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Abstract. It is shown that a geodesically complete, asymptotically Euclidean,
static perfect fluid space-time satisfying the time-like convergence condition and
having a connected fluid region is diffeomorphic to U3 x M.

Introduction

In this paper we prove that a geodesically complete, asymptotically Euclidean, static
perfect fluid space-time with connected fluid region and satisfying the time-like
convergence condition is diffeomorphic to U3 x 1R. It is believed that such a space-
time would be spherically symmetric at least for physically reasonable conditions on
the density function p and the pressure function p.

The above assertion (that the space-time is diffeomorphic to U3 x U) has been
claimed in [LB] provided the Poincare conjecture is valid. In fact a theorem due to
Gannon [G] says that such a space-time is diffeomorphic to N x R, where N is a
simply connected complete 3-manifold. The asymptotic conditions then imply that
N has the same homotopy as U3 ([LB]; results in [G] and [LB] do not require that
space-time be static). Thus Gannon's result reduced the question to proving the non-
existence of fake 3-cells in N (in particular it would give the full result if the 3
dimensional Poincare conjecture were known to be true). Proving the non-existence
of fake 3-cells in an appropriate class of asymptotically Euclidean Riemannian 3-
manifolds is thus the main point of this paper. Here we note that a theorem due to
Schoen and Yau (Theorem 3 in [SY]) says that a complete, noncompact 3-manifold
with positive Ricci curvature is diffeomorphic to U3.

The main arguments needed are given in Sect. 2 and Sect. 3 of the paper. In Sect. 2
we point out that the theorem of Meeks, Simon and Yau (Theorem 1 in [MSY])
applied in the present context, gives (in case there are fake 3-cells) a totally geodesic
embedded sphere not intersecting the "fluid region," where p + p > 0. The argument
to show this is similar to an argument of Frankel and Galloway [FG] (who also used
the existence theorem of [MSY]), but here we need an additional approximation
argument to make the appropriate stability statement.

In Sect. 3 we use an argument (inspired partly by an argument of Robinson [R]
from his proof of spherical symmetry of the static vacuum solution) to prove that
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there cannot exist a totally geodesic embedded sphere which does not intersect the
fluid region. Combined with the result of Sect. 2, this completes the proof of the main
theorem for Riemannian 3-manifolds.

In Sect. 4 we complete the proof of the main result for static perfect fluid space-
time. The result differs from the similar result in the paper of Frankel and Galloway
in that, in our case we may allow p + p to vanish outside a connected region.

In Sect. 5 we consider various generalizations of the main theorem. In particular,
the topology of suitable space-like hypersurfaces in a certain class of space-times,
not necessarily static or perfect fluid, is investigated.

1. Notation and Main Theorem

With regards to tensor notation we use the following conventions.
Italic capital indices A, B, C,... run from 0 to 3, Greek indices α, β, γ,... run from

1 to 3 and Italic indices α, b, c,... run from 2 to 3.
In local co-ordinates, for a metric gaβ the Ricci curvature is Ric(g)aP =

Rμ

aμβ, where Raβμv is the Riemann curvature tensor. For a vector field Zβ we have
Ra

βμvZ
β = Zα.v/i — Za.μv. Here denotes covariant differentiation in the g metric.

Let Σ be a smooth surface embedded in the smooth three dimensional
Riemannian manifold (N,g). (By smooth we shall mean C00.) In local coordinates ||
indicates covariant differentiation with respect to the induced connection on Σ. For
a tensor T belonging to the tensor bundle of Σ we have

yα... _ ψβ... Ua i.δ Lσ π n y

where T is a local extension of T in a neighbourhood of Σ in N, and where
haβ = gaβ — nanβ9 h<x

β = gCίσhσβ on Σ, na being the unit normal form on Σ. Clearly
haβna = 09 h«β

ιlε = 0.
The second fundamental form A of Σ is the tensor Aaβ = hvjtμ

βnv.μ9 where ήa is
any local extension of na in N. Mean curvature H = AΛβg

aβ. | A | denotes the length of
the second fundamental form: \A\2 = AaβA

aβ.
The Riemann curvature of the induced metric on Σ is denoted by hRocβγδ, where

hna \rβ \r<χ yα
K βγδ* - * \\δγ- * \\yδ

for all vector fields Y on Σ. The indices are raised using g. We include the embedding
equations for easy reference. Gauss' equation: hRa

βyδ = Rε

pμvh
a

εh
pβhμ

yh
v

δ +
Aa

yAβδ- Aa

δAβy. Contracted Gauss' equation: hR = R - 2Ric(g)aβn
anβ + H2 -

\A\2, hR and R being respectively the scalar curvatures oϊΣ and N. Codazzi's equa-
tion: A*m - A\M = Ric{g\σn°hε

β.
For a vector field Y on N, Y\p denotes its value at a point peN. g(,) denotes the

inner product on the tangent space oϊN and <, > denotes the corresponding induced
inner product on Σ. In general the induced inner product on the tensor bundles of N
and Σ will be denoted by g(9) and by <, > respectively. \T\2 = g(T, T). For a tensor
field T defined on ζx a N and for ζ2 <= ζl9 T\ζ2 denotes the restriction of T on ζ2.

