains
the possibility that, nevertheless, the state Φ(ψa(x)) describes some new physical
situation. What we mean is that the expectation values of local operators in the
state Φ(ψa(x)) cannot be reproduced by any state from the vacuum sector. This
would mean that Φ(ψ<x(x)) has a non-zero component lying in a new sector. [This is
the expected behaviour when there is no symmetry breaking, but Φ(ψa{x)) is a
charged state.] However this possibility is also excluded by the following
argument. Because of the lack of clustering of the non-local fields in < > the limit
λ " 1 lim ΎnΦ(ψ<x(xj) = h~ί lim Φ(v?α(x + n6)) (T is the transfer matrix) exists and

n~* oo n —*• oo

defines a unit vector Φ^. The expectation values of local operators in Φ^ exactly
agree with those in the vacuum because of clustering between local fields and the
non-local ones:

where Λ(a) is the classical functional corresponding to the operator α. Consequent-
ly Φ^, though it seems to be charged, generates the chargeless vacuum state. This
means that the naive charge of Φ^ is completely screened by dynamical effects and
no observable transition can be associated to the breaking of the global gauge
symmetry. This picture is supported by the fact that non-local fields signal a
symmetry breaking transition even in the confinement-screening phase of the Z(2)
Higgs model where analyticity of the expectation values of all quasilocal fields is
well known [14, 22].

We emphasize however that the non-observability of the global gauge
symmetry breaking does not mean the non-observability of the Higgs mechanism
in general. In more complicated models with larger gauge groups and containing
more Higgs fields and/or fermions it may well happen that there exist local fields
which can exhibit the presence of a Higgs mechanism. In these models the form of
the gauge covariant local fields corresponding to the one particle states may
change with the couplings and therefore yield an observable phase transition [11].
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Summarizing from the point of view of non-local charged fields, three
possibilities can be distinguished [18]:« > is globally and locally gauge invariant
and pure when restricted to the quasilocal fields.)

I. (Absolute confinement) Any charged field F corresponds to the zero norm
state: <0(F)F> = O.

II. (Confinement by perfect screening) There exist charged fields F with
(θ(F)F} + 0, but for all such F the clustering breaks down:
lim (θ(F)TnF) = h2>0.

«-> oo

III. (Existence of "free" charges) There exists a charged field F such that
(Θ(F)F) + O and lim (θ(F)TnF) = 0. Furthermore the physical charge measured

n->oo

in finite but arbitrary large volumes gives different results in the state Φ(F) and in
the vacuum Φ(l).

One can add to III the conditions of finite energy, translation covariance and
even a kind of gauge independence of the sector of Φ(F) if F is of type (1.3). These
will be discussed in detail for the Z(2) model.

As we have already mentioned the difference between I and II is not observable.
In spite of this to distinguish them is conceptually interesting because it gives a
natural definition of screening. (The screening itself is not observable because it
relates an observable quantity, the physical charge, to an unobservable one, the
bare charge.)

For the Z(2) model with action S=-βΣU(dp)-aΣUV)φ(dS) (U(S)9
P *

φ(x)eZ{2\ α>0, β>0) the regions corresponding to the cases I, II, and III are
depicted in Fig. 1.

The paper is organized as follows. In Sect. 2 we introduce the notion of the non-
local fields in the Z(2) Higgs model and explain why the concept of functional
integration has to be generalized. In Sect. 3 the consequences of such a generalized
classical system to the quantum theory are outlined. We show how inequivalent
representations of the quantum field algebra can emerge if non-local fields are
included in the construction of the OS-Hilbert space. The remaining part of the

tαnhot

0 tαπh/3

Fig. 1. The qualitative phase diagram of the Z(2) Higgs model. Locally observable (solid lines) and
unobservable (dashed line) transitions. The shaded regions are controlled by a cluster expansion
for the non-local fields too
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paper takes advantage of the several cluster expansions available in the Z(2) Higgs
model. In Sect. 4 we prove confinement for a large class of non-local fields when
both α and β are small. The construction of the charged sector in the small α large β
region is carried out in Sect. 5. We obtain a charged sector which is gauge
independent and translation covariant without containing any translation
invariant vector. Therefore no irreducible subrepresentation exists in this sector
which would be unitarily equivalent to the vacuum representation. We also show
that this charged representation contains, if not equal to, the representation
constructed by Fredenhagen and Marcu. In Sect. 6 we prove that there is
spontaneous symmetry breaking in the non-local classical system (s/(ψ), s(α, β))
consisting of the non-local classical field algebra s/(ψ) obtained from the
quasilocal algebra by adjoining to it the fields ψ of the form (1.3) and from the
Gibbs states s(α, β) constructed via different boundary conditions but with fixed
couplings α and β. At last we show that this phase transition has no observable
consequences in the local quantum system.

2. The Emergence of Non-Local Fields

2.1. Some Basic Definitions

Consider a d-dimensional cubic lattice Έd and let £ denote the set of its simplexes:
sites, links, plaquettes, ... etc. A simplex ξ e£ can be regarded as a vector ξ e\TLd.
The set of p-dimensional simplexes is denoted by Yf p = 0,1,..., d. The finite subsets
of ΣP, respectively of £ will be called p-chains, respectively chains. The set of
p-chains Cp equipped with the symmetric difference operation A forms an Abelian
group. One can introduce the usual boundary and coboundary operations d and d as

dH= A dξeC*'1, dξ ί

ξeH

dH= A dξeCp+1, dξ {
ξeH

with the property d2 = d2 = O. The distance between simplexes is defined as

We will frequently use the notion of open and closed subsets of £. Λ C £ is called
open (closed) if ξeΛ implies that dξcΛ (respectively dξcΛ). An open or closed
subset A is always a subcomplex of £, that is the boundary and coboundary
operations restricted to A

δΛH = And{AnH), dΛH = And(AnH),

obey (dΛ)2 = (dΛ)2 = 0. The smallest closed set A containing a A C X will be called the
closure of A.

We introduce the following notations for special subsets of £:

Σ(>ί)» ΣP(^ίX are defined analogously. Furthermore let Σ+=Σ(> 0)>
Σ-=Σ(<0),Σo=Σ(0),Σ([ίi,ί2])=Σ(^i)^Σ(^2)

For any set ΛcΣ> Λp = Λr\ΣP, Λt=ΛnΣ(t) and Λf =



Global Gauge Symmetry Breaking and Confinement Problem 325

The solutions of the equation dH = 0, H e Cp are called p-cycles while that of
dH = Φ,HeCp are called p-cocycles. A p-cycle (p-cocycle) H can always be written
as H = dK(H = dK) in our case.

Two simplexes ξ,ηeΣ are called connected (co-connected) if (ξudξ)n(ηudη)
Φ0 (respectively (ξ\jdξ)n(ηvdη)ή=Φ)9 and this relation is denoted by ξvη
(respectively ξ A η). These relations extend in a natural way to a relation HvK and
HAK on chains H,K. An important property is that each connected (co-
connected) component of a p-cycle (p-cocycle) is again a p-cycle (p-cocycle).

We introduce the "bilinear form" (H;K) = {-\)lHnKl H,KeCp

9 where |Jί|
denotes the cardinality of the set H. Then one has the relation (H;dK) = (dH;K).

The group theoretical dual Cp of Cp consists of homomorphysms σ: CP^U(1)
called p-cochains. σeCp can be naturally identified with a Z(2)-valued function on
Σ'by

σ(H)= Πσ(9, HeCp.
ξeH

The boundary and coboundary operations on Cp are defined as dσ(H) = σ(dH) and
dσ(H) = σ(dH) respectively. They obey d2 = d2 = ί. The support of a cochain σ is

In a Z(2) gauge-matter system the configuration space is # = Co x Cx consisting
of Z(2)-valued functions σ = (<p, (7) on Σ ° U Σ 1 (φ e Co, [/ e CJ. The topology on #
is the pointwise convergence topology with basis of neighbourhoods

τT(σ, ̂ ) = {σ' e ̂ |σ'(ξ) = σ(ξ) ξ e yί} (2.1)

with some finite subset yl of Σ In this topology V becomes a compact Haussdorf
space.

The local gauge transformation on # is a continuous transformation defined by

where Ω e Co has a finite support. The global gauge transformation is

which is continuous too.
The fields are bounded complex functions F: ^->C and are equipped with the

sup-norm topology. The local and global gauge transformations on the fields
defined by

are isometries.
The spacetime support or sensitivity region Sr F of a field i7 is defined as the

smallest subset A c X which satisfies: σ fΛ = σ' |\Λ => F(σ) = F(σ') for any σ, σ' e (6.
The algebra containing all fields with SrF C A is denoted by $t(A). s/0 = u {stf(Λ)\A
C Σ, Ml < oo} is called the (classical) local field algebra and its closure J^ = ̂ 0 the
quasilocal algebra. It is easy to see that si coincides with the C*-algebra of
continuous complex functions on (6. The closed *-subalgebra s/[nw of si consisting
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of locally gauge invariant fields plays the role of observables in the classical system.
In this paper we will deal with only gauge invariant fields so, in order to economize
the notation, let si (A), si ^ ^ denote already the locally gauge invariant part of
what they were above.

