Intersections of Random Walks in Four Dimensions. II*

Gregory F. Lawler
Department of Mathematics, Duke University, Durham, NC 27706, USA

Abstract

Let $f(n)$ be the probability that the paths of two simple random walks of length n starting at the origin in \mathbb{Z}^{4} have no intersection. It has previously been shown that $f(n) \leqq c(\log n)^{-1 / 2}$. Here it is proved that for all $r>\frac{1}{2}$, $\lim _{n \rightarrow \infty}(\log n)^{r} f(n)=\infty$.

1. Introduction

Let $S_{1}(n, \omega)$ and $S_{2}(n, \omega)$ be independent simple random walks starting at the origin in \mathbb{Z}^{4} (for definitions see [1]), and let Π_{1}, Π_{2} denote the paths of the walks

$$
\begin{aligned}
& \Pi_{i}(a, b)=\Pi_{i}(a, b, \omega)=\left\{S_{i}(n, \omega): a<n<b\right\} \\
& \Pi_{i}[a, b]=\Pi_{i}[a, b, \omega]=\left\{S_{i}(n, \omega): a \leqq b \leqq b\right\}
\end{aligned}
$$

and similarly for $\Pi_{i}(a, b]$ and $\Pi_{i}[a, b)$.
The probabilities that the paths Π_{i} intersect were studied in [1]. This paper follows up on that paper by giving a proof of a conjecture made. Let

$$
f(n)=P\left\{\Pi_{1}[0, n] \cap \Pi_{2}(0, n]=\emptyset\right\} .
$$

In [1] it was shown that there exist $c_{1}, c_{2}>0$ satisfying

$$
\begin{equation*}
c_{1}(\log n)^{-1} \leqq f(n) \leqq c_{2}(\log n)^{-1 / 2}, \tag{1.1}
\end{equation*}
$$

and it was conjectured for $r>\frac{1}{2}$, that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}(\log n)^{r} f(n)=\infty \tag{1.2}
\end{equation*}
$$

Here we prove (1.2).

[^0]To give an idea of the technical problems involved in proving (1.2), we first sketch an argument similar to the one in [1] which led to the conjecture. If

$$
\begin{gathered}
A_{n}=\left\{\Pi_{1}[0, n] \cap \Pi_{2}(0, n]=\emptyset\right\}, \\
B_{n}=\left\{\Pi_{1}[0,2 n] \cap \Pi_{2}(n, 2 n]=\emptyset \text { and } \Pi_{1}(n, 2 n] \cap \Pi_{2}(0, n]=\emptyset\right\},
\end{gathered}
$$

then

$$
\begin{equation*}
P\left(A_{2 n}\right)=P\left(A_{n}\right) P\left(B_{n} \mid A_{n}\right) . \tag{1.3}
\end{equation*}
$$

The methods of [1] allow one to calculate $P\left(B_{n}\right)$. However the set A_{n} has small probability and it is not clear how to compute $P\left(B_{n} \mid A_{n}\right)$, although it was expected that $P\left(B_{n} \mid A_{n}\right) \cong P\left(B_{n}\right)$. It was shown that if one could substitute $P\left(B_{n}\right)$ in (1.3), one could get the result.

The main technical step in this paper is a computation of such a conditional probability. We do not choose A_{n} and B_{n} exactly as above but instead use powers of the logarithm for scales.

Choose $\alpha>\gamma>\beta>1$, and set

$$
a_{n}=\left[\frac{n}{(\log n)^{\alpha}}\right], \quad b_{n}=\left[\frac{n}{(\log n)^{\gamma}}\right], \quad d_{n}=\left[\frac{n}{(\log n)^{\beta}}\right],
$$

and consider the sets

$$
\begin{gathered}
A\left(a_{n}\right)=\left\{\Pi_{1}\left[0, a_{n}\right] \cap \Pi_{2}\left(0, a_{n}\right]=\emptyset\right\} \\
D\left(d_{n}, n\right)=\left\{\Pi_{1}[0, n] \cap \Pi_{2}\left(d_{n}, n\right] \neq \emptyset \text { or } \Pi_{1}\left(d_{n}, n\right] \cap \Pi_{2}(0, n] \neq \emptyset\right\}
\end{gathered}
$$

In Theorem 2 we prove that for $\alpha-\beta>7$,

$$
P\left(D\left(d_{n}, n\right)\right) \cong P\left(D\left(d_{n}, n\right) \mid A\left(a_{n}\right)\right)
$$

i.e. that $A\left(a_{n}\right)$ and $D\left(d_{n}, n\right)$ are asymptotically independent events.

It is easier to picture the idea of the proof if we consider S_{1} and S_{2} to be one "two-sided" random walk. Let Ω^{n} denote the set of two-sided walks of length $2 n$, i.e. nearest neighbor walks $\omega(i),-n \leqq i \leqq n$, with $\omega(0)=0$. We can define $A\left(a_{n}\right)$ and $D\left(d_{n}, n\right)$ as subsets of Ω^{n}. Let \hat{P} denote the conditional measure on $A\left(a_{n}\right)$ derived from the usual measure P on Ω^{n}. Then we wish to estimate $\hat{P}\left(D\left(d_{n}, n\right)\right)$.