IΣ I denotes the area (that is the usual two dimensional Hausdroff measure Jf2 in
N) of Σ considered as a submanifold of the Riemannian manifold (JV, g). U denotes
the n-dimensional Lebesgue measure in Un.
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V and A will respectively denote the gradient operators and the Laplacian on
(N, g). VΣ and AΣ are the corresponding operators on Σ with respect to the induced
metric.

BR(x) is the open ball in U3 with radius R and centre at xeIR3.
For a bounded, open, connected subset Ω of Mn, Ckfλ(Ω\ k ̂  0, ie(0,1), denotes

the space of Ck functions on Ω whose kih order partial derivatives are locally Holder
continuous in Ω with exponent λ. CkΛ(Ω) denotes the space of Ck functions whose
kih order partial derivatives are locally Lipschitz continuous in Ω. For 1 ̂  p < oo,
WKp(Ω) denotes the Sobolev space; that is, WKp{Ω) is the set of all k times weakly
differentiate functions u in Ω such that D*ueLp(Ω) for all |α| S k.

The main theorem we prove is the following (to compare with physics literature,
see 1.10 and Sect. 4):

Theorem 1. Assumptions. (TV, {°lίa, φa}aeJ) is a C00 simply connected three-dimensional
differentiable manifold with a complete Riemannian metric g satisfying the following
conditions:

(a) In local co-ordinates given by φa, gaβGC1Λ(φa(
όlίa)) and g satisfies

Ric(g)aβ=V-1V.Af+Φ1gΛP (1.1)
and

AV=VΦ2, (1.2)

where denotes the coυariant differentiation for g, A is Laplacian for g, V is a locally
C 1 ' 1 positive function on N, Φl9 Φ2 are bounded measurable functions on N, and
Φ2 ^ 0. (The above equations are assumed to hold almost everywhere in N.)

(b) There exists an open connected set l a N such that e s s i n f ^ + Φ2) >0for
all compact Ka£, and ΦuΦ2 = 0 in N~I. κ

(c) There exists an open connected set No a N such that No is compact and
N ~ No is diffeomorphic to IR3 ~ Bl9 where B1 is the closed unit ball centred at the
origin and, with respect to the standard co-ordinate system in R3, we have, on

g«β = Kβ + O(\xΓλ) and dj^ = O{\x\~1-\ (1.3)

/ 3 \l/2

for some λe(Q, 1), where \x\ = \ Σ (x*)2 ~+ °°
\α=l /

Assertion. N is topologically U3 and hence diffeomorphic to U3.

1.4. Remark. Henceforth the co-ordinate system in (c) above will be referred to as
the asymptotic co-ordinate system.

1.5. Remark. O n N ~ fwehavezl V = 0. Hence on N - 1 , K is locally C2'μ,μe(0,1)
(See the paragraph following 3.7 in Sect. 3).

It can be easily shown (see [MA]) that when 1 is compact, by virtue of 1.3 we
have in the asymptotic co-ordinate system,

V^^-^ + η, where η = O(\x\-1-<t)9 ^ = O ( | x | " 2 " ^ (1-6)
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and

I
d2η

δx°dχτ

2\l/2

= O(R-3~β) for some )8e(0,l),

constants Cί>0 and C 2 ^ 0 . Here NR<^N is such that in the asymptotic co-
ordinate system, N ~ NR = U3 ~ BR(0). Without loss of generality we write (1.6) as

V=l—-—- + η, where m ^ O and η is as above. (1.7)
|x|

It is well-known that when m = 0 and Φ x tends to 0 at infinity, then g is flat. To see
this we note that in this case (1.2) and (1.7) imply V= constant. Hence by (1.1) we
have Ric(g)aβ = Φi#αj3 The contracted Bianchi identity for g (see [MA]) then implies
that Φx = constant. Thus Φ ^ O and g is Ricci flat and hence flat.

1.8. Remark. The contracted Bianchi identity for g (in weak sense, see Eq. (A2) in
[MA] where the third derivatives of the metric are avoided by integration by parts
after contracting the usual expression for the contracted Bianchi identity with a
smooth vector field having compact support) implies that Φ2 — Φγ is a Lipschitz
function on N and

(Φ2 - Φiϊj, = - 2V~1(Φ1 + Φ2)Vr (1.9)

For simplicity we put

where the factor 16π has been used in accordance with the usual convention of
physics literature.

It is shown in [KS] that if ϊ is compact and p is non-negative then p cannot be a
Lipschitz function of p unless p = 0. In [KS] it is assumed that V has one critical
point. We give an alternative argument which does not need the assumptions on the
critical points of V. If p is a Lipschitz function of p then (1.9) and (1.2) give

Now p vanishes outside Ά and Λf ~ 2, Φ 0. Hence by the (generalized) strong
maximum principle (Theorem 8.19 in [GT]), p = 0.

1.11. Remark. The assumption Φ2 ^ 0 in (a) is not necessary in case Ά is unbounded.
This is because in this case, if a sphere S c N with S n 2 = 0 bounds the compact
manifold-with-boundary N1aN then N1n2 = 0 (since, by hypothesis Ά is
connected; for details see Remark 3.1 in Sect. 3). Hence Case II in the proof of
Theorem 5 cannot occur automatically. The proof of Case II uses (1.7) and that
V < 1 on N ~ I. The condition Φ2 ^ 0 enables us to use the maximum principle to
deduce that V < 1 on TV and also to determine the sign of C 2 in (1.6).