2.2. No-Go Theorems for Constructing Charged Fields
in the Functional Integral

The fields "creating" charge in the functional integral must be locally gauge
invariant on the one hand and must be charged, i.e. must obey CF= — F, on the
other hand. These two requirements, however, have severe consequences on the
mathematical properties of the field F, in particular it forbids F to be smooth.
What is more the existence of such a field is incompatible with the notion of the
functional integral in an infinite volume system. At first we examine the continuity
properties of the charged fields.

Theorem 2.1. Let F: #-><C be locally gauge invariant and charged, i.e. CF = — F.
Then F can be continuous only at those points σeΉ where it vanishes. In particular,
each quasilocal field Fesi obeys CF = F.

The proof is very elementary and left to the reader. We mention only that the
fact that all F e si have trivial charge expresses some kind of a superselection rule
on the classical level. It shows also that there is no observable order parameter for
the global gauge symmetry breaking.

Having been reconciled to nowhere continuity one still can search charged
fields among the Borel measurable functions on <g. The following theorem,
however, ruins such hopes.

Theorem 2.2. Let (<&, s) be the measurable space with the σ-algebra s generated by
the open sets i^(σ,A) σe^, AcΣ, |Λ|<αo (defined in (2Λ)) as the algebra of
measurable sets. Let F:^-»(C be measurable and locally gauge invariant. Suppose
that CF= —F. Then F vanishes almost everywhere.

Remark. It is this measurable space (#, s) on which one usually defines the a priori
and the physical measures. We formulated the theorem for the Z(2) model but the
generalization to arbitrary gauge groups is fairly trivial.

Proof. It is enough to prove the statement for real F. Let ί?+ = F~1((0, oo)),
^_ =iϊ f-1((-oo,0)) and «?

0 = F"1({0}). The following implications hold:

) = CF(σ)=-F(σ)e(-oo,0) => σ c e ^ _ ,

) = ΩF(σ) = F(σ)e(0,oo) =

Now suppose that τΓ(σ,Λ)C«V Then σe%+ and σCΩe%+ if SuppΩjA. On the
other hand σΩ e %+, therefore σΩC = (σΩ)c e # _, which is a contradiction. Therefore
no set of the form if(σ,Λ) is contained in ^ + and in ^_ by symmetry. If F is
measurable, then ̂ o u ^ _ es. Since the unique covering of ^ o u ^ _ with sets from
the ring generated by # and the f (σ,Λί)'s is ^ D ^ Q U ^ . we have for any finite
measure μ on s that μ(^ o u^_) = μ(^) and analogously μ((£ou

(£+) = μ((£). This
proves that μ(%+) = μ(%_) = 0. •
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For illustration let us mention the charged field φ(x)U(Jx), where J^C^ 1 a n d
dJx = {χ] which is locally gauge invariant but globally not. This field can be
defined only on the zero measure set consisting of configurations (φ, U) with
SuppC/ finite. Even on this subset of #, φ(x)U(Jx) is nowhere continuous.

2.3. Non-Local Fields and the Extended Gίbbs States

The way out of the problems encountered above we are going to propose is very
simple. What caused the trouble was our insistence on distinguishing configu-
rations which are different only at very large distances. Pushing to extremes we can
say that the problem is the contradiction between the Gauss law and the topology
of Ή suggested by locality. However locality is a requirement on observables and
not on the charged fields. So we will abandon the concept that a field is a function
on (€. From now on a field will mean the following.

Definition 2.3. A field F is a bounded locally gauge invariant function F:^'->(C,
where <€' is the restricted configuration space consisting of configurations
σ = (φ, U)e%> such that |Suppί/| < oo and either |Suppφ| < oo or |Supp( — φ)\ < oo.
The topology on <€' is the one inherited from c€.

Remark. <€' is invariant under the group of local and global gauge transformations.
At the same time, up to infinitely supported gauge transformations, it is the space
of configurations which have finite actions relative to the action of (1,1). φ(x) U(JX)
is now a well defined field.

The subspace of continuous fields on <€' is homeomorphic to j / by continuous
extension and they will be identified in the sequel. The same remark holds for $ί(A)
and ja/0. The fields which are not in ja/ will be referred to as non-local fields.

Our next task is to define the averaging procedure on the fields, that is the
extended Gibbs states. This extension does not mean more than that the boundary
condition now affects the whole complement Ac of the finite volume A. Let A be a
finite open subset in £ and define for any field F the following Gibbs states:

4 (2.2)

(2.3)

(2-4)

where

and
s » = - α Σ υ{t)Ψ{dί)-β Σ u(δP).

The freezing of U to be 1 at least on the timelike links of dA expresses the
physisical situation that there are external charges in the wall dA which can screen
the electric flux created by a charged field. Without this the propagator of the
charged fields to be introduced in Sect. 5 would be identically zero.
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These Gibbs states are of course continuous positive linear functional with
norm 1, i.e. states, on the C*-algebra of bounded functions on <€'. Therefore, if
restricted to si, the finite volume Gibbs states and their thermodynamical limits
too (which exist on si as a consequence of Griffiths inequalities) can be represented
as an integral with respect to a regular Borel probability measure. If the
thermodynamical limit < > = lim < }Λ exists on a space larger than si and

including charged fields then such an integral representation for < ) does not exist
any more because of Theorem (2.2). Throughout the paper the thermodynamical
limit A-ϊΣ will mean the pointwise convergence of the characteristic function of A
to that of Σ

Since our primary interest is on the existence of charges it seems unnecessary to
consider fields which are non-local in the Higgs field φ too. The largest space of
fields we are going to study concretely (Sect. 4) is the C*-algebra $ of fields
quasilocal in φ. More precisely J* is the closure in the supnorm of 3S0 the algebra of
fields F such that ISrFn^Γ0! < oo. Especially & contains the string φ(x)U(Jx) and
also the Higgs field in any gauge where the gauge condition contains only the l/'s.

3. Representations of the Quantum Field Algebra
on the OS-Hilbert Space

The aim of this section is to show that the extended non-local classical system after
quantization is capable of describing various inequivalent representations of the
quantum field algebra. The strategy we are going to outline is applicable not only
to the Z(2) Higgs model but to a large class of gauge matter systems as well.

Let Si9 be the Banach space of all (non-local) fields on which the given Gibbs
state < > exists. (The superscript g refers to the couplings and boundary conditions
being implicit in < >.) The Hubert space 2tf9 constructed a la Osterwalder and
Seiler [14] from Si9 carries a natural representation of the quantum field algebra
which, for certain g's, may be reducible. Certain sectors, perhaps all sectors, oiffl9

can be characterized by the common asymptotic behaviour of the classical fields
they are built from. Let us see what are the assumptions which lead to this picture.

Assumption 1. The finite volume Gibbs states < }Λ are constructed from an action
SΛ describing a gauge matter system with nearest neighbour interaction and is
supposed to be reflection positive to all x° = const e\Έ hyperplanes: If / is a
(locally gauge invariant) field with Sr/cχ(>x°) and θ(x°)A = A, then
((θ(x°)f)f)Λ^0. Here θ(x°) is the reflection to the x°-hyperplane multiplied by
complex (Dirac) conjugation in the case of bosons (respectively fermions). We use
the convention of ref. [14] that the lattice is embedded into ΊSLd as Zd + ̂ 0.

Assumption 2. 3β9 is closed under the transformations listed below and ( > is
symmetric (respectively conjugate symmetric) under them: Spacetime translations
Jμ μ = 0,1, ...9d— 1, rotations Rμvl^μ<v^d— 1 leaving the time axis invariant,
θ = 0(0) and possibly some global internal symmetries of SΛ. All elements of 389 are
locally gauge invariant. Let SP± = {Fe J^SrFc£±}> then &>-.&%. C^β. Let si be
the quasilocal algebra, then
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It is easy to see that the above assumptions admit the following construction.
Define a positive semidefinite bilinear form on 3S\ as: (Bl9 B2) = <0(51)52>.Then
#e9 = M\fJf, where JΓ = {Ne@9+\(N,N) = 0}, is a Hubert space of locally gauge
invariant states. The Euclidean dynamics is given by the transfer matrix T. T is
defined on the dense set $\jJf as

) = Φ(T{B)) T = T 0 , (3.1)

where Φ(B) = B + Jί, B e 8$%. From reflection positivity to the x° = 1/2 hyperplane
T is positive. Due to translation invariance of < ) T is symmetric and a repeated
application of Schwartz inequality gives [23] that T ̂  i , so it can be extended to
the whole ffi9 continuously. One can similarly define the space translation unitary
group {U(x)|xGZd"1} as

U(x)Φ(β) = Φ(T(0'x)(£)), (3.2)
d-l

where Tx= Π T*μ. If C is an internal global symmetry then the corresponding

θ p e r a t θ r i S " ° CΦ(B) = Φ(C(B)). (3.3)

The state Ω = Φ(1) is invariant under all of these operations and is called the
vacuum.