We accomplish this by considering another measure on $A\left(a_{n}\right)$ which is close to \hat{P}. Let $\Omega=\Omega^{n+b_{n}}$ and P the usual measure. For each $\omega \in \Omega^{n}, i=1, \ldots, b_{n}$, we say ω is " a_{n} loop-free at step i " [or $I_{i}(\omega)=1$ in the notation of Sect. 3] if

$$
\omega(j) \neq \omega(k), \quad-a_{n}+i \leqq j \leqq i<k \leqq a_{n}+i,
$$

that is, if ω is translated so that $\omega(i)$ becomes the origin, and is then cut off so that the translated walk is in Ω^{n}, the translated walk is in fact in $A\left(a_{n}\right)$. We can define a probability \widetilde{P} on $A\left(a_{n}\right)$ in the following fashion:

- choose $\omega \in \Omega^{n+b_{n}}$ (using P)
- consider all $i=1, \ldots, b_{n}$ such that $I_{i}(\omega)=1$, and randomly (i.e. with equal probability to each i) choose one such i
- translate the walk so that $\omega(i)$ is the origin.

What we prove is that \tilde{P} is in fact close to \hat{P}. This can be proven as long as the number of " a_{n} loop-free" points for a particular ω is an almost constant random
variable. This is true because the random variables I_{i} are $\left(2 a_{n}\right)$-dependent, i.e. for $|i-j| \geqq 2 a_{n}, I_{i}$ and I_{j} are independent. If b_{n} is sufficiently larger than $a_{n}(\alpha-\gamma>7)$, we can prove the result.

We finally show, using the fact that b_{n} is small with respect to d_{n}, that $\tilde{P}\left(D\left(d_{n}, n\right)\right) \cong P\left(D\left(d_{n}, n\right)\right)$. The details of the proof are worked out in Sect. 3.

In Sect. 2, it is shown how Theorem 2 can be used to prove (1.2). Essentially what is used is a logarithmic scale equivalent of (1.3).

2. The Main Theorem

Theorem 1. If

$$
f(n)=P\left\{\Pi_{1}[0, n] \cap \Pi_{2}(0, n]=\emptyset\right\}
$$

then for every $r>\frac{1}{2}$,

$$
\lim _{n \rightarrow \infty}(\log n)^{r} f(n)=\infty
$$

For any $0<n<m$, define the sets

$$
\begin{aligned}
& A_{n}=A(n)=\left\{\omega: \Pi_{1}[0, n, \omega] \cap \Pi_{2}(0, n, \omega]=\emptyset\right\} \\
D_{n, m} & =D(n, m) \\
= & \left\{\omega: \Pi_{1}(n, m, \omega] \cap \Pi_{2}(0, m, \omega] \neq \emptyset \text { or } \Pi_{1}[0, m, \omega] \cap \Pi_{2}(n, m, \omega] \neq \emptyset\right\} .
\end{aligned}
$$

Then for $n<m$,

$$
\begin{gather*}
A_{m}=A_{n} \cap\left(D_{n, m}\right)^{c}, \\
P\left(A_{m}\right)=P\left(A_{n}\right)\left[1-P\left(D_{n, m} \mid A_{n}\right)\right] . \tag{2.1}
\end{gather*}
$$

A large portion of [1] is devoted to estimating $P\left(D_{n, m}\right)$. Theorem 4.1 states that for $c>1$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty}(\log n) P\left\{\Pi_{1}(n, c n] \cap \Pi_{2}(0, \infty) \neq \emptyset\right\}=\frac{1}{2} \log c \tag{2.2}
\end{equation*}
$$

Analysis of the proof shows that a similar argument will work if we replace c with $(\log n)^{\beta}$ for some $\beta>0$, giving

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\log n}{\log \log n} P\left\{\Pi_{1}\left(n, n(\log n)^{\beta}\right) \cap \Pi_{2}(0, \infty) \neq \emptyset\right\}=\frac{1}{2} \beta \tag{2.3}
\end{equation*}
$$

The probability of the set in (2.3) differs from $P\left(D\left(n, n(\log n)^{\beta}\right)\right)$ by at most

$$
\begin{aligned}
& P\left\{\Pi_{1}[0, n] \cap \Pi_{2}\left(n, n(\log n)^{\beta}\right] \neq \emptyset\right\} \\
& \quad+P\left\{\Pi_{1}\left[n, n(\log n)^{\beta}\right] \cap \Pi_{2}\left[n(\log n)^{\beta}, \infty\right) \neq \emptyset\right\}
\end{aligned}
$$

However, by Theorem 4.1, both of the above probabilities are $O\left(\frac{1}{\log n}\right)$. We can therefore conclude

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\log n}{\log \log n} P\left(D\left(n, n(\log n)^{\beta}\right)\right)=\frac{1}{2} \beta \tag{2.4}
\end{equation*}
$$

In proving Theorem 1, we will use (2.1) and hence will need to estimate the conditional probability of $D\left(n, n(\log n)^{\beta}\right)$ given A_{n}. Note that (2.4) only gives the unconditioned probability. The main independence result is contained in the following theorem which we prove in the next section.