1.12. Remark. A physical example where g and V are piecewise C2 and p is
discontinuous across d2 is the static stellar model described in [KS] and [L]. Our
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asymptotic conditions are slightly more general than those given in [KS] or [K].

1.13. Remark. Further generalizations of Theorem 1 are given in Sect. 5. In
particular alternative definitions of " iΓ are considered.

2. Stable Minimal Surfaces

In this section we use a theorem of Meeks, Simon and Yau (Theorem 1 in [MSY])
regarding the existence of minimal surfaces in 3-manifolds to prove that either JV is
topologically Euclidean or there exists an embedded totally geodesic sphere in
N ~ Ά. The proof is essentially a straightforward modification of a result due to
Frankel and Galloway (Corollary to Theorem 1 in [FG]). However, since the metric
is only C 1 ' 1 in our case, we have to deduce a suitable form of the "stability
inequality" involving the Ricci curvature which, in our case, is only defined almost
everywhere and hence does not, in general, make sense on the minimal surface.

Let # denote the collection of all connected compact C 2 2-dimensional surfaces-
without-boundary embedded in JV, and let <£ί denote the collection of compact
embedded surfaces Xsuch that each component of Σ is an element of <β. Given Σe%>
we let I(Σ) be the collection of all t such that ϊ is isotopic to Σ via a smooth
isotopy: ψ:[0,1] x N^N, where

(i) ψo(x) = ψ(0,x) = lN(x), 1N being the identity map on JV;
(ii) ψt9 defined by ι/φc) = ̂ (ί,x), (ί,x)e[0,1] x JV, is a diffeomorphism of AT onto JV;

(iii) ^,| JV ~ K = 1N^K for ίe[0,1] for some compact set K c JV independent of t.

We shall say that a two-sided surface Se%> is area minimizing if there exists d > 0
such that

| S | ^ inf \2\. (2.1)
2eI(S)

£<z{xeN\disl(x,S)<d}

Now from the asymptotic conditions (c) in the hypothesis of the main Theorem 1
it follows that there exists a smooth sphere Sr given by |x | = r in the asymptotic co-
ordinate system such that the mean curvature of Sr in (JV, g) with respect to the
outward normal is strictly positive. Let JΫ\ be the simply connected compact
submanifold of JV with boundary dJίγ = Sr (that is, in asymptotic co-ordinate
system JV - JΓx = U3 - Er(0)). Then

Theorem 2. [MSY]. Either Jf x is dίffeomorphίc to a closed unit ball in U3 or there
exists a C2'α, αe(0,1), embedded area minimizing minimal sphere S in the interior Jί γ of

Proof of 2. It is a particular case of the more general fundamental existence theorem
(Theorem 1) in [MSY]. We note that the only places in the proof of the latter
theorem where the smoothness of the metric is used are in the definition of
homogeneous regularity and in the arguments relating to homothetic expansion on
p. 639. (As an alternative method we can avoid the use of the above theorem for C 1 ' 1

metric altogether and can directly apply the smooth metric version of this theorem
(which is proved in [MSY]) to a sequence of smooth metrics approximating the C 1 ' 1
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metric to prove our final theorem (3) of this section. This alternative approach is
based on convergence of sequences {Σk} of smooth compact surfaces in a
Riemannian 3-manifold (N, g) where Σk is stable minimal in the smooth metrics kg
approximating the C1Λ metric g. For details see [MA]). On p. 639 in [MSY] it is
assumed that N can be locally isometrically embedded in the Euclidean space. This
can be avoided by considering the local co-ordinates representation for N in the
neighbourhood of a point x0 with the C 1 ' 1 metric gaβ satisfying g(xβ(0) = δ(xβ and
(dgaβ/dxτ)(0) = 0, where 0 is the image of x0. The definition of homogeneous
regularity can be modified by having a countable atlas with uniformly bounded C 1 ' 1

norm of the metric in each chart. By hypothesis N has such an atlas. Finally, we note
that since N is simply connected there cannot be any embedded projective space in N
(by Theorem 4.7 on p. 108 in [H]). •

We shall now deduce a suitable form of the "stability inequality" from 2.1 and use
this inequality to prove the existence of a totally geodesic embedded sphere S c
N ~ & in case N is not topologically Euclidean. In particular, we prove the following
theorem:

Theorem 3. Either N is diffeomorphic to U3 or there exists a C2?α, αe(0,1), embedded
totally geodesic sphere S in N ~ Ά.

Proof of'3. We take an 1-parameter family {φt}o<t<ι of diffeomorphisms Jί2 -*Jί2

of some neighbourhood Jί2 of S in N such that

(i) φ(ί,x) = φt(x) is a C2 map: (—1,1) x Jί2 -+Jί2\

(ϋ)
(iii)

where ξ is a smooth positive function and ή is a smooth vector field on S such that for
some given ε > 0, the C 1 norm of (ξ — V) in Jί"2 is less than ε, \ή — no\

2 < ε and
I Vγ(ή — n0) 12 < ε | Y \2 for all vectors Y e TXN, xeS,n0 being a unit normal vector field
on S.