Assumption 3. T&9

+ is dense in 3&\ in the topology provided by the physical norm:
^2

This assumption not only ensures the finiteness of energy (Γ has a densely
defined inverse and no zero eigenvalue) but also admits a natural definition of the
quantum field algebra.

For all Aesί{Λ) (ΛίcΣ+,|Λ|<oo) we define at first an operator a(A) on the
dense set T" J^+ as

a(A)Φ(B) = Φ(AB) (3.4)

if n is so large that Σ(>n)nΛ = φ. Equation (3.4) is a unique definition because
B \-^AB maps Tnέ%9

+ r\Jί into Jί. In order that we could extend a(A) to the whole
Jfβ we need boundedness of a(A) which will follow from

Assumption 4. Every operator α(v4) if A e s/(Λ)9 AcΣ+9\Λ\<oo can be expressed in
terms of the canonical operators ά(ξ), ξ e V_(Λ)n£ (1/2) and τ(η\ η e\f_(A)n^ (0),
where

τ(η)B= lim eS

σ(ξ) denotes the, if necessary, compactified variables living on the simplex ξ and
τ(ξ) runs over the elements of the transitive transformation group acting on the
space of σ(ξ) and leaving the a priori measure at ξ invariant. If σ(ξ) is a Grassmann
variable then τ(ξ) is simply the Grassmannian derivation δ/δσ(ξ). V'-(A) is the
"causal" past of A9 i.e.

V_(Λ)= U V_(0,
ξeΛ

Σ
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It is easy to see that σ(ξ) and τ(ξ) leave Jί invariant. The corresponding
operators on St%jJί will be denoted by the same letters.

This Euclidean "causality" and Markov property of the time evolution can be
verified for models with nearest neighbour interaction if the action is not
degenerate with respect to the algebra s$. That is, if SΛ cannot be expressed in
terms of fields from s£'(ζ) (ξ e A) with a non-trivial subalgebra srf'(ζ) ofjtf({ξ}). The
proof is based on Schwinger-Dyson equations. One sequentially cancels the
dependence of A from variables at constant time hyperplanes - going backward in
time - by adding to A zero norm vectors of the form [D(ξ) — l~]Ar. Here D(ξ) is the
Schwinger-Dyson operator,

D(ξ)=\imeSΛτ(ξ)e-SΛ. (3.5)

If ξ°^l then [_D(ξ)-\-\:@\-*Jf.
After this the boundedness of a(A) follows from boundedness of σ(ξ) and τ(ξ) on

the one-simplex-Hilbert space spanned by functions Φ of σ(ξ) with the scalar
product

η ± = η ± 2 6? v\ is a timelike link or plaquette and S[η] is the temporal gauge form of

In this way we have shown that U(A) = {a(A)\A e <stf{A)}, A C Σ + is a linear space
of bounded operators on 34?9. The adjoint of aeU(A) can be naturally identified
with an element of U(ΘA). Then Uo = u{U(A)\AcΣ, \A\ < oo} is an algebra of gauge
invariant operators. As a matter of fact iϊa1 = α ^ ) e U(A λ) and α2 = a(A2) e U(A2),
then using Schwinger-Dyson equations again α2 can be rewritten as
α2 = α2 = a(Af

2) e U(A2\ where A'2 is already separated from A1 by a hyperplane
° and lies in the ξ°>t halfspace. Then aλa2 = axa2 = aiA^)eU(A1

The uniform closure U9 of Uo i
n ^{^g) is then the quantum field algebra we are

interested in. Ug can be regarded also as a representation of the C*-algebra U
defined in [4]. In the sequel we will identify IF with U through this natural
representation.

The mapping Ae^0\-^a(A)GU0 which produces a non-Abelian algebra Uo

from the abelian one s/0 yields the correspondence between time ordered products
and operators. These operators automatically obey the canonical commutation
relations and the Heisenberg equation of motion.

Turning to the problem of sectors in J-f9, let us consider a special case when the
subspace

(3.6)

is invariant not only under IF but the spacetime translations U(x), X G Z ^ " 1 , T",
n ̂  0 as well. In (3.6) ψ denotes an element of $$9

+ and the above requirement means
that φ, though being a non-local field, still has some localization property (cf.
[24]): Any translate of ψ can be arbitrarily approximated in the physical norm ||| |||
by a field of the form ψA9 where A is strictly local. This localization property is
partly a classical notion and Jf (ψ) will be called a classical sector. It is intuitively
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clear that strong enough clustering of quasilocal fields in the presence of θ(ψ)ψ
may lead to irreducibility of U\^(xp\ but so far we could not prove such a
statement.

We mention that in the above scheme the vacuum sector is the classical sector
J4?(l) and U9\J^(1) is always cyclic with cyclic vector Ω.

For the study of the problem of existence of charged states and the problem of
gauge symmetry breaking the interesting case is when ψ is the matter field in a
perfect gauge fixing.

In the Z(2) Higgs model we will find all the above assumptions to hold instead
of Si9 for an algebra jtf(ψ) C Si9 generated by si and the gauge fixed form ψ(x) x e Έd

of the Higgs field φ(x). The less trivial Assumption 3 and 4 will follow from
Theorem 5.11 and from the lemma and proposition below:

Lemma 3.1. Let τ(ξ) denote the transformation which flips σ(ξ) and let D(ξ) be
defined by (3.5). Let McΣ°(n + ί/2), LcΣ\n + ί/2) neZ be finite and B be an
arbitrary bounded functional, then

i) D(MuL)τ(MuL) Π e2pϋm Π
pe(dL)' έ(dM

_ ΓT e-2cLU(ί)φ(d£) T-T e-2βU(dp)β

efeM-iθ peL-ίθ

where τ{H)= Π τ(ft D{H) = Π D(ξ) and (H)f = HnΣ(^n +1/2) for
ξeH ξeH

ii) Analogue expression with (H)' = HnΣ(^n +1/2) and M — \0, L—\Q re-
placed by M + ̂ 0, L+^0 respectively.

Proof Elementary algebra. •

Proposition 3.2. Let ψ(x)e&9

+ if x°>0, ψ(x) = θψ{θx) if x°<0 and
Txψ(y) = ψ(x + y) if x°^0, y°>0. Let s#(ψ) be the subspace spanned by
{Aψ(x)\A E stf0, x e Σ0}. Suppose that {Φ(ψ(x)A)\Aejtf0 + } is dense in
je{ψ) = {Φ(B)\Be^(ψ) + } for any xeΣ°+, i.e. tf{ψ) = tf(\p(x)).

Then J^(ψ) is an invariant subspace of U, T and U(x) x e ί ' 1 . Ts/(yj)+ is
HI |||-dense in *stf(ψ)+ and all matrix elements {φ(Bγ\ aφ(B2)) of αelί(^) with a
double cone Λ = \l_(ξ)r\θ\l_(ξ) can be expressed as

where A e S/(AΓΛΣ ([ — hi!))- Let us denote by A(a) the functional so obtained. Then
especially

A(ψ)) = e -
A{τ{p)) = e-2^\ peΣ2(0).

Proof The invariance of J-f (\p) under U, T and U(x) is trivial. To see that Ts/(ψ)+ is
dense, let Bes#{ψ)+ and approximate it with Aψ(x) x°^3/2 Ae<stf0 + . Using the
fact that A can be written as a finite sum

= Σ Σ γie-2^)(f>^γ\e-2βUidp)AUP (3.7)
LcΣι(ί) PCΣ2(1) ίeL peP
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with S r ^ P c £ ( ^ 3 / 2 ) one can apply Lemma 3.1 i) with the replacement n = l,
M = L+^Q,L=P + ̂ 0,B = ALPψ(x) to show that each term of (3.7) multiplied by
ψ(x) is equal (modJ^) to a functional with sensitivity region lying in £(^3/2).

To prove the last statement let α = α(^40)^40 e si(A). Since Ίnj/(ψ)+ is dense in
s£{ψ)+ too, it is sufficient to consider the case when BίeTns/(ψ)+ ί = ί,2, n^.ξ°.
Now we can apply Lemma 3.1 i) and ii) repeatedly to construct a finite sequence
A0,Al9...,Ar such that (θ{Bί)(Ai-Ai+1)B2} = 0 and A(a) = Ar

D

4. Confinement in the Small α-Small ^-Region

Using the high temperature expansion we will prove that it is impossible to
construct charged states in this region even taking into account all non-local fields
of J* defined at the end of Sect. 2. Before giving the proof let us consider another
important aspect of the theory - the absence of symmetry breaking for small α.