Theorem 2. Let $1<\beta<\alpha-7<\infty$, and let

$$
a_{n}=\left[\frac{n}{(\log n)^{\alpha}}\right], \quad e_{n}=\left[\frac{n}{(\log n)^{\beta}}\right] .
$$

Then

$$
\lim _{n \rightarrow \infty} \frac{\log n}{\log \log n} P\left(D\left(e_{n}, n\right) \mid A\left(a_{n}\right)\right)=\lim _{n \rightarrow \infty} \frac{\log n}{\log \log n} P\left(D\left(e_{n}, n\right)\right)=\frac{1}{2} \beta
$$

From Theorem 2 we can conclude a stronger independence result.
Theorem 3. If $\beta>7$ and $e_{n}=\left[\frac{n}{(\log n)^{\beta}}\right]$, then

$$
\begin{aligned}
& \limsup _{n \rightarrow \infty} \frac{\log n}{\log \log n} P\left(D\left(e_{n}, n\right) \mid A\left(e_{n}\right)\right) \\
& \quad \leqq \lim _{n \rightarrow \infty} \frac{\log n}{\log \log n} P\left(D\left(e_{n}, n\right)\right)=\frac{1}{2} \beta
\end{aligned}
$$

Proof. For each n, choose d_{1}, \ldots, d_{5} (depending on n) by $d_{5}=n$ and for $i=1, \ldots, 4$,

$$
d_{i}=\left[\frac{d_{i+1}}{\left(\log d_{i+1}\right)^{\beta}}\right] .
$$

Then for $i=1, \ldots, 5$,

$$
d_{i}=n(\log n)^{-\beta(5-i)}[1+o(1)] .
$$

Therefore for $i=1,2,3$, Theorem 2 states that

$$
\lim _{n \rightarrow \infty} \frac{\log n}{\log \log n} P\left(D\left(d_{i+1}, d_{i+2}\right) \mid A\left(d_{i}\right)\right)=\frac{1}{2} \beta
$$

Fix $\varepsilon>0$, and suppose

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{\log n}{\log \log n} P\left(D\left(d_{4}, d_{5}\right) \mid A\left(d_{4}\right)\right) \geqq \frac{1}{2} \beta+2 \varepsilon \tag{2.5}
\end{equation*}
$$

Choose N sufficiently large that for $n \geqq N, i=1,2,3$,

$$
\begin{equation*}
\frac{\log n}{\log \log n} P\left(D\left(d_{i+1}, d_{i+2}\right) \mid A\left(d_{i}\right)\right) \leqq \frac{1}{2} \beta+\frac{1}{2} \varepsilon \tag{2.6}
\end{equation*}
$$

and choose $n>N$ such that

$$
\begin{equation*}
P\left(D\left(d_{4}, d_{5}\right) \mid A\left(d_{4}\right)\right) \geqq\left(\frac{1}{2} \beta+\varepsilon\right) \frac{\log \log n}{\log n} . \tag{2.7}
\end{equation*}
$$

Then

$$
\begin{aligned}
\frac{\log \log n}{\log n}\left(\frac{1}{2} \beta+\frac{1}{2} \varepsilon\right) & \geqq P\left(D\left(d_{4}, d_{5}\right) \mid A\left(d_{3}\right)\right) \\
& \geqq P\left(A\left(d_{4}\right) \cap D\left(d_{4}, d_{5}\right) \mid A\left(d_{3}\right)\right) \\
& =P\left(A\left(d_{4}\right) \mid A\left(d_{3}\right)\right) P\left(D\left(d_{4}, d_{5}\right) \mid A\left(d_{4}\right)\right) \\
& \geqq\left(\frac{1}{2} \beta+\varepsilon\right) \frac{\log \log n}{\log n} P\left(A\left(d_{4}\right) \mid A\left(d_{3}\right)\right)
\end{aligned}
$$

or

$$
P\left(D\left(d_{3}, d_{4}\right) \mid A\left(d_{3}\right)\right) \geqq \frac{\varepsilon}{\beta+2 \varepsilon}
$$

Doing a similar argument we get the estimate

$$
P\left(A\left(d_{3}\right) \mid A\left(d_{2}\right)\right) \leqq \frac{P\left(D\left(d_{3}, d_{4}\right) \mid A\left(d_{3}\right)\right)}{P\left(D\left(d_{4}, d_{5}\right) \mid A\left(d_{4}\right)\right)} \leqq \frac{\log \log n}{\log n} \frac{(\beta+\varepsilon)(\beta+2 \varepsilon)}{\varepsilon}
$$

and since this is less than $\frac{\varepsilon}{\beta+2 \varepsilon}$ (for n sufficiently large), we can do this again and get

$$
P\left(A\left(d_{2}\right) \mid A\left(d_{1}\right)\right) \leqq \frac{\log \log n}{\log n} \frac{(\beta+\varepsilon)(\beta+2 \varepsilon)}{\varepsilon} .
$$

But

$$
\begin{align*}
P\left(A\left(d_{3}\right)\right) & \leqq P\left(A\left(d_{3}\right) \mid A\left(d_{1}\right)\right) \\
& =P\left(A\left(d_{3}\right) \mid A\left(d_{2}\right)\right) P\left(A\left(d_{2}\right) \mid A\left(d_{1}\right)\right) \\
& \leqq\left(\frac{\log \log n}{\log n}\right)^{2}\left(\frac{(\beta+\varepsilon)(\beta+2 \varepsilon)}{\varepsilon}\right)^{2} \tag{2.8}
\end{align*}
$$

However from (1.1) we know

$$
P\left(A\left(d_{3}\right)\right)=f\left(d_{3}\right) \geqq c_{1}\left(\log d_{3}\right)^{-1} \geqq c_{1}(\log n)^{-1} .
$$

Hence (2.8) cannot hold for an infinite number of values of n and therefore neither can (2.7). This contradicts (2.5), which gives us the theorem.

