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Intersections of Random Walks
in Four Dimensions. II*
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Abstract. Let f(ή) be the probability that the paths of two simple random walks
of length n starting at the origin in Z 4 have no intersection. It has previously
been shown that f(n)^c(logn)~1/2. Here it is proved that for all r>\,
lim

1. Introduction

Let Sx(n,ώ) and S2(n,ω) be independent simple random walks starting at the
origin in Z 4 (for definitions see [1]), and let 771? Π2 denote the paths of the walks

nt{a, b) = Πt{a, b,ώ) = {S^n, ω):a<n<b} ,

Πla9 6] = Πla, b, ώ] = {St{n9 ω):a£b^b}9

and similarly for I7f(α, b~\ and Π^a, b).
The probabilities that the paths 17; intersect were studied in [1]. This paper

follows up on that paper by giving a proof of a conjecture made. Let

f(n) = P{Π1 [09ή] n772(0, ή] = 0} .

In [1] it was shown that there exist cl9 c2>0 satisfying

c^ognΓ^mύcAognyV2, (1.1)

and it was conjectured for r>\, that

lim(logn)7(n) = oo. (1.2)
n-* oo

Here we prove (1.2).
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To give an idea of the technical problems involved in proving (1.2), we first
sketch an argument similar to the one in [1] which led to the conjecture. If

Bn = {Π1[O,2ή]nΠ2(n,2ή]=0 and Πί(n,2ή]nΠ2(O,ή]=0},

then

2n) = P(An)P(Bn\An) (1.3)

The methods of [1] allow one to calculate P(Bn). However the set An has small
probability and it is not clear how to compute P(Bn\An), although it was expected
that P(Bn\An)^P(Bn). It was shown that if one could substitute P(Bn) in (1.3), one
could get the result.

The main technical step in this paper is a computation of such a conditional
probability. We do not choose An and Bn exactly as above but instead use powers
of the logarithm for scales.

Choose oc>γ>β>l, and set

aJ-?—~\ hJ "
" LθθgB)"J' " LOOS")'

and consider the sets

D(dn9 ή) = {Πtl09 ή]nΠ2(dn9 ή] Φ0 or Πx(dn9 ή]nΠ2(0, ή] Φ0} .

In Theorem 2 we prove that for α — β > 7,

i.e. that A(an) and D(dm n) are asymptotically independent events.
It is easier to picture the idea of the proof if we consider Sλ and S2 to be one

"two-sided" random walk. Let Ωn denote the set of two-sided walks of length 2n, i.e.
nearest neighbor walks ω(ΐ), —n^ί^n, with ω(0) = 0. We can define A(an) and
D(dn, n) as subsets of Ωn. Let P denote the conditional measure on A(an) derived
from the usual measure P on Ωn. Then we wish to estimate P(D(dn, n)).

We accomplish this by considering another measure on A(an) which is close to
P. Let Ω = Ωn+bn and P the usual measure. For each ω e Ωn, ί = 1,..., bn9 we say ω is
"an loop-free at step f' [or /f(ω) = 1 in the notation of Sect. 3] if

that is, if ω is translated so that ω(ι) becomes the origin, and is then cut off so that
the translated walk is in Ωn, the translated walk is in fact in A(an). We can define a
probability P on A(an) in the following fashion:

- choose ωeΩn+bn (using P)
~ consider all i = l , ...,bn such that Ii(ω)=l, and randomly (i.e. with equal

probability to each z) choose one such i
- translate the walk so that ω(ί) is the origin.
What we prove is that P is in fact close to P. This can be proven as long as the

number of "an loop-free" points for a particular ω is an almost constant random
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variable. This is true because the random variables It are (2αn)-dependent, i.e. for
\i—j\ ^ 2an, It and Ij are independent. If bn is sufficiently larger than an (α — γ > 7),
we can prove the result.

We finally show, using the fact that bn is small with respect to dn, that
P(D(dn,ή))^P(D(dn9ri)). The details of the proof are worked out in Sect. 3.

In Sect. 2, it is shown how Theorem 2 can be used to prove (1.2). Essentially
what is used is a logarithmic scale equivalent of (1.3).

2. The Main Theorem

Theorem 1. //

/(n) = P{JI1[0, ή]nΠ2(0, n] =0} ,

then for every r>\,

lim (\ogn)rf(n) = °o
n~*ao

For any 0 < n < m, define the sets

= {ω:Π1l09n9ώ]πΠ2(09n9ώ]=Φ}9

= {ω: Π^n, m, ω]ni72(0? m, ω] Φ0 or Π1[09m, ώ]nΠ2(n9 m, ω] Φ0}.

Then for n < m,

m μ n ) ] .

A large portion of [1] is devoted to estimating P(Dnm). Theorem 4.1 states that
for c > l ,

lim (logή)P{Πί(n,cή]nΠ2(0, oo) + 0}=^logc. (2.2)

Analysis of the proof shows that a similar argument will work if we replace c with
{\ogn)β for some β>0, giving

l o g W ij?. (2.3)

The probability of the set in (2.3) differs from P(D(n, n(\ogn)β)) by at most

P{Π\[0, n]ni72(π, n(k>gn)'] Φ0}

nyi oo

However, by Theorem 4.1, both of the above probabilities are 01 ). We can
\lognj

therefore conclude

^ £ =i)? (2.4)
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In proving Theorem 1, we will use (2.1) and hence will need to estimate the
conditional probability of D(n, n(logn)β) given An. Note that (2.4) only gives the
unconditioned probability. The main independence result is contained in the
following theorem which we prove in the next section.

Theorem 2. Let \<β<oc — 7<co, and let

Then

From Theorem 2 we can conclude a stronger independence result.

Theorem 3. // β>Ί and en=
 Ά

 β L then

Proof. For each n, choose du ..., d5 (depending on n) by d5 = n and for ί = 1,..., 4,

Then for i= 1, ...,5,

Therefore for i= 1,2,3, Theorem 2 states that

Fix ε > 0, and suppose

^ ^ ^ (2.5)

(2.6)

(2.7)

Choose JV sufficiently large that for n^N, i= 1,2,3,

log ft