Now let /(ί) = |S f | , where St = φt(S). Then df/dt\o = 09 since S is area
minimizing. Also given any interval /_/ = (— VΛ Vi) (however small) about t = 0 and
given any telp we have

Thus d2f/ds2 ^ 0 on a subset Aj c I. with A } having positive measure.
Now there exist C, c ylj with Cj having positive measure such that, for all j ,

d2gaβ/dxσδxτ and (d2 V/dxσdxτ) exist almost everywhere on St. To see this we consider
the local chart (%i9φ^ Let B be the set {x£(%i\xeφt(S\te[_-{\lJ\{\lj)'] for
sufficiently large; and some (d2gaβ/dxσdxτ) is not defined at x}.

Then

0= J |Vt|ciL3= { ^ ( φ ^ n S ^ ί
<Pi(5) -t

by the co-area formula. Thus for almost all ί e [ —ί , ί ] , J^2(BnSt) = 0.
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For any ίeC,- we have the following second variation formula on St:

τaX) - Σ θiRK X)X, τ
M = l β=l

where τα is an orthonormal vector basis on St,X = (d/ds)(φs(x))\s=t9xeSt;
Z = (d2/ds)(φs(x))\s=t,xeSt;(VτaX)1 is the part of VXaX normal to St and (Λ(v) ) is
the Riemann tensor.

Restricting t to a subset Dj of C; with D7 having positive measure, we have
X = ξ(n + ?y), where n is the unit normal vector to St and where \n\2 < ε, | Vy^|2 <
ε| Y\2 for YeTxN,xeSt. Hence we have, for teDj9

ξ2Hf + I VStξ|2 - | Λ I 2 ί 2 ~ ξ2 Ric(flf)(π,n)) + cε, (2.2)

where >4f is the second fundamental form of St and Ht is the mean curvature of St. c is
a constant depending only on C 1 norm of ξ. This implies

\(ξ2(\At\
2 + Ric(g)(n,n)) - \VStξ\2) ^ Hg(Z,n)Ht + ξ2H2) + cε.

st st

Now there exists Ej cz Dj also with positive measure such that (1.1) and (1.2) hold
almost everywhere on St for all teEj. Hence using the fact that the C 1 norm of (ξ — V)
in Jί2 is less than ε we get, for all teEj9

$(V2(\At\
2 + R i φ H M ) - IVStK|2) S \{g{Z,n)Ht + V2H2) + cε. (2.3)

st st

This implies, since V\St is W2-p(St)9

\{V\\At\
2 + Ricto)(Λ,Λ)) + VΔSV) S Πg(Z,n)Ht + K2//f

2) + cε. (2.4)

Now using the following well known formula

Δφ = ΔStφ + φ.Aβn
anβ + HtVφ(n) for any C2 ψ, (2.5)

which also holds for V on Sί5 teEj9 we have

f
st

^ J (g(Z, n)Ht + F 2 / / 2 + VHtVV(n)) + cε. (2.6)
st

But V2 Ric(gf)(n, n)+VΔV- VV.^nanβ = V2(Φ1 + Φ2) ̂  K2/z, where / l i s a con-
tinuous function in N with h>0 in 1. Hence

V2(\At\
2 + h) S \{g{Z,ή)Ht + F 2 H f

2 + VHtWV{n)) + cε
st

for all



200 A. K. M. Masood-ul-Alam

But Ej a (— l/j, 1/j). Hence letting j-> oo and noting that S = So is a C 2 minimal
surface, we have

where A is the second fundamental form of S. Since h > 0 in Ά we get that | A \ = 0 and
\Sr\Ά\ = 0. Since S is C2 we have proved Theorem 3. Π

3. Proof of the Main Theorem

In this section we shall prove that no embedded totally geodesic sphere exists in
N ~ Ά9 and thereby we shall complete the proof of the main theorem.

3.1. Remark. Since N is simply connected and S is compact co-dimension 1
embedded submanifold of N, S separates N and N ~ S has exactly two closed
components, say N1 and N2 having boundary S (see Lemma 4.4 and Theorem 4.6
on p. 107 in [H]). It follows from the asymptotic condition (c) that exactly one of the
components, say Nl9is bounded. Thus Nί is a compact manifold with boundary S so
that Stoke's formula holds. Similar is the case with the set obtained from N2 by
deleting the exterior of any asymptotic sphere SR given by |x| = R in the asymptotic
coordinate system for sufficiently large R.

In the following lemma we deduce some formulae we shall need later.

Lemma 4. Let S be a (C2) totally geodesic embedded sphere in (N9 g) such that
S a N ~ Ά. We suppose n is a continuous unit normal form on S. Then

(i) g(n, VF) = m', a constant on S; (3.2)
IV V\2

(ii) j 2— = 4π> where Vs is the gradient operator on S with respect to the metric

induced from g\ and provided V < 1, (3.3)
(iii) for a sequence Tι of smooth spheres in N ~ ϊ converging to S in the C2 sense

where w = |VK|2, ή = ή(ί) is the smooth unit normal form on T) consistent in
direction with n, <(,) denotes induced inner product on Tt and c,a are arbitrary
constants to be specified later.

3.5. Remark. If S c i V ^ I , w e may replace (3.4) by the pointwise relation g(n, Vw) =
— m'RV on S, R being the scalar curvature of S. However S may touch δJ, where the
metric is not C2. The extra term (cV2 + a)/(V(l — V2)3) has been introduced for later
application. In (3.2) the sign of the constant m! depends on which normal direction is
considered.