Proof of Theorem 1. Fix $\beta>7$, and let e_{j} be an increasing sequence of integers satisfying

$$
e_{j}=\left[\frac{e_{j+1}}{\left(\log e_{j+1}\right)^{\beta}}\right] .
$$

Then by (2.1) and Theorem 3,

$$
\begin{aligned}
f\left(e_{j}\right) & =P\left(A\left(e_{j}\right)\right)=P\left(A\left(e_{j-1}\right)\right)\left[1-P\left(D\left(e_{j-1}, e_{j}\right) \mid A\left(e_{j}\right)\right)\right] \\
& \geqq f\left(e_{j-1}\right)\left[1-\frac{1}{2} \beta \varrho_{j} \frac{\log \log e_{j}}{\log e_{j}}\right]
\end{aligned}
$$

where ϱ_{j} is a sequence of numbers approaching 1. Fix $r>\frac{1}{2}$, and choose $\gamma, \frac{1}{2}<\gamma<r$.

Then for j sufficiently large

$$
\begin{equation*}
f\left(e_{j}\right) \geqq f\left(e_{j-1}\right)\left[1-\beta \gamma \frac{\log \log e_{j}}{\log e_{j}}\right] . \tag{2.9}
\end{equation*}
$$

Let $g(n)=(\log n)^{-r}$. Then

$$
g\left(e_{j-1}\right) \geqq\left(\log \frac{e_{j}}{\left(\log e_{j}\right)^{\beta}}\right)^{-r}=\left(\log e_{j}-\beta \log \log e_{j}\right)^{-r}
$$

Hence

$$
\frac{g\left(e_{j}\right)}{g\left(e_{j-1}\right)} \leqq\left(\frac{\log e_{j}-\beta \log \log e_{j}}{\log e_{j}}\right)^{r}=\left(1-\beta \frac{\log \log e_{j}}{\log e_{j}}\right)^{r}
$$

For j sufficiently large,

$$
\begin{equation*}
\left(1-\beta \frac{\log \log e_{j}}{\log e_{j}}\right)^{r} \leqq 1-\beta \gamma \frac{\log \log e_{j}}{\log e_{j}} \tag{2.10}
\end{equation*}
$$

Let J be an integer such that (2.9) and (2.10) hold for $j \geqq J$. Then

$$
f\left(e_{j+1}\right) \geqq f\left(e_{j}\right) \frac{g\left(e_{j+1}\right)}{g\left(e_{j}\right)}, \quad j \geqq J
$$

Hence for every i, by induction,

$$
f\left(e_{J+1}\right) \geqq \frac{f\left(e_{J}\right)}{g\left(e_{J}\right)} g\left(e_{J+i}\right)=\frac{f\left(e_{J}\right)}{g\left(e_{J}\right)}\left(\log e_{J+i}\right)^{-r} .
$$

Hence there exists a $c_{r}>0$ such that for all $j, f\left(e_{j}\right) \geqq c_{r}\left(\log e_{j}\right)^{-r}$. Now for an arbitrary integer n, choose j such that $e_{j} \leqq n<e_{j+1}$. Then

$$
f(n) \geqq f\left(e_{j+1}\right) \geqq c_{r}\left(\log e_{j+1}\right)^{-r} \geqq \tilde{c}_{r}\left(\log e_{j}\right)^{-r} \geqq \tilde{c}_{r}(\log n)^{-r}
$$

Since such an inequality holds for every $r>\frac{1}{2}$, we can conclude for $r>\frac{1}{2}$,

$$
\lim _{n \rightarrow \infty}(\log n)^{r} f(n)=\infty
$$

3. Proof of Theorem 2

Let $1<\beta<\alpha-7<\infty$ be fixed. Choose $\gamma>\beta$ with $\gamma<\alpha-7$. For each n let

$$
a_{n}=\left[\frac{n}{(\log n)^{\alpha}}\right], \quad b_{n}=\left[\frac{n}{(\log n)^{\gamma}}\right],
$$

and c_{n} some number greater than $n+b_{n}$.
For each j, let Ω^{j} denote the set of two-sided simple random walks of length $2 j$, i.e. the set of all nearest neighbor walks in $Z^{4}, \omega(i),-j \leqq i \leqq j$, with $\omega(0)=0$. We will use P to denote the usual simple random walk measure, i.e. the uniform probability
measure on Ω^{j}. As in Sect. 2 we define the events

$$
\begin{gathered}
A\left(a_{n}\right)=\left\{\omega \in \Omega^{c_{n}}: \omega(j) \neq \omega(k),-a_{n} \leqq j \leqq 0<k \leqq a_{n}\right\} \\
D\left(b_{n}, n\right)=\left\{\omega \in \Omega^{c_{n}}: \omega(j)=\omega(k) \text { for some }(j, k)\right. \text { with } \\
\\
\left.-n \leqq j<-b_{n}, 0<k \leqq n \text { or }-n \leqq j \leqq 0, b_{n}<k \leqq n\right\} .
\end{gathered}
$$

On $\Omega^{c_{n}}$ define for $1 \leqq i \leqq b_{n}$,

$$
\begin{gathered}
I_{i}(\omega)=\text { indicator function of the set } \\
\left\{\omega: \omega(j) \neq \omega(k), i-a_{n} \leqq j \leqq i<k \leqq i+a_{n}\right\} .
\end{gathered}
$$