Theorem 4.1. // (2d-1) tanhα<(1 - tanhα)2d" \ then for allFe^ with CF=-F,

Proof. At first we prove the statement for an F of the form F = φ(x)f(U),

Σ e-WU)f(U) Σ (tanhα)'L'δ(dΛLA{x})U(L)
UeCί(Λ) LCΛ1

(tanhα)lJl</(ί/)l/(J) Π [l + tanhαt/^φίδ/)]-1)^, (4.1)
({}) ίΛ1

where C1(A) = {Ue CJSupp UcA}, SG is the pure gauge part of the action and we
introduced the notation,

ConnΛ(M) = {JcAί\dΛJ = M; J'CJ and J' is connected => dfφφ}.

Remember that A is open, therefore dΛή=d. Now using the simple estimate
\{JeConnΛ({x})\\J\ = n}\S2d(2d-l)n~\ and that it is zero if n<dist(x,dA\ one
obtains the bound

oo

+ |^ Σ \
n = dist(jc,dΛ) 1 — ({

if ^ = (2rf-l)tanha(l-tanha) 1 " 2 i i <l. This yields tanhα<0.111 (d = 3) and
tanhα < 0.079(^ = 4).

For fields of the form

211/11 (l-tanhα)-2V^22<ί+1 ||/|| \ (4.3)

F = φ(x) Π e-
2Λml)φmf(U)9 KcΎ\\K\<oo, (4.4)

we have

=(φ(x)f(U))ϊ(K) I Π e-
\

where < >^ (K) is the Gibbs state obtained from < >^ by changing the sign of the α
coupling on the links of K. Since the bound (4.3) was obtained by an estimate
uniform in the sign of α it descends to < XJ"(K) too and we arrive at the inequality

| S 22d +' | |/ | |e 2 α '* '(l - q ) ~ ' qdist{x>dΛ).
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Taking finite linear combinations of (4.4) with different finite K's:

for all such fields and consequently for all charged fields of M by continuity. •

Theorem 4.2. LetFe^+be charged, I e.CF=- F. Then (Θ(F)F) = 0 if a and β are
sufficiently small.

Proof. In the same way as in the proof of Theorem 4.1 one can reduce the problem
to prove (θ(Fί)F2} = 0 when Ft = φ(xdfAU) with ft bounded and Sr/j C Σ + i = 1,2.
To estimate (β(Fί)F2}Λ> expand exp( — SΛ) in powers of tanhα and exp( — SΛo) in
powers of tanhβ, then integrate over U(^)/ΈAQ and φ(x)(xeA°):

Σ (tanh/0 |p|

CΛI

x Σ (t^nha)lLlδ(dΛLA{x2,θxί})δ(dΛ°PA(LnA0))U(dΛPΛL).
LΛ1Σ
LCΛ1

Decompose PuLinto connected components and let J = JίκjJ2cΛί\jΛl be the
union of components connected to {x2,θxί}. Then we can write

<θ(Fi)F2>l = Σ (tanhα)lJ1l (taήhfiW/θifJ&UidWAJ1)
JeConnΛ({x2,ΘXί}) \

- lx [] [l+tanhαί/^φ^)]" 1 f] [l+tanhjίC7(3p)]
ίeΛ1 peAl
tΊJ pVJ

where now Conn^(M) denotes the set of those </CΣ luΣo which satisfy: 1) each
connected component of J is connected to M, 2) dΛJx = M and 3) dΛ°J2 = J1 nΛ0.

Now we prove that if J e Connyl(M) and \M+1, \M _ | are odd, then J v dΛ, and
therefore \J\^dist(M,dΛ).

Suppose that J2 is not connected to dΛ. Then |3"loJ2| = |J 1

Measuring the flux of J 1 through the coboundary of Λ+ one finds

Therefore (dΛ^ + nJ1^^ and JvdA as promised.
We estimate the number of links and plaquettes connected to J from above as

2d + (2d- ί)\Jx\ + 4|J2 | and \J1\+(4d-5)\J2\ respectively. The number of J's from
ConnΛ({x, y}) and having a fixed length can be estimated from above by the
number of all connected sets JcΛιuA2 having that length and connected to x,
which in turn is estimated in the usual way using the solution of the Kόnigsberg
bridge problem. These considerations yield the following bound:

\<θ(F1)F2}t\ύ Σ ll/ilMIΛII^ίl-tanhα)-2^"!1^2

(4.5)

where

qi=(6d-4)2tanhα(l -tanhα) 1 ~2d{\-
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If q± < 1 and q2 < 1 the sum in (4.5) converges and goes to zero with A -»]£. In d = 3
dimensions this corresponds to tanhα<4.9x 10~3, tanhβ<3.9 x 10~3 and in
d = 4 to tanhα<2.4xlθ~3, tanhj8<1.6 x 10~3.

5. Construction of Charged States

5.1. λ-Regular Gauges

A gauge, that is a complete gauge fixing, is a mapping K : Z2 -» C*, where Z2 is the set
of 2-cocycles P CΣ2 with |P| < oo. K is such that d ° K is the identity on Z2. Once such
a gauge is given one can construct the locally gauge invariant field

(5.1)

where Ω(dU) e Co is the gauge transformation which transforms U into its κ>gauge
form

V(S)=U(ί)ldΩ(dUy](S)9 SuppF=κ(Suppdl/).

So ψ(x) is nothing but φ(x) in the gauge K.
If Supp(7 = L, P = dL=Suppd£/, then one can write

[_ψ(x)-] (φ, U) = φ(x) U(JX) V(JX) = φ(x)(L; Jx)(κ(P); Jx), (5.2)

where Jx is an arbitrary (infinite) 1-chain s.t. dJx = {x}. The arbitrariness of Jx in
(5.2) expresses the fact that the factor V(JX) realizes an ideal smearing of the naive
string φ(x)U(Jx).

In the sequel we will restrict our attention to those gauges K which have certain
regularity properties. These properties will be useful both in the large β and in the
large α cluster expansions.

Definition 5.ί. Let λ: R + ->IR+ be a polynomial with non-negative coefficients then
a gauge TC Z 2 - ^ 1 is called A-regular if the following two properties are satisfied:

i) κ(P) = κ(Pί)Aκ(P2)A...Aκ(Pn), PeZ2

if P = P1AP2A ...APn is the decomposition of P into connected components,

ii) dist(/,P)^([P|) VΛΞ/C(P), P e Z 2 .

A-regularity of K is already enough to control the thermodynamical limit,
analyticity and exponential clustering of the correlation functions (ψ(x)ψ(y)} as
we will see in the next paragraph. However this admits a good quantum
interpretation only if K obeys a further requirement:

Definition 5.2. A gauge K : Z2->C1 is called Markovian if for any two 2-cocycle P
and P' and for any non-negative integers t and t\

[PnΣ (> ί)] + ί'O = F n Σ (> t + f) implies

[κ(P)nΣ (> ί)] + ί'6 = κ(J")nΣ (> ί + 0, and

[ P n Σ ( < - ί ) ] - ί Ό - P / n χ ( < - ί - ί / ) implies

[/c(P)nΣ (< - ί)] - ί'O = ιc(F)nΣ (< - ί- 0 .
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In words this means that κ(P)nΣ (> t) (respectively κ(P)nYj (<—£)) is uniquely
determined by the geometrical figure of P n £ ( > ί ) (respectively P n £ ( < — t)).

In addition to the above properties one can require K to possess nearly all
spacetime symmetries of the lattice. Rotations changing the time axis of course are
not allowed.

Definition 5.3. A gauge κ:Z2^Cγ is called maximally covariant if
i) it is Markovian,

ii) g o K = K o g, where g stands for θ,Tμμ = l,...,d—ί a,ndRμv ί^μ<v^d—ί.

That /l-regular maximally covariant gauges exist is shown in the Appendix
constructively.

Proposition 5.4. If K is a maximally covariant gauge and ψ is defined by Eq. (5.2), then

Txψ(y) = ψ(x + y) sgnx0 = sgny0

θψ(x) = ψ(θx)

The proof is a simple consequence of the above definitions and is left to the
reader.

5.2. Correlation Functions of Non-Local Fields

The small α-large β-region of the free charge phase possesses a convergent cluster
expansion as it was shown by Marat and Miracle-Sole [25]. Their proof
demonstrates that the expectation value of a quasilocal field can be expressed as
the sum of its perturbation series, each term being an analytic function of α and
e~2β and converging uniformly in a neighbourhood of α = 0, /? = oo. We will see
that the same is true for expectation values of quasilocal fields multiplied by any
number of ψ(x)% provided ψ is derived from a /l-regular gauge. This result can be
interpreted also as a proof of convergence of the cluster expansion for the
correlation functions in a Λ-regular gauge - where the interaction may be fairly
non-local due to the complete gauge fixing.