Proof of 4. We first note that there exists a sequence Tι of smooth spheres in N ~ ϊ
converging to S in the C2 sense. This is because S separates N (see Remark 3.1) and
by hypothesis Ά is connected.

Now in N - 1 , (1.1) and (1.2) become

- F - 1 ^ (3.6)
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and
ΔV = 0 (3.7)

respectively.
Standard PDE regularity theorems (for example, Theorem 9.19 in [GT]) applied

to 3.7 gives V to be locally W3'p, 1 < p < oo, on N ~ I. From 3.6 it follows that R i φ )
is locally WUp on N ~ I.

Now for the smooth compact embedded surface Tι in N ~ Ά we can use the
following weak form of Codazzi's equation:

J b" Ric(g)xβ(δ«μ - n*ny = f (b^H - b^A^) (3.8)

for any C 1 vector field bμ on Tt. Here Aaβ = Aaβ(l) is the second fundamental form of
Tι and H = H(l) is the mean curvature of Tz.

Now let / be any C2 function on S and let / be a C 2 extension of / in a fixed
neighbourhood of S such that / restricted to Tt is a C 2 function on Tz for all
sufficiently large /.

On any such Tι in local co-ordinates we have

/" W % = Pσ{V,M - n%)fi* + V.Jί'.fjtδl - ffinX (3.9)

where ή is any local extension of n in N.
On using (3.6) and (hβ%β{δβ

σ - nβήσ) = 0, (3.9) yields

<5£ - n*nσ)n* + F " " Aμσ\ (3.10)

Hence integrating and using (3.8) with bσ = K/I|σ, we have

SPσ(V.,an%= J ((K/"σ)llσ//-(KΓ"σ)1|α^σ + A μ σ K^ σ ) , (3.11)

which on simplifying the right-hand side and integrating the left-hand side by parts
yields

\ J $ι ι ι y ι (3.12)
Tι Ti

Now S7τyTιf,ΔTιJ and <VT/F, VΓ ί/> are uniformly bounded independent of/.
Hence letting / -> oo and recalling that 5 is totally geodesic we get

$ = 0. (3.13)
s

Since this holds for arbitrary C2 function/on S and since g(n, VV) is continuous
we have g(n,VV) — constant on S. Thus (i) is proved.

To prove (ii) first we note that the scalar curvature of g in N ~ M vanishes. Now
using the Gauss-Bonnet theorem and the contracted Gauss equation, we get

J ( - R i φ ) α / ^ + H2/2 - \A\2/2) = 4π. (3.14)

This implies, by 3.6

ί -V-1V.αβn
ΰίnβ + H2/2-\A\2/2) = 4π. (3.15)

Tι
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Now using (2.5) with ψ = V and (3.7) in (3.15), we get

J ^ - + g{n,VV)HIV + H2l2-\A\2l2\ = 4π. (3.16)

Hence letting / tend to oo we get (ii).
Finally to prove (iii) we note that

φ, Vw)/V = 2V~ι V.ap(δ<>β - ή»nβ)VH« + 2V

= 2 R i φ ) α p ( ^ - n»nβ)Vvn« + IV^n, VV)(-ΔTιV - g(n,VV)H).
(3.17)

In the last step above we have used (3.6), (2.5) and (3.7) in addition to replacing V;β in
the first term by Vw.

Hence using (3.8) with bβ = {(cV2 + α)/(l - V2f)Vw, we get

cy
2 _|_ n

άWV)(ΔVάVV)Ή) (3.18)

Now we have

(3.19)

where the second term in the right-hand side equals — 2\g(ή, W)ATιf for
f=j((cV

2 + a)/V(l-V2)3)dV and can be evaluated using (3.12). Hence letting /
tend to oo we get, from (3.18),

This completes the proof of the lemma. •

Theorem 5. There cannot be any totally geodesic embedded C2 sphere S in (N, g) such
that S c N - J .

Proof of 5. Let us suppose to the contrary that there is a S. Since by hypothesis Ά is
connected we have by Remark 3.1 either of the following cases:

Case I: 1^N2 or
Casell: jgdiΫ!.
We consider Case I first. On Nx we have A V = 0 and on dN1 = S we have
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g(n,VF) = constant by (3.2). This implies g(nfVV) = 0 on S. Hence

= - j VΔV + (1/2) j ΔV2 = A

giving |VF | 2 = 0 on A/̂ . Thus F is constant in the interior of Nx and hence, by
continuity, on S. This implies

J|V5F|2/F2 = 0,

which contradicts (3.3). Thus £φN2.
Now we show that Case II also does not occur and hence get a contradiction. We

shall use Robinson's divergence form inequality ([/?]) on N ~ M.
On each bounded open subset JVA of N ~3 we have the following inequality

(provided F < 1 on J V ~ ! ( [ R ] , [MA]))

(i7j/- iw;« + GwV'% ^ 0, (3.20)

where

F = (cV2 + a)/(l-V2)3, (3.21)

and

G = -2c/(l - F 2 ) 3 + 6(cF2 + α)/(l - F 2 ) 4 , (3.22)

c and β being constants such that F > 0 on N2.
First, we show that w is locally C 2 on ΛΓ ̂  J" so that (3.20) makes sense pointwise.