Of course, I_{i} (as well as several other quantities defined below) depends on n. Then

$$
\begin{equation*}
E\left(I_{i}\right)=f\left(a_{n}\right) \tag{3.1}
\end{equation*}
$$

Let

$$
L(\omega)=\sum_{i=1}^{b_{n}} I_{i}(\omega) ;
$$

then

$$
\begin{equation*}
E(L)=b_{n} f\left(a_{n}\right) \tag{3.2}
\end{equation*}
$$

Also note that the $\left\{I_{i}\right\}$ are $\left(2 a_{n}\right)$-dependent random variables, i.e. if $|i-j| \geqq 2 a_{n}$, then I_{i} and I_{j} are independent.
Lemma 4. If X_{1}, \ldots, X_{n} are non-negative identically distributed m-dependent random variables with $X_{i} \leqq M$, then

$$
\operatorname{Var}\left(X_{1}+\ldots+X_{n}\right) \leqq 2 n m M^{2}
$$

Proof.

$$
\begin{aligned}
E\left[\left(X_{1}+\ldots+X_{n}\right)^{2}\right] & =\sum_{i=1}^{n} \sum_{j=1}^{n} E\left(X_{i} X_{j}\right) \\
& \leqq \sum_{i=1}^{n} \sum_{j=1}^{n} E\left(X_{i}\right) E\left(X_{j}\right)+\sum_{|i-j| \leqq m} E\left(X_{i} X_{j}\right) \\
& \leqq\left[E\left(X_{1}+\ldots+X_{n}\right)\right]^{2}+2 n m M^{2}
\end{aligned}
$$

Lemma 5.

(a) $\operatorname{Var}(L) \leqq 2 a_{n} b_{n}=2 n^{2}(\log n)^{-(\alpha+\gamma)}$.
(b) For some $c_{3}>0$, for every $\varepsilon>0$,

$$
P\left\{\left|\frac{L}{E L}-1\right| \geqq \varepsilon\right\} \leqq \frac{c_{3}}{\varepsilon^{2}}(\log n)^{2-(\alpha-\gamma)}
$$

Proof. Lemma 4 immediately implies (a) since $I_{i} \leqq 1$. Chebyshev's Inequality on (a) gives

$$
\begin{aligned}
P\{|L-E L| \geqq \varepsilon(E L)\} & \leqq \frac{\operatorname{Var} L}{\varepsilon^{2}(E L)^{2}} \\
& \leqq[\varepsilon(E L)]^{-2} 2(\log n)^{-(\alpha+\gamma)} n^{2}
\end{aligned}
$$

But by (3.2) and (1.1),

$$
(E L)^{2}=\left(b_{n} f\left(a_{n}\right)\right)^{2} \geqq c_{1}^{2} n^{2}(\log n)^{-2-2 \gamma}
$$

Therefore,

$$
P\{|L-E L| \geqq \varepsilon(E L)\} \geqq\left(\frac{2}{c_{1}^{2}}\right) \varepsilon^{-2}(\log n)^{2-(\alpha-\gamma)}
$$

Let

$$
\Lambda_{n}=\left\{\omega \in \Omega^{n}: \omega(i) \neq \omega(j),-a_{n} \leqq i \leqq 0<j \leqq a_{n}\right\}
$$

and let \hat{P} denote the conditional probability measure on Λ_{n} induced by P, i.e. $\hat{P}(\omega)$ $=\frac{1}{f\left(a_{n}\right)} P(\omega)$. We can restate Theorem 2 as

$$
\lim _{n \rightarrow \infty} \frac{\log n}{\log \log n} \hat{P}\left(D\left(\frac{n}{(\log n)^{\beta}}, n\right)\right)=\frac{1}{2} \beta
$$

Unfortunately, the measure \hat{P} is very difficult to work with. Instead we will replace it by a more tractable measure which we can show is close to \hat{P}. To set the framework for our strategy, we state an abstract lemma.

Lemma 6. Let $\left(\Omega_{1}, P_{1}\right)$ and $\left(\Omega_{2}, P_{2}\right)$ be finite probability spaces and $T: \Omega_{1} \rightarrow \Omega_{2}$. Suppose $\bar{\Omega}_{1} \subset \Omega_{1}, \bar{\Omega}_{2} \subset \Omega_{2}$ and for every $\omega_{2} \in \bar{\Omega}_{2}$,

$$
\left|\frac{P_{2}\left(\omega_{2}\right)}{P_{1}\left(T^{-1}\left(\omega_{2}\right) \cap \bar{\Omega}_{1}\right)}-1\right| \leqq \varepsilon
$$

Then if $F: \Omega_{2} \rightarrow[0, M]$,

$$
\begin{aligned}
& (1-\varepsilon)\left[E_{P_{1}}(F \circ T)-M\left[\left(1-P_{1}\left(\bar{\Omega}_{1}\right)\right)+\left(1-\frac{1}{1+\varepsilon} P\left(\bar{\Omega}_{2}\right)\right)\right]\right] \\
& \quad \leqq E_{P_{2}}(F) \leqq(1+\varepsilon) E_{P_{1}}(F \circ T)+M\left[1-P_{2}\left(\bar{\Omega}_{2}\right)\right] .
\end{aligned}
$$