We will adapt the finite volume Gibbs state for the use of Marat-Miracle-Sole
clusters by slightly modifying the boundary condition. All the proofs could be
carried out for the Gibbs state (2.4) too (at the price of encountering some technical
complication with clusters ending on the boundary) and would yield the same
result as far as the infinite volume limit is concerned. Our new boundary condition
is of a mixed type in the sense that the gauge field is fixed to be 1 outside the open set
A but the matter field is free outside it. It is important also that we allow the matter
field to propagate on dA so let A = AudA be the closure of A and define

<~ >Λ=^-!dφ Σ e~s^uK.., (5.3)

where C^A) was defined after (4.1) and dφ is the infinite volume a priori measure
for φ.
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Theorem 5.5. Let ψ(x) be constructed as in (5.1) from a λ-regular gauge. Then there
exists a real number b0 depending on λ and the dimension d such that in the region
max{|tanhα|, \e~2β\}<e~bo the thermodynamical limit

(ψ(x)ψ(y)y= Urn (ψ(x)ψ(y)yΛ

of the finite volume Gibbs state (5.3) exists, it is an analytic function of tanhα and
e~2β and for positive values of a and β obeys the bounds

\ < (ψ{x)ψ{y)y

with some positive constants Cί9 C2, mu m2 depending only on λ and d.

Before proceeding to the proof of Theorem 5.5 let us introduce some notations
and definitions. The winding number of a 2-cocycle P and a 1-cycle L is

v(P9L) = (κ(P);L). (5.4)

In fact v is independent of the gauge K. Sometimes we will use (5.4) also when L is an
arbitrary 1-chain in which case of course K is fixed. We can write in this way that
ψ(x) = φ(x)U(Jx)v(P,Jxl where P = SuppdU.

Let P~P(P, P'CΣ2) denote the situation that P and P are not co-connected
and L ^ L ' ^ L ' C ^ 1 ) the situation that L and L are not connected. We write
L~P(LeZu PeZ2) if v(P,L)=l. The relation ~ is called compatibility.

A Marat-Miracle-Sole cluster y is a collection of co-connected 2-cocycles
P 1 ? . . . ,P Π and connected 1-cycles L l 5 ...,LW such that Pi~Pj ί=¥j, Lt~Lj i+j and
the graph with vertex set {Pl9..., Pn, Ll9..., Lm} and with a bond drawn between L{

and Pj whenever P^Lt is connected. The set of all clusters y is denoted by SP. The
family of clusters belonging to the open set A is defined as

0>Λ = {ye0>\Pey => PcΛ2,Ley => LcΛ1}.

Let Z denote either a connected 1-cycle L or a co-connected 2-cocycle P. We
say that y eSP and / e & are compatible and write y~y' \SZ~Z' for all Zey and

Z'eγ'. The length of a cluster |y |= £ |Z|. The activity of y is defined as
Zeγ

z(y)= Π (tanhα) |L| x J] e~2βlPl x Π Π v(P9L).
Ley Peγ Ley Peγ

Obviously \z(y)\<e~bolyl if α and β are in the domain max{|tanhα|, \e~2β\}<e~bo.

Proof of Theorem 5.5. If A already contains x and y then

=^- Σ (tanhα)'Ll £ e- 2 ^v(P,LzlJ>(P,J x y ) , (5.5)
£Λ LCΛ1 PCΛ2

dL = {x,y} dP = Φ

where - because of the arbitrariness of Jx in the expression (5.2) - Jxy = JxAJy is an
arbitrary 1-chain with boundary d Jxy = [x, y). So we may choose different JXyS for
each value of L in (5.5). Let Jxy be the component of L connected to {x,y}. Then

Σ (tanha)'"!4£, (5 6)
( { } ) £(Ψ)
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where ConnΛ(M) was defined in (4.2) and we introduced the notation

zΛ(J)= Σ I\z(y\J), (5.7)
Γe<$Λ γeΓ

where <3 A is the set of compatible cluster families Γ = {γί9..., ym}, yt e g?Λ, yt ~ γj i ή=j.
z(y\J) denotes a modified activity

= z(γ)u(y\J)9 {^Λ

)

Peγ Ley

With the usual trick one obtains:

Ύ (Ί\ 1 r\ 1

Σ Φ)["(y|J)-i]ft({y}), (5.9)
z,Λ{ψ) o aτ Ό γe&Λ

where Z(t) and ρt(Γ) are the partition function and correlation function
respectively of a system with activity zt(y) = tz(y\J)-\-(l—ήz(y):

Σ Π # z(ί)= Σ Π^ω
Λ

Notice that |zf(y)|^|z(y)|<β"ftoIy|Vί6[0,l]. Now if we introduce a norm
indexed by a parameter bu

| |ρ| |= sup
^\{0

— (J ^ , ||Γ|| = Σ lyh o n Λe space of ρ's one can apply standard methods [26]
A yeΓ J

to prove that if

} < l , (5.10)

then

l> Γ l l 4 ) . (5.11)

Here Ko is an upper bound on the norm of the Kirkwood-Salsburg operator K(t)
which has the matrix elements

[X(ί)](Γ,Γ') = <5(Γ€^)δ(Γ'e^)«5(Γc[Γ])(-l)l rl Π Φ),
γeΓ'

where [Γ'] = {ye0>\y*Γ}. F in (5.10) denotes a function F:(c0, oo)->R+ which
occurs in the estimate

Σ e-bM^F(b)\γ'\9 b>c0. (5.12)
γeSP

( d\
F(b) together with its derivatives - — F(b) n = 1,2,... is monotone decreasing.

V dbj
The concrete form of F will not be specified here. (We refer the reader to the
Appendix of [4] for more details.)
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Substituting (5.11) into (5.9) one obtains the estimate

7 (T) p~4bi
(5.13)

where 0>(J) = {γe0>\u(γ\J)Φl}.
From the definition of u(y\J) and from ^-regularity of K it follows that u(y\J) can

be different from 1 only if dist(γ9J)^λ(\γ\). Thus

00

where Cj(r) = |{peΣ2 |dist(p,J)^r}|^|J|( )(2r)d and Λ'(fc) is the number of

clusters y with length |y| = k and such that y ̂  {3/?} for a fixed plaquette p. f(b) is by
definition

00

f(b)= Σ e~2 n^(2w),
« = 2

and therefore can be estimated using (5.12) as f(b)^4F(b). Because —d/db can be
applied arbitrary many times to both sides of this inequality one obtains that

Σ e-bM^R(b)\J\9 (5.14)
y

where

is monotone decreasing.
Substituting (5.14) into (5.13) and the latter into (5.6), one obtains

) \ J \

\<ψ(x)φ(y)>Λ\£ Σ <J|tanhα|exp| 2^—R(bo-b1)

JeConnΛ({x,y}) I |_ 1 — A o

-I ι v i

•I " 2(1 -q)

where

(5 1 5 )

2e~4bί

\nq<]n(2d-ί)-bo+——R(bo-b1). (5.16)
1 —iv 0

In the second inequality of (5.15) we used the bound %(2d — l)N on the number of
paths connecting x and y and having length \J\~N. The uniform estimate (5.15)
establishes the analyticity of (ψ(x)ψ(y)} and the exponential upper bound if we
can show that q<l and KO<1 can be satisfied in a region
max{|tanhα|,\e~2β\}<e~bo. The exponential lower bound is simply
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For demonstrating q < 1 substitute the value (5.10) of Ko into (5.16). Then q < 1
is equivalent to the inequality

bo-ln(2d-l)
mbo-bl)

and after this Ko < 1 is automatic. Remember that both R and F are monotone
decreasing positive functions. Let b2 be in the domain of F (therefore of R too) and
take for b1 the larger one among the solutions of the equation,

4*! = 2R{b2)

b2 + b1-hi(2d-l)

Then bo = b2 + bί defines a region where the exponential bounds and analyticity
hold. So we can choose the smallest one among those for b0. •

The quantum interpretation of the above theorem is the following:

Corollary 5.6. // in addition to λ-regularity the gauge K is Markovian then

ΓΦ(ψ(x)) = Φ(ψ(x + nθ)) and (Φ(ψ(x)), ΓΦ(xp(x))) = (ιp(θx)ιp{x + nθ)}.

Therefore in the region defined by Theorem 5.5, the energy of the state Φ(ψ(x)) is
finite and positive.

The proof is trivial taking into account Definition 5.2 and Theorem 5.5.
The next two lemmas deal with clustering properties of φ's and of quasilocal

fields in the presence of φ's.

Lemma 5.7. Let A, Be J / 0 and ψ(x) be what was in Theorem 5.5. Then in the region
of the couplings determined in Theorem 5.5 there exist an M > 0 independent of A
and B such that

KAψ(x)Ta(Bψ(y))}\S(

Proof The family [AL= f] g - 2 « ^ ) ^ L c ^ i } | L | < ̂ j of fields forms a basis for

IK*>Λ, (5.17)

where < >yl(L) is the Gibbs state with α replaced by — α on the links of L and Ka is
the translate of K by the lattice vector a. Since the exponential upper bound of
Theorem 5.5 was uniform in the phase of tanhα the first factor in the RHS of (5.17)
decays exponentially while the second is bounded uniformly in a. Therefore the
choice M = m2 yields the required bound. •

Lemma 5.8. Let A, B, ψ(x) and the couplings be the same as in Lemma 5.7. Then

Jim {Aψ(x)ψ(y)Ta(B)} = (Aψ(x)ψ(y)} <£>.