Differentiating (3.7) we get V.a

a

β = 0. This implies by commutation law,
V.aβ« = Ric(g)τβV>\ Hence,

Δw = 2(V;aβV*)« = 2 K ; c / ^ + 2V;aβV^

= 2 R i c ( ^ F ; τ F ^ + 2F ; α /,F^. (3.23)

Since Ric(g) is locally Cα,αe(0,1), we get that w is locally C2'α.
Now Stoke's formula applied to (3.20) gives

lim J (FV-'gin, Vw) + Gwg(n, VF))
l->oo Tι

+ lim j (FV-^fn,Vw) + Gvv^n,VF)) ^ 0, (3.24)

where Tι and n are as in Lemma 4. S^ is the asymptotic sphere | x | = R and Rn is the
outward normal to SR. ή is directed outward with respect to the volume bounded by
T, and SR. Hence by (3.7) and (1.7) we have

lim J g(n9 VF) = - lim j g(Rn, VF) = -4πm.
/ - o o Γ 2 R^OOSR

Thus by (3.2) we have

m> = g(n,VV)\S= -4πm/|S | , (3.25)

w being the unit normal form on S consistent in direction with n. We need to consider
only the case m > 0 (for m = 0, arguments of Case I apply in the domain exterior to
S). Hence we assume F < 1.
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We have

lim j FV~ ιg{Rn, Vw) + Gwg(Rn, VV) = - π ( c + a)/2m. (3.26)

Using (3.21), (3.22), (3.25) and (3.26) in (3.24) we get

r c cV2 + a . ^ χ f -2cw ,

(3.27)

Hence by (3.4) we get

\ \ ,, 2cw .6(cF + α)w

ί V w " = π ( c + α ) / 2 m

(3.28)

Dividing by \m'\ and using (3.25) we get,

6{cV2 + a)wΊ

(3.29)
Following Robinson [R] we shall choose two different sets of values for c and a to
obtain two inequalities contradicting each other. We put c = — 1, a = 1. We check
that F > 0 on N - 1 . Then (3.29) becomes

Simplifying the first term and using w = | V 5 F | 2 + m'2 on S, we get

^ 8 ' 2 | S |> 8m'2 |S|. (3.31)

The last inequality follows because we have 1/(1 — V2)3 > 1 on S as V > 0. Now

using (3.25) and

1 - 9 F 2

(1 - V2f

we have

< 1 on S, (3.32)

f^7^ (3.33)

Finally using (3.3) we get

|S |>16πm 2 . (3.34)

We now consider c = 1 and a = 0 in (3.29). Clearly F is positive. Thus we have

2 ( 1 3 5 )
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Simplifying the first term, using w = |V5K|2 + m'2 on S and adding the co-
efficients of IVSV\2 and m'2 respectively, we get

giving

-4V2

Then using (3.25) and

1-4K 2

< 1 on 5, (3.38)
(1 - V2)4

we get

32π2m2/\S\>\S\βm2,

giving 16πm2 > |S | which contradicts (3.34). •

We can now complete the proof of the main Theorem 1.

Proof of 1. By Theorem 2 and Theorem 3 either N is diffeomorphic to U3 or there
exists a C2 embedded totally geodesic sphere S in N ~ Ά. But by Theorem 5 such a
sphere cannot exist. Hence the theorem follows. •

4. Application to General Relativity

In this section we apply our main theorem to prove that a geodesically complete,
asymptotically Euclidean, static perfect fluid space-time with connected fluid region
and satisfying "timelike convergence condition" is diffeomorphic to U3 x [R, without
using the Poincare conjecture.

By a static perfect fluid spacetime we mean a geodesically complete space-time
(M, 4g) such that:

(i) M is a C00 manifold diffeomorphic to N x (R, where for each teU,Nt = Nx{t}
is a spacelike three-manifold.

(ii) The Lorentz metric 4g can be written as

4g=-V2(dt®dt) + g, (4.1)

where V is a positive C 1 ' 1 function and g is a tensor such that g restricted to N is a
Riemannian metric on N, and Kand g are independent of ί. We assume that g is at
least C 1 ' 1 .

(iii) (M, *g) satisfies Einstein's equation

Ric( 4 #U - iScalar( 4 0) 4 ^ β = 8π((p + p)u7ίuB + p*gAB\ (4.2)

where p and p are bounded measurable functions and uA is a unit timelike vector
field on M.
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By virtue of the Gauss-Codazzi embedding equations for the Lorentz metric 4g,
(4.2) decomposes into

Ricfe)., = V~%β + 4π(p - p)gaβi (4.3)

and

ΔV = 4πV(p + 3p) on JV, (4.4)

where denotes the covariant derivative with respect to g and A denotes the
Laplacian with respect to g ([L]).

It is clear that p and p are independent of t. It follows from (4.2) that if 4g satisfies
the timelike convergence condition, namely.

Ric(4g)(W, W)^0 (4.5)

for all timelike vectors W, then p + 3p ^ 0. By continuity (4.5) implies the null
convergence condition, namely, Ric(4 g)(K9 K)^0 for all null vectors K. By virtue of
(4.2) the latter condition is satisfied if and only if p + p ^ 0.