Proof. Let $U=\left\{\omega_{1}: T \omega_{1} \in \bar{\Omega}_{2}\right\}$. Then

$$
\begin{aligned}
P_{1}(U) & \geqq \sum_{\omega_{2} \in \bar{\Omega}_{2}} P_{1}\left(T^{-1}\left(\omega_{2}\right) \cap \bar{\Omega}_{1}\right) \geqq \sum_{\omega_{2} \in \bar{\Omega}_{2}} \frac{1}{1+\varepsilon} P_{2}\left(\omega_{2}\right) \\
& =\frac{1}{1+\varepsilon} P_{2}\left(\bar{\Omega}_{2}\right) . \\
E_{P_{2}}(F) & \geqq \sum_{\omega_{2} \in \bar{\Omega}_{2}} F\left(\omega_{2}\right) P_{2}\left(\omega_{2}\right) \\
& \geqq \sum_{\omega_{2} \in \bar{\Omega}_{2}} F\left(\omega_{2}\right)(1-\varepsilon) P_{1}\left(T^{-1}\left(\omega_{2}\right) \cap \bar{\Omega}_{1}\right) \\
& \geqq(1-\varepsilon)\left[\sum_{\omega_{1} \in \bar{\Omega}_{1}} F\left(T \omega_{1}\right) P_{1}\left(\omega_{1}\right)-\sum_{\substack{\omega_{1} \in \overline{\bar{\Omega}}_{1} \\
T \omega_{1} \notin \bar{\Omega}_{2}}} F\left(T \omega_{1}\right) P_{1}\left(\omega_{1}\right)\right] \\
& \geqq(1-\varepsilon)\left[E_{P_{1}}(F \circ T)-\sum_{\omega_{1} \in \bar{\Omega}_{1}} F\left(T \omega_{1}\right) P_{1}\left(\omega_{1}\right)-M P\left(U^{c}\right)\right] \\
& \geqq(1-\varepsilon)\left[E_{P_{1}}(F \circ T)-M\left[1-P_{1}\left(\bar{\Omega}_{1}\right)+1-\frac{1}{1+\varepsilon} P_{2}\left(\bar{\Omega}_{2}\right)\right]\right] .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
E_{P_{2}}(F) & =\sum_{\omega_{2} \in \bar{\Omega}_{2}} F\left(\omega_{2}\right) P_{2}\left(\omega_{2}\right)+\sum_{\omega_{2} \in \bar{\Omega}_{2}^{c}} F\left(\omega_{2}\right) P_{2}\left(\omega_{2}\right) \\
& \leqq(1+\varepsilon) \sum_{\omega_{1} \in \Omega_{1}} F\left(T \omega_{1}\right) P_{1}\left(\omega_{1}\right)+M\left(1-P_{2}\left(\bar{\Omega}_{2}\right)\right) \\
& \leqq(1+\varepsilon) E_{P_{1}}(F \circ T)+M\left(1-P_{2}\left(\bar{\Omega}_{2}\right)\right) .
\end{aligned}
$$

We will now apply Lemma 6 to our particular case. Let $\left(\Omega_{2}, P_{2}\right)$ be $\left(\Lambda_{n}, \hat{P}\right)$ as defined above. The function $F: \Omega_{2} \rightarrow[0,1]$ will be the indicator function of the set $D\left(n(\log n)^{-\beta}, n\right)$. The probability space $\left(\Omega_{1}, P_{1}\right)$ will be defined so that the measure $T P_{1}$ on Ω_{2} will correspond to the measure \widetilde{P} as described in Sect. 1. Let

$$
\bar{\Omega}_{1}=\left\{(\omega, k): \omega \in \Omega^{c_{n}}, k \in\left\{1, \ldots, b_{n}\right\} \text { with } I_{k}(\omega)=1\right\} .
$$

Define P_{1} on $\bar{\Omega}_{1}$ by $P_{1}(\omega, k)=P(\omega)[L(\omega)]^{-1}$. That is, we take a point ω at random, using P, then randomly, according to a uniform distribution, choose an " a_{n} loop-free" point. Note that $P_{1}\left(\bar{\Omega}_{1}\right)=P\{L \geqq 1\}$. An easy estimate using $\left(2 a_{n}\right)$ dependence gives

$$
P\{L=0\} \leqq\left(1-f\left(a_{n}\right)\right)^{b_{n} / 2 a_{n}} \leqq\left(1-\frac{\mathrm{c}_{1}}{\log n}\right)^{(\log n)^{\alpha-\gamma / 2}} \leqq O\left(\frac{1}{n}\right)
$$

We let $\Omega_{1}=\bar{\Omega}_{1} \cup\{*\}$, where $*$ is a dummy element with $P_{1}(*)=P\{L=0\}$.
Define $T: \bar{\Omega}_{1} \rightarrow \Omega_{2}$ by

$$
[T(\omega, k)](i)=\omega(i+k)-\omega(k), \quad-n \leqq i \leqq n .
$$

This is just a shift making $\omega(k)$ the origin. Since $I_{k}(\omega)=1$ if $(\omega, k) \in \bar{\Omega}_{1}, T(\omega, k) \in \Omega_{2}$. We extend T to Ω_{1} by defining $T(*)$ arbitrarily.