Proof It is enough to verify the statement for A = AL and B = AKL and K being
finite sets of links,

<ALψ(x)ψ(y)Aκ«}Λ= Σ Π t a n h α / f ' ^ ^ g , (5.18)
JeConn^ ({*, y}) ίeJ ZΛ(J, L) ZΛ(ψ, (/))
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where α̂  = — α if / e LΔKa and α̂  = α otherwise. ZΛ(J, LAKa) is the same as ZΛ(J) in
(5.7) except that α is replaced by α,. Since the sum in the RHS of (5.18) is uniformly
convergent both in A and in a we can take the A -> oo and the α-> oo limit term by
term. Now because

lim Π t a n h ^ = (tanhα) | J | (- l) | L n J |

and

r ZA(J9LAKη /A χ

lim hm = <^ x>,

the lemma is proven. •

The discussion of the consequences of these lemmas for the quantum theory is
postponed until Sect. 5.4 when translation covariance of the classical sector of a
single ψ(x) will be at our disposal.

5.3. Translation Covariance and Gauge Independence

Our aim in this paragraph is to demonstrate that the classical sector
Jίf(ψ(x)) = ψ(x)s/+ is independent of x (x° >0) and also of the gauge K taking into
account the whole class of A-regular gauges which are convergent at the given
coupling. This means that the single new physical entity which can emerge from the
use of the non-local fields ψ is a translation invariant and gauge independent one:
presumably the asymptotics of a Z(2)-electric field with total charge — 1.

The validity of the following lemmas are not restricted to the large /?, small α
region. They apply as well to the large α cluster expansion discussed in Sect. 6. Let
0>

A denote the set of clusters in the volume A, SP = (J 8PA and ~ be the
A

compatibility relation. Let the activity z: ̂ ->(C be such that the Mayer-Montroll
type equation ρΛ = 1 + KΛρΛ for the correlation functions

=^- Σ Z(Π, Γe<$Λ\{φ}, z(Γ)=γ\z(y)
Γ ~Γ

have a uniformly convergent solution in the region \z(γ)\<e~bM and

like in (5.11). We suppose also that the clusters y e SP can be uniquely characterized
by, and will be identified with, certain finite subsets of £.

Lemma 5.9. Let <g=[jgΛ and F:^->C be a functional bounded by 1 and
multiplicative: Λ

F(Π= Π F(Ύ), Γe$.

Suppose that there exists a finite subset Ξ of Σ such that
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where 0>

f(Ξ) = {ye0>\dist(y,Ξ)^f(\y\)}. The function / : R + - * I R + is monotone
increasing and supposed to obey

if (xoeΣ° is fixed).
| y | > r

yVdxo

Then there exists a sequence {Fr\r = 1,2, ...}c«δ/0 such that

lim <|F-Fr |
2> = 0.

r-+oo

Proof Let 0>f(Ξ, r) = {ye 0>f(Ξ)\ \y\ ^ r}. We define

Let Λr = {ξeΣ|dist(£,Ξ)^/(r) + r}, then γe&>j(Ξ,r) implies that yCΛlr

Suppose that Γ and Γ' are such that s(Γ)nΛr = s(Γ')nΛr, where s(Γ) =
u{y|y G Γ} is the "shadow" of Γ on Σ. In this case each 7 e Γn^f(Ξ, r) must be an
element of Γ too and vice versa. That is Γn0>

f(Ξ,r) = Γ'n0>

f(Ξ,r), consequently
Fr(Γ) = Fr(Γ). This proves that the sensitivity region of Fr is finite, namely SrF r

CΛr

Let F(Γ) - Fr(Γ) 4= 0. Then Fn0>f{Ξ) Φ Γn0>f(Ξ, r) therefore 3yeΓs.t\y\>r and
d i ( ) ^ / ( | y | ) . The set of these γ's is denoted by ^(r).

Now we make the following estimation:

Π 2\(r)

A

(5.19)

where < >£> = < ) , | z . w and w(y) = z(y)\Fr(y)\2.
Since |w(y)|^|z(y)| the Gibbs state < >^} enjoys the same convergence

properties as the original one:

(5.20)^ C ί e x p Γ
1 |_y

Now the lemma is proven by virtue of (5.19), (5.20) and the simple estimate

- ( 6 °- & l ) | y Uθ. D

Lemma 5.10. Change the conditions of Lemma 5.9 in two places. Replace the
definition of 0>f(Ξ) by

*φ and
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and add the requirement that SrF C H. H denotes a closed half space in Σ and yH = y
nH. In this case the conclusion is that there exists a sequence {Fr\r= 1,2,...}
such that

r = l,2>... and lim < | F - F r | 2 > = 0.
r^oo

Proof Let ^ ( Ξ , r) = {ye 0>f(Ξ)\\yu\ ^ r} and Ar = {ξ e H\dist(ξ, Ξ) ̂  f(r) + r}. Then
yeέ?f(Ξ,r) implies that 0ΦyHcAr, i.e. ynH = ynAr.

For each y e 3P define Γ(γ) as the family of clusters in yHvf(yH), where r is the
reflection to the (d— l)-dimensional hyperplane dH. Clearly Γ(yi)^Π72) if Ύι ~Ίi-
Because SrFcH we have

F(Γ) = F(Γ), Γ= \JΓ(γ).
γeΓ

Now let Γ,Γ'e<g be such that s(Γ)nΛr = s(Γ)nΛr. Then s ί f J n y l ^
too.

and vice versa. Thus Γn0>

f(Ξ,r) = Γ'n&f(Ξ,r\ and we obtain that the (multi-
plicative) function

is strictly local with sensitivity region

To prove lim < | F - F r |
2 > = 0 take a Γ e f such that F(Γ)-Fr(Γ) + 0. Then

r->oo

F(Γ) - Fr(Γ) Φ 0 too and therefore 3y e Γ with |yH| > r and dist(yH, S) ^ f{\γH\). Since
there exists a cluster γ e Γ such that y is a cluster of Γ(γ), this y satisfies \γ\ > r and

). Hence formulae (5.19) and (5.20) are applicable. •

Theorem 5.11. Let K and K' be λ-regular and Markovίan gauges, ψ and ψ' the
corresponding non-local fields. Let x, yeΣ+> Aestfo+ be arbitrary. Then there
exists a sequence {Ar\r = ί,2, . . . } c ^ 0 + s u c n

lim
r-+ao

whenever the couplings are either in the region determined in Theorem 5.5 or in the
one determined in Theorem 6.2.

Proof. Since the bilinear form (Bί,B2)G = (BίB2y is positive semidefinite

|| Φ(Arψ(x)) ~ Φ(Aψ'(y)) | | 2 = φ(Arψ(x) ~ AψW, Arψ(x) - Aψ'(y))G

Let us take the ansatz Ar = Aφ(x)U(Jxy)φ(y)A'r with some J x yCΣ+>
Since

we are ready if we can show that F = ψ(x)φ(x)U(Jxy)φ(y)ψf(y) satisfies the
conditions of Lemma 5.10 with H = Σ +

F depends only on P = Supp dU, namely

F(P) = (κ(P); Jxy)(κ(P)Aκ'(P); Jy), (5.21)
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where JyCΣ+> SJy = {y}. So F is seemingly multiplicative, | F | ^ 1 and SrFc£+.
Now let P be a co-connected 2-cocycle and suppose that F(P)= — 1. Then either
the first or the second factor in (5.21) is — 1. In both cases P+ Φ0. In the first case,
because of the Markov property, κ(P)nJxy + Φ, where P = P+ u0P+ . Therefore

P+) = d i s t ^ P) ύ λ{\P\) = λ(2 \P+\). (5.22)

In the second case consider the unique finite BcΣ° which solves the equation
dB = κ(P) Δ κ'(P). Then one finds that y e B. Because of Λ-regularity of K and κ\ any
link /edB has a distance from P not larger than λ(\P\). Thus

), ίe(dB) +

from the Markov property. So one has for any poeP+ that the set

contains dB+ and therefore y too. Consequently

(5.23)

Comparing (5.22) and (5.23) we obtain that F(P) + 1 implies that P + + 0 and
dist(S,P+)^/(|P+ |), where Ξ = Jxyκj{y} and f(r) = r + λ(2r). So we can apply
Lemma 5.10 substituting (5.21) into F and the output Fres/0 + into A'r. •

This theorem establishes the promised translation covariance and gauge
independence of the sector Jή?(ψ(x)). As a matter of fact the closure of ψ(x)jtf0 +

does not depend any more on x e Σ + a n ^ o n the gauge K: whatever /l-regular and
Markovian gauge K is, provided it is countrolled by the given cluster expansion.
The transfer matrix and the unitary space translations therefore leave the subspace
Jίf(ψ(xj) invariant even if the gauge is not maximally covariant.