We also assume that there exists an open connected region Ά^N such that
ess inf (p + p) > 0 for all compact X c i and p = p = 0inN~ϊ.

K

The functions p and p are respectively called the density and the pressure of the
fluid. The assumption that the fluid region 1 is connected is needed here in order to
apply our main theorem. We also assume that *g satisfies the timelike convergence
condition so that by (4.4), A V is non-negative. However when Ά is unbounded, the
null convergence condition will be sufficient for our purpose. Remark 1.11 is relevant
here.

We say that (M, *g) is asymptotically Euclidean if (JV, g) satisfies condition (c) of
the main Theorem 1 and for some μe(0,1), V satisfies (by (1.6), this is automatic if I is
compact)

dV
l-V = O(\x\-")9 — = O(\xΓ1~η as | x | - o o . (4.6)

It follows from a result due to Gannon (Proposition 1.2 in [G]) that N is simply
connected. (The proof in [G] can be modified to the case of C1Λ metric in a way
similar to the extension of singularity theorems to the case when the metric is C 1 ' 1, that
is, by taking a smooth sequence of metrics and using a sharpened version of the
"Focusing Lemma;" see p. 285 in [HE]. See also Sect. 4.3 in [MA]). As a
consequence of this fact and our main theorem, we prove the following theorem.
This result has been claimed in [LB] assuming the Poincare conjecture to be true. In
fact the asymptotic conditions and Gannon's Theorem imply that N has the same
homotopy as U3 ([LB]). What we have shown here is that a fake 3-cell cannot occur
in N and hence N is diffeomorphic to 1R3.

Theorem 6. A geodesically complete asymptotically Euclidean static perfect fluid
space-time having connected fluid region and satisfying the timelike convergence
condition is diffeomorphic to U3 x U.
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5. Miscellaneous Remarks and Generalizations

In this section we discuss various generalizations to Theorem 1 and some further
applications to general relativity. First we consider an alternative definition of

Ά is connected, e s s i n f ^ + Φ2) > 0 for all compact sets
K

Ka£ and Φ2 = 0 on N ~ M.

Because of the following lemma the main Theorem 1 continues to hold with Ά
defined as above.

Lemma 7. Let & be defined as above. Suppose Φx + Φ2^0 on N. If there exists an
embedded area minimizing (defined in (2.1)) minimal C2 sphere S on N ~ Ά, then Φλ = 0
on each component of N ~ 2t with closure intersecting S.

5.1. Remark. In the above lemma we continue to assume that N is simply connected
so that S separates N. The assumption that Fis a positive C 1 ' 1 function on N is also
used.

Proof of 7. Since Φ2 = 0 on N ~ J , (1.9) implies that Φγ is a Lipschitz function on
N ~ 1 and

Φι.φ = 2V-1Φ1V.β. (5.2)

Hence Φ1 = CV2 on N ~ M, where by virtue of Φλ + Φ2 ̂  0, C (which is constant on
each component of N ~ J ) is non-negative.

Now as in the proof of Theorem 3 we can approximate S by a sequence of C2

spheres Sn t JO. We can take Sta N ~ M because S separates N and Ά is connected.
The fact that S is area-minimizing and Φ1 is continuous on (each component of)
N~I gives (using (2.6)) that lim \ΦXV

2 = 0. Hence \CVA = 0.
t-*ost s _

But V > 0. Hence on S, C = 0 giving Φx = 0 on each component of N ~ Ά with
closure interseting S. Π

5.3. Remark. If we use an extra asymptotic condition that the scalar curvature R oΐg
is 0(1), then it follows that Φγ = 0 on each unbounded component of N — M without
the assumption that an area minimizing sphere S exists in N ~ Ά. This is because
from (1.1) we have R = A V + 3 Φx and by hypothesis A V = 0. However by Theorems
2 and 3 if such S does not exist then N is topologically Euclidean and hence the
conclusion of the main theorem follows without the above mentioned asymptotic
decay of R.

5.4. Remark. Arguments similar to those used in the proof of Lemma 7 show that we
can also define Ά as follows: βt is connected, ess inί(Φ1 + Φ2) > 0 for all compact sets

_ K

X c i and Φ J Ξ O in N~Ά. Then (1.9) implies that Φ2;β= -2V~1Φ2V.β, giving
Φ2 = CV~2, where C is constant on each component of N~Jl. The same arguments
as before then imply that Φ2 = 0 on each component of N~ϊ with closure
intersecting S.

We shall now discuss some generalizations of Eq. (1.1).
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Lemma 8. Theorem 1 continues to hold with the usual conditions on V, g9 Φx and Φ2 if
we replace 1.1 by

Cι ΦχQΛβ ̂  Ric(g)α/? — V 1 V.aβ ^ Φγgaβ almost everywhere,

where C1 is a constant. (5.5)

The first inequality in (5.5) is added to ensure that Φx = 0 on N ~ M implies

Ric(g)aβ=V-1V.Aβf on JV~I. (5.6)

Proof of 8. Equation (5.6) enables us to apply the reasoning of Sect. 3 (in particular
we refer to Theorem 5) to prove that no embedded C 2 totally geodesic sphere exists
in N ~ St. To prove our assertion that Theorem 1 holds with (1.1) replaced by (5.5) we
now simply need to use the inequality