For $\omega_{2} \in \Omega_{2}, 1 \leqq i \leqq b_{n}$, let

$$
J_{i}\left(\omega_{2}\right)=\sum_{j=1-i}^{b_{n}-i} I_{j}\left(\omega_{2}\right) .
$$

Then by definition of T,

$$
\begin{align*}
P_{1}\left[T^{-1}\left(\omega_{2}\right) \cap \bar{\Omega}_{1}\right] & =P\left(\omega_{2}\right) \sum_{j=1}^{b_{n}}\left[J_{j}\left(\omega_{2}\right)\right]^{-1} \\
& =P_{2}\left(\omega_{2}\right) f\left(a_{n}\right) \sum_{j=1}^{b_{n}}\left[J_{j}\left(\omega_{2}\right)\right]^{-1} \tag{3.3}
\end{align*}
$$

It is difficult to analyze J_{j} directly because there is a dependence on the fact that $\omega_{2} \in \Lambda_{n}$. Instead we define for $\omega \in \Omega^{n}, 1 \leqq i \leqq b_{n}$,

$$
H_{i}(\omega)=\sum_{\substack{j=1-i \\|j| \geqq 2 a_{n}}}^{b_{n}-1} I_{j}(\omega) .
$$

Then for every ω,

$$
\begin{equation*}
H_{i}(\omega) \leqq J_{i}(\omega) \leqq H_{i}(\omega)+4 a_{n}, \tag{3.4}
\end{equation*}
$$

and H_{i} is independent of the algebra of sets generated by $\left\{B_{\eta}\right\}, \eta \in \Omega^{a_{n}}$, where

$$
B_{\eta}=\left\{\omega \in \Omega^{n}: \omega(i)=\eta(i),-a_{n} \leqq i \leqq a_{n}\right\}
$$

What we will show is for some $\theta>1, \phi>2$,

$$
\begin{gather*}
P\left\{\left|f\left(a_{n}\right) \sum_{j=1}^{b_{n}}\left(H_{j}\right)^{-1}-1\right| \geqq(\log n)^{-\theta}\right\} \leqq O\left((\log n)^{-\phi}\right), \tag{3.5}\\
P\left\{\left|f\left(a_{n}\right) \sum_{j=1}^{b_{n}}\left(H_{j}+4 a_{n}\right)^{-1}-1\right|>(\log n)^{-\theta}\right\} \leqq O\left((\log n)^{-\phi}\right) . \tag{3.6}
\end{gather*}
$$

However, since the H_{i} are independent of the sets $\left\{B_{\eta}\right\}$ we can replace P in the above inequalities with P_{2}. Then (3.4) gives

$$
\begin{equation*}
P_{2}\left\{\left|f\left(a_{n}\right) \sum_{j=1}^{b_{n}}\left(J_{j}\right)^{-1}-1\right| \geqq(\log n)^{-\theta}\right\} \leqq O\left((\log n)^{-\phi}\right) \tag{3.7}
\end{equation*}
$$

In the notation of Lemma 6 , let $\bar{\Omega}_{2}$ be the subset of Ω_{2} given by

$$
\bar{\Omega}_{2}=\left\{\left|f\left(a_{n}\right) \sum_{j=1}^{b_{n}}\left(J_{j}\right)^{-1}-1\right| \leqq(\log n)^{-\theta}\right\} .
$$

We now consider $E_{P_{1}}(F \circ T)$. Since the transformation T shifts the walk ω by at most b_{n}, we get that

$$
\begin{aligned}
P & \left\{\Pi_{1}\left[n(\log n)^{-\beta}, n-b_{n}\right] \cap \Pi_{2}\left[b_{n}, n\right] \neq \emptyset\right. \text { or } \\
& \left.\Pi_{1}\left[0, n-b_{n}\right] \cap \Pi_{2}\left[n(\log n)^{-\beta}+b_{n}, n\right] \neq \emptyset\right\} \\
\leqq & E_{P_{1}}(F \circ T) \\
\leqq & P\left\{\left(\Pi_{1}[0, n] \cup \Pi_{2}\left[0, b_{n}\right]\right) \cap \Pi_{2}\left[n(\log n)^{-\beta}, n+b_{n}\right] \neq \emptyset\right. \text { or } \\
& \left.\quad \Pi_{1}\left[n(\log n)^{-\beta}-b_{n}, n\right] \cap \Pi_{2}\left[n(\log n)^{-\beta}, n+b_{n}\right] \neq \emptyset\right\} .
\end{aligned}
$$

By (2.2) and (2.4), both the left- and right-hand sides of these inequalities equal $\frac{\log \log n}{\log n}\left(\frac{1}{2} \beta\right)(1+o(1))$. Therefore

$$
\begin{equation*}
E_{P_{1}}(F \circ T)=\frac{\log \log n}{\log n}\left(\frac{1}{2} \beta\right)(1+o(1)) \tag{3.8}
\end{equation*}
$$

Plugging (3.7) and (3.8) into the result of Lemma 6, with $\varepsilon=(\log n)^{-\theta}$, we get

$$
\frac{\log \log n}{\log n}\left(\frac{1}{2} \beta\right)(1+o(1)) \leqq E_{P_{2}}(F) \leqq \frac{\log \log n}{\log n}\left(\frac{1}{2} \beta\right)(1+o(1)),
$$

which gives Theorem 2.
It remains to derive (3.5) and (3.6). First note that each H_{j} is a sum of $\left(2 a_{n}\right)$ dependent random variables. The ideas of Lemma 4 and 5 can be applied to H_{j} giving (uniformly in j)

$$
P\left\{\left|\frac{H_{j}}{E H_{j}}-1\right| \geqq \varepsilon\right\} \leqq \varepsilon^{-2} O\left((\log n)^{2-(\alpha-\gamma)}\right)
$$

or, in other words,

$$
\begin{equation*}
P\left\{\left|\frac{E H_{j}}{H_{j}}-1\right| \geqq \varepsilon\right\} \leqq \varepsilon^{-2} O\left((\log n)^{2-(\alpha-\gamma)}\right) \tag{3.9}
\end{equation*}
$$