Remark. The proof of Theorem 5.11 shows that the approximation of ψ(x)ψ(y) by
local fields is possible in an even stronger sense. Namely in the topology defined by
the norm ||2J||G = <|2?|2>1/2. Hence the algebra srf(\p) generated by ψ(x) xeΣ°
by the quasilocal fields is in reality a one element extension of sί\

some kind of a "square root" of the quasilocal algebra. In the quantum theory we
have to divide sί(\p) into s/+(ψ) and j/-(ψ), therefore ψ(x)ψ(y) x°<0, y° >0 has a
significance in this case. But multiple products Axp(xγ)... ψ{xn) ft ̂  3, Aes/ carry
no new information.

5.4. The Charged Sector

Theorem 5.12. Let ψ(x) be constructed from a Markovian and λ-regular gauge. If
the couplings are in the region determined in Theorem 5.5 then the subspace Jf(ψ(x))
of the big Hubert space 2tfg has the following properties.

i) The charge operator C restricted to J^(ψ(x)) is — 1 .
ii) J4f(ψ(x)) is invariant under the action of the quantum field algebra It, the

transfer matrix T and the space translations U(x).
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iii) All vector states ΦeJ4?(ψ) = 3^(xp(x)) ΦΦO have finite energy, i.e.
(Φ,TΦ)>0. There exists an energy gap M>0 separating 3tf(\p) from the vacuum

-Mn if \\Φ\\=ί.

iv) There exists no translation invariant vector in
v) At large distances the sector J^(ψ) is indistinguishable from the vacuum sector

for local measurements:

Jim (Φ,U(x)αU(-x)Φ) = (ftαβ)VΦeJf(ψ), ||Φ|| = 1, aeU.

Proof, i) is trivial, ii) follows from Proposition 3.2 and Theorem 5.11. iii): The finite
energy property follows from the fact that by virtue of Proposition 3.2 again
T(ψs/0 +) is dense in ψsί0 + , therefore T has a densely defined inverse. To prove the
existence of an energy gap use Lemma 5.7 and the Schwartz inequality m times:

(Φ(Aψ(x)lΎnΦ(Aψ(x)))^\\Φ(Aψ(x)ψ + 2-i + - + 2 - ^ 1

->\\Φ(Aψ(x))\\2e-Mn.

Now the statement for all Φ e J f (ψ) follows from continuity, iv): Applying Lemma
5.7 to space translations, one obtains for all p e [ — π, π]**" 1 that

at first for the dense set Φ e ψ(x) stf0 + then by continuity for all Φ e 3Ίf(ψ). So there is
no eigenvector of U(x) in J f (ψ). v) follows from Lemma 5.8 in the special case when
Bes^0 is such that S r £ c £ ( [ — 2ΛΊ) because every α e U 0 can be represented by
such a B (Proposition 3.2). The extension to α e l l and to all Φ is
straightforward. •

Remark. The statement under v) that J f (ψ) is locally indistinguishable from the
vacuum does not exclude the possibility that measuring the electric flux through
an infinitely far removed (d — 2)-sphere in space gives different results in J^(ψ) and
in J f (1). To decide whether this really happens is desirable anyway because until
now we have seen only for the charge operator C that it is different in the two
sectors. However C was defined in terms of C, the global gauge transformation,
therefore it is a purely algebraic and very non-local quantity and is not expected to
be measurable.

The physically measurable charge must be determined by local measurements.
Let us define for Φ e 2tf9 the quantity

Γϊ( A \rf\\

:Γ 0 ,K|<oo), (5.24)
| |Φ | | 2 /o"lo (Ω,Q(Λ0)Ω) v " υ — υ ' ' " υ ι ~ "

where Q(A0)= f] τ{£) is the charge operator of the finite volume Λ = ,
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The numerator and the denominator of (5.24) separately would go to zero. This
is a property of the multiplicative and compact charge that the charge density
fluctuations in a neighbourhood of the surface dA completely destroy the
information about the charge in the middle of Λ. However because of Theorem
5.12 v) these fluctuations are common in the two sectors so one expects (5.24) to be
a sensible quantity.

Theorem 5.13. For Φ in the dense subspace ψ(x)s/0+ +Jf Q [ φ ] = — 1, while if

Proof. The action of Q(Λ0) is represented by the classical field AL where L=AQ. Let
Φ = Φ(ψ(x)Λκ) and Φ'=Φ{ψ{x)Aκ) with some K, X 'CΣ+, then

(5.25)

where < > (L) denotes the Gibbs state with a changed sign in the matter coupling α
on the links of L. The cluster expansion analogous to (5.6) is

<ψ(θx)ψ{x)AθKΔK.y= Σ (^nhoc)^LAΘKAKf;J)e-^ΘKΔK^L\(526)
JeConn ({JC, y})

where #XJ, K\L) is the free energy excess produced by the replacement [cf. (5.8)]

in the system with activity zL(y) = z(y) γ\ (L; L'). The series (5.26) is absolutely and
L'eγ

uniformly convergent in L. On the other hand for a given J if L is large enough \J
nL\ must be odd. Similarly the cluster expansion for #"(</, ΘKΔKf\L) cut off at a
maximal length is identical with the cut off cluster expansion of «F(J, ΘKΔK'\% if L
is large enough because zL(y) = z(y) in that case. Therefore

lim <ψ{θx)y>{x)AΘKAκ'XL)= ~<ψ(θx)ψ{x)AΘKAκ>> = - ( * , * ' ) (5-27)
L^ Σo

Now taking finite linear combinations of (5.27) Q[Φ(Aψ(x))] = — 1 follows. After
this the proof of Q[Φ(^4)] = 1 is straightforward. •

To establish connection between our construction and that of Fredenhagen
and Marcu let us mention the following theorem without proof:

Theorem 5.14. Let Φn=Φ(φ(x)U(Jxx+n6)Jn(φ(x)ψ(x))), where x = (1/2,0) and
Jχx+nδίS the straight line connecting x and x + nO. Then the following limit converges
in norm for sufficiently small α and large β:

Φ

Φ= lim - J - .

Hence Φ is a charged vectorstate from J^(ψ). Furthermore

(Φ,aΦ) = ω(a), aeU,

where ω is the charged state defined by Fredenhagen and Marcu.
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6. The Problem of Global Gauge Symmetry Breaking

6Λ. Symmetry Breaking in the Classical System

In this section we return to our original definition (2.2-4) of the Gibbs state and will
study the expectation values of the non-local field ψ(x) when α is large and β is
arbitrary.

The cluster expansion in this region is obtained by going to the unitary gauge
φ(x) = 1 and expanding in powers oϊe~2a. The clusters will be co-connected sets of
links L with activity

z(L) = e-2^e-2β^dL\ (6.1)

and compatibility ~ will mean the opposite of co-connectedness.
The advantageous property of ψ(x) is that it factorizes in terms of these clusters

too. If Supp(7 = L = L 1 u . . . u L π , Lt~Lj z'Φy then

ψ(x)= Π {U J^KidL^J^ Π

Σ

ZΛ LCΛ1

= ̂ r Σ Uz(LML)=ψ^-. (6.2)
LeΓ

The remarkable property of u is that if one considers L if dLφ0 as the image of
P = dL under a (multiplicative in the sense of Definition 5.1 i)) gauge κf then

nίT\ ί 1 ' AΏ\ ( i\HχεB) ίέi Ί\
UyJ^i) — \Jχ, UΛJ)— (^—1) , V̂  *v

where B C X° is the unique finite solution of the equation

(κ'(P)Aκ(P) if P + 0

[L if P = 0.

Now we could argue like in the proof of Theorem 5.11 that u(L)= —1 implies
dist(x,P)^ constλ(\P\) if K' were 1-regular. The lack of A-regularity of K' is,
however, compensated by the fact that now the activity z(L) will supress the
contribution from large co-surfaces L=κ'(dL). So one conjectures that <(ψ(x)} +

will be non-zero if α is large enough.

Lemma 6.1. Let BcΣ° be finite and xeB. Then

Proof. If dist(x, dB)>R^d then the cube C = {y e£°|\yμ-xμ\ ^R/dμ = 0,...,d-1}
lies inside B. Since each straight line starting from a site of one of the faces of dC and
perpendicular to it must intersect dB, it follows that

ί2R
\dB\>2d(---l

If R is chosen to be the RHS of Lemma 6.1, then dist(x, dB)>R leads to
contradiction. If dist{x, dB)<d the statement is trivial. •
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Theorem 6.2. There exists a region \e~2<χ\<e~bo, Reβ^O of the coupling constant
plane where the correlation functions of the Higgs field in any λ-regular gauge
satisfy:

i) ( ipM) 1 and (ψ(x)ψ(y)} are analytic functions of e~2a and e~2β.
On the physical sheet α^O, β^O:

iii) lim [<v(x)ψ(y)> - <y>(x)> <vO0>] = h2,
y-*co

iv) lim [<ψ(x)ψ(y)} ± - <φ(x)> ± <ψ(y)} ±] = 0.
y->oo

Proof Using (6.2) we write

l n ^ = f i i Σ z(L)[u(L)-l]ρι({L}), (6.4)

where ρt(Γ) for Γ a set of mutually compatible clusters satisfies the bound

^i(imι-i)

\Qt(Π\ύ 1 y if |z(L)|<6"b^l (6.5)

like in (5.11), where now

and we have to find the smallest b0 for which there exists a b1 e R with Ko < 1. The
function F comes from an estimate on the number Jf(n) of clusters L with length
\L\ = n and incompatible with an elementary cluster {£}:

Thus
Γ e

Substituting (6.5) into (6.4) one finds

ln¥li^Γ-^ Σ e-^-b^. (6.6)
^ Λ ( V > ) l ~ K 0 Le0>

u(L) = - 1

So to verify analyticity and positiveness of <φ(x)> + it is enough to show that the
sum in (6.6) converges for all Λ-regular gauges.