V2 Riφ)(rc, n)+VΔV- VV.^narfi ^ V2(Φ1 + Φ2)

in (2.6) instead of the equality. The rest of the arguments in the proof of Theorem 3
then apply, and since there is no embedded C 2 totally geodesic sphere in N ~ X it
follows that N must be diffeomorphic to U3. •

We shall now apply Theorem 1 to a complete, asymptotically Euclidean (that is,
the induced metric satisfies the asymptotic conditions 1.3) simply connected space-
like hyper-surface N in a suitable class of space-times (M, 4#), not necessarily static.
As before the results are different from those in the paper of Frankel and Galloway
[FG]; for example, using the asymptotic conditions we can allow certain terms
(Φ1,Φ2 in (5.11-12)) to vanish identically outside a connected set, whereas the
results in [FG] require that ess inf (Φ1 + Φ2) > 0 for all compact subsets K of the 3-
manifold whose topology is to be investigated.

Let (M, 4#) and N be as above. In a neighbourhood of N in M we write

*0 = - V2dt2 + gaβ4x*dx'9 α,βe{l,2,3},

where {xα}, α = 1,2,3, is a co-ordinate system on N; gaβ = gaβ(t9 xτ) and V = V(t, xτ).
Suppose g and V restricted to N are respectively C 1 ' 1 Riemannian metric and C 1 ' 1

positive function. Also we assume that d2gaβ/δt2 exist on N. The unit normal time-
like vector field uA on N is given in the above co-ordinate system, by

u° ==¥-'; wα = 0, α = 1,2,3. (5.7)

Decomposing Ric(4#) we get

dΩ

Ric(g)aβ = V'1V.Aβ + Ric(4g)aβ + 2ΩaσΦ°β - ΩΩaβ - V~"^ (5.8)

V~1ΔV = R i c ( 4 # ) 0 0 F - 2 + V~1gaίβd^--\Ω\2, (5.9)

where Ωaβ = ^V~1(δgaβ/dt) is the second fundamental form of N in M, Ω = Ωaβg
aβ,

and \Ω \2 = ΩlxβΩf)σg
Cίpgβσ. As usual A and denote respectively the Laplacian and

covariant differentiation relative to the g metric and the indices are raised by gaβ.
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For peN there exist λ(p) and Λ(p) such that

λ(p)g(X, X)\p ί ( Ric(*g)(X, X) + TΩ^JTfX'Xf - ΩΩaβX*X»

)\p (5.10)

for all vectors X tangent to N at p. We shall take

^ 0 0)F-2+K-V^-|β|2 (5.11)

and

Φ,=λ (5.12)

Now we suppose that Φγ and Φ2 satisfies the following conditions:

(i) on N, Φx + Φ2 ^ 0, Φ2 ^ 0 and CΦγ ^ A for some constant C; and
(5.13)

(ii) there exists a connected set J c iV with essinf ((^ + Φ2) > 0 for all compact

Then by virtue of Lemma 8, Theorem 1 applies and gives N to be diffeomorphic
to U3. In particular if N is a Cauchy surface, then by a well known theorem due to
Geroch (see Proposition 6.6.8 in [HE]) M will be diffeomorphic to U3 x U.

In case the Cauchy surface N is not a priori known to be simply connected,
Gannon's Theorem can be used to prove that N is simply connected provided
(M, 4g) is geodesically complete and satisfies the null convergence condition, and on
N, V satisfies the asymptotic condition (4.6), and dgaβ/dt = O(\x\~1~μ).

As an example we now consider the case of a static space-time (M, 4g) not
necessarily perfect fluid. We assume (M, 4g) to be asymptotically Euclidean in the
sense of f 1.3) and (4.6); and to satisfy

Ric( 4 0)(K,K)^O (5.14)

for all null vectors K. Hence any t = constant hyper-surface N is simply connected.
Since the metric is static we have Ωaβ = 0. Hence (5.8) and (5.9) become

and

Let
Φ2

and
Φ, = λ,

where
λ(p) = mϊ((Ric(*g)xβX°χe)(p)/g(X,X)\p),

the infimum is over all vectors X tangent to N at p.



210 A. K. M. Masood-ul-Alam

Let n be any unit vector tangent to N. Putting KΛ = uA + nA in (5.14) we have

where we have used the fact Ric(4^)o^ = 0 by Codazzi's equation since N is totally
geodesic in M.

Thus Φγ + Φ2 ̂  0. If we strengthen the assumption (5.14) to

Ric(4g)(W,W)^0 (5.15)

for all time-like vectors W we get in particular (taking WA = uA)

Let 1 be a connected set in N such that on J , e s s i n f ^ + Φ 2 ) > 0 for all
_ K

compact sets Kal; and on N~ Ά, R I C ( 4 ^ ) Ξ 0 . We shall call 1 the "non-vacuum
region." Since the conditions (5.13) (i) and (ii) are satisfied, Theorem 1 applies. Hence
we have proved the following theorem.

Theorem 9. Let (M, 4g) be an asymptotically Euclidean (in the sense of (1.3) and (4.6)%
geodesically complete static space-time satisfying the time-like convergence condition
(5.15). If (M,4g) has connected non-vacuum region (defined above) then M is
diffeomorphic to U3 x U.
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