Let

$$
L_{1}(\omega)=\sum_{i=2 a_{n}}^{2 a_{n}+\frac{1}{3} b_{n}} I_{i}(\omega), \quad L_{2}(\omega)=\sum_{i=-2 a_{n} \frac{1}{3} b_{n}}^{-2 a_{n}} I_{i}(\omega) .
$$

The ideas of Lemmas 4 and 5 can again be applied to L_{1} and L_{2} giving

$$
P\left\{\left|\frac{L_{i}}{E L_{i}}-1\right| \geqq \varepsilon\right\} \leqq \varepsilon^{-2} O\left((\log n)^{2-(\alpha-\gamma)}\right), \quad i=1,2
$$

Since $E L_{i} \simeq \frac{1}{3} E L \geqq \frac{1}{3} E H_{j}$, and for each $j, H_{j} \geqq \min \left(L_{1}, L_{2}\right)$,

$$
\begin{equation*}
P\left\{H_{j} \geqq \frac{1}{8} E H_{j} \text { for some } j=1, \ldots, b_{n}\right\} \leqq O\left((\log n)^{2-(\alpha-\gamma)}\right) \tag{3.10}
\end{equation*}
$$

Choose $1<\theta<\mu$ such that $\phi>2$, where $\phi=(\alpha-\gamma)-2-2 \mu-\theta$. Let

$$
\Gamma_{j}=\left\{\left|\frac{E H_{j}}{H_{j}}-1\right| \geqq(\log n)^{-\mu}\right\} .
$$

Then (3.9) states that for some $c_{4}>0$, for all $j, P\left(\Gamma_{j}\right) \leqq c_{4}(\log n)^{2+2 \mu-(\alpha-\gamma)}$.
Now let

$$
\Delta=\left\{\left|\sum_{j=1}^{b_{n}} \frac{E H_{j}}{H_{j}}-b_{n}\right| \geqq b_{n}(\log n)^{-\theta}\right\} \cap\left\{H_{j} \geqq \frac{1}{8} E H_{j} \text { all } j\right\} .
$$

If $\omega \in \Delta$, since $\left|\frac{E H_{i}}{H_{i}}-1\right| \leqq 7$, we must have

$$
7\left(\#\left\{j: \omega \in \Gamma_{j}\right\}\right)+b_{n}(\log n)^{-\mu} \geqq b_{n}(\log n)^{-\theta},
$$

or

$$
\begin{aligned}
\#\left\{j: \omega \in \Gamma_{j}\right\} & \geqq \frac{1}{7} b_{n}\left[(\log n)^{-\theta}-(\log n)^{-\mu}\right] \\
& =b_{n} O\left((\log n)^{-\theta}\right) .
\end{aligned}
$$

But

$$
\begin{aligned}
P\left\{\omega: \#\left\{j: \omega \in \Gamma_{j}\right\} \geqq R\right\} & \leqq \frac{1}{R} \sum_{i=1}^{b_{n}} P\left(\Gamma_{j}\right) \\
& \leqq \frac{b_{n}}{R} c_{4}(\log n)^{2+2 \mu-(\alpha-\gamma)}
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
P(\Delta) \leqq O\left((\log n)^{2+2 \mu-(\alpha-\gamma)+\theta}\right)=O\left((\log n)^{-\phi}\right) \tag{3.11}
\end{equation*}
$$

Combining (3.10) and (3.11) we get

$$
P\left\{\left|\sum_{j=1}^{b_{n}} \frac{E H_{j}}{H_{j}}-b_{n}\right| \geqq b_{n}(\log n)^{-\theta}\right\} \leqq O\left((\log n)^{-\phi}\right)
$$

In a very similar way one can show that

$$
P\left\{\left|\sum_{j=1}^{b_{n}} \frac{E\left(H_{j}+4 a_{n}\right)}{H_{j}+4 a_{n}}-b_{n}\right| \geqq b_{n}(\log n)^{-\theta}\right\} \leqq O\left((\log n)^{-\phi}\right)
$$

But, using (1.1) and (3.1),

$$
\begin{gathered}
E H_{j}=b_{n} f\left(a_{n}\right)\left[1+O\left((\log n)^{2-(\alpha-\gamma)}\right)\right] \\
E\left(H_{j}+4 a_{n}\right)=b_{n} f\left(a_{n}\right)\left[1+O\left((\log n)^{2-(\alpha-\gamma)}\right]\right.
\end{gathered}
$$

We therefore can conclude (3.5) and (3.6).

4. Remark

We have proven that $f(n)=F(n)(\log n)^{-1 / 2}$, where $F(n) \leqq c_{2}$, and for every $s>0$,

$$
\lim _{n \rightarrow \infty} F(n)(\log n)^{s}=\infty
$$

It is still an open question whether or not

$$
\lim _{n \rightarrow \infty} F(n)=0
$$

i.e. does there exist a $c_{6}>0$ such that $c_{6}(\log n)^{-1 / 2} \leqq f(n)$?

References

1. Lawler, G.F.: The probability of intersection of independent random walks in four dimensions. Commun. Math. Phys. 86, 539-554 (1982)

Communicated by T. Spencer

Received July 12, 1984

[^0]: * Research Supported by NSF grant MCS-8301037