If u(L)= — 1 then there are two possibilities:
1) dL=φ. Then dB=L and from Lemma 6.1

2 |_\2d,

2) <*LΦ0. Then dB = LΔκ{dL). For /eκ(ί/L)dist(/,dL)^A(|dL|), thus

For ieh dist(^,L) = 0. Consequently



348 K. Szlachanyi

Let ίoeL, then the "ball"

contains dB and therefore x too. Hence

In both cases dist(x,L)^ const \L\k according to our definition of Λ-regularity.
The sum in (6.6) therefore converges for all bo — b1>0. The minimal b0 for which
KO<1 can be satisfied with some bγ is

This corresponds to the value α = 3.27 (d = 3) and α = 3.68 (d = 4).
We turn to the proof of iv).

where N o = {0,1,...} so X is a multiindex on the set of clusters. a(X) is a
combinatorical factor [23], X\=\\X{L)\, zx = f] z(L)X{L\ ... etc. a™, ux, uy are

L L

obtained from the u of (6.3) substituting JXΔ Jy, Jx, Jy respectively. Since there exists
[23] a constant K such that \a{X)/X\\^expK\\X\\, where \\X\\ = £X(L)|L|, one
finds that

y α P 0 -2α||XH

^const Σ n*'l 2 α _ 7 ) ; (6.7)

where ̂  = {Le 0*\ux{L) = — 1}. For sufficiently large α the RHS of (6.7) goes to zero
when j;->oo and iv) is proven. Then iii) follows from (ψ(x)ψ(y)} = (ψ(x)ψ(y)} +

and from <φ(x)> = 0. D

The above theorem proves that there exist gauges in the Z(2) model in which
the Higgs field acquires a non-zero expectation value if the Higgs coupling α is
large (cf. Theorem 4.1). Furthermore if the Gibbs states are considered on the
classical algebra <s/(ψ) generated by $i and the φ(x)'s (x e £°) then the global gauge
symmetry C is spontaneously broken for large α because there exist pure states,
namely < > + and < > ~ which are not C-symmetric. We must emphasize, however,
that we can speak about symmetry breaking only if we enlarge the classical
quasilocal algebra si to become a non-local field algebra s/(ψ). So this result is not
in contradiction with the analyticity proven by Osterwalder and Seiler [14] for all
α if β is small.
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6.2. No Symmetry Breaking in the Quantum System

The cluster expansion discussed previously allows us to use Theorem
5.11 which in turn proves that the sector 3ti?(ψ(x)) is an invariant subspace of the
quasilocal algebra U as well as of the spacetime translations T, U(x). Moreover the
sector 3tf?(ψ) = 3tf?(ψ(x)) has C-charge — 1 . At this point two questions emerge:

1) Does the failure of clustering in < > imply that there exist vectors in JΊf(ψ)
degenerated with the vacuum?

2) If yes, can a local quantum measurement distinguish a "charged" vacuum
from a chargeless one?

The answer is affirmative to the first question but denying to the second:

Theorem 6.3. // α is large enough then the sequence Φ(Tnψ(x))/\\Φ(ψ(x))\\ n = 1,2,...
converges in norm and defines a unit vector Φ^ e ^{ψ) "which is space and time
translation invariant. However for any observable a e U

Moreover Q[Φoo] = l while CΦo0= —Φ^.

Proof.

\\Φ{Tnxp(x))-Φ(Tmψ(x))\\2 = (ψ{θx - nθ)ψ(x + nθ)> + (ψ(θx - mθ)ψ(x + mθ)>

- (ψ(θx - nθ)ψ(x + mθ)> - (ψ{θx - mθ)ψ(x + nθ)}

when rc,m-χx) and lim \\Φ(Tnψ(x))\\=h + 0 both because of the iii) part of
n~* oo

Theorem 6.2. This proves the existence of Φ^. To prove (Φ^, aΦOD) = (Ω, αί2)αell
we have only to show that

lim (ψ(θx-nO)U(K)φ{dK)ψ(x + nθ)} = h\U(K)φ(dK)} (6.8)
H > 0 0

for KcΣ1 finite. The cluster expansion for the LHS of (6.8) differs from that of
(ψ(θx — nθ)ψ(x + nθ)} in that the activities are changed according to z(L)
-+z(L)(L;K). Therefore the clustering (6.8) can be proven in the usual way.

To see Q[Φoo] = 1 it is enough to refer to the previous statement; since Q(Λ0) is
a special local operator, therefore (Φ^, Q{ΛO)Φ^)I{Ω, Q(ΛO)Ω) = 1. •

Summarizing the breaking of the global gauge symmetry in the non-local
classical system is unobservable in the corresponding local quantum theory:
U\J^(ψ) is unitarily equivalent to UfJ'f(l). Now new sector was found in this
region by means of Λ-regular gauges.

Though not an observable one, there is still a difference between the small
α-small β and the large α regions of the confinement phase. This is the presence of
states with C = — 1 for large α which are absent for small α. The difference between
C and Q can be interpreted as screening. In this respect C plays the role of a bare
charge.
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Appendix

At first we construct a /l-regular Markovian gauge K. Let us divide Σ into the
following disjoint subcomplexes: Σ= ...UΞ_1UΞOKJΞ1U... . Here
Ξn = Σ(ίn-in])iϊn=ί,2^-,Ξn = ΘΞ_nifn=-U-2,...3indΞ0 = Σ(0).Any co-
connected 2-cocycle P can be decomposed accordingly as
P(t-)AP(t- + ί)A...ΔP(t+); P{n)cΞn, ί_, ί + eZ, ί_^ί+. Define L = κ(P) recur-
sively as follows: If t+ > 0 then let

Since P' = PzWL t^_1/2 = P(ί_)zl . . . z l P ( ί + - 2 ) J P X ί + - 1 ) , where P ' ( ί+-1)
= P(ί + — 1) zl (P t + — 0) C Ξt + _ ! one can repeat this procedure for P instead of P, so
defining L ί + _ 3 / 2 . . . etc. until when all plaquettes in Pn£(>max{0,£_}) are
cancelled by dL+ where L + = L ί + _ 1 / 2 z l . . . z l L m a x { 0 } ί _ } + 1 / 2 . If ί _ < 0 then one
constructs L_ =L t _ + 1/2zl ...z1Lmin{0 ί + } _ 1 / 2 analogously. Eventually one arrives
to that

P = dL

where PcΣW and

Using the fact that ]Γ (t) is isomorphic to the (d — l)-dimensional complex Σ and P
becomes a 1-cocycle in Σ there exists a unique finite L c ^ ^ t ) which obeys dL = P.
So let κ(P) = L=L_ALAL+.

This gauge ?c is Markovian and 0-symmetric by construction. In order to verify
A-regularity with as small λ as possible, consider the following general lemma.

Lemma A. // Z is a connected p-cycle l^p^d'' — 1 on the d'-dimensional lattice and
is such that the smallest closed d'-rectangle R containing Z has size sί x s2 x ... x sd>
with sμ^l μ = ί,...,d\ then for all ξeR

Proof

IC\\\ = p d ]

where Z7 is the projection of Z onto the p-dimensional coordinate hyperplane

indexed by / and |Z7 | = Σ ^-i(ζ) Z7 is
 a n integer valued connected p-chain with

ξeΣ

mod 2 vanishing boundary. Since the smallest rectangle containing Z7 has size

μel

From this and from dist(^, Z) ̂  ^ Σ sμ(ξ e R) the statement follows. •
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Corollary A. // Z is embedded in a d^d! dimensional lattice then

Taking the dual of this statement for p = d — 2 we obtain - since κ(P) was

contained in the smallest open rectangle containing P - that

So the gauge K is /l-regular with λ(r)= Γ + 2 .

For the construction of a maximally covariant /l-regular gauge K from TC let us

choose a representing element PΓ from each orbit Γc$ of the transformation

group (G,<ί), where G is the group generated by Tμ μ=l,...,d—ί and Rμv

l^μ<v^d— 1 and <? is the set of co-connected 2-cocycles. Then for P = gPΓ

(g e G) let κ(P) = gκ(PΓ). The multiplicative extension of K to all 2-cocycles is then

the required gauge.
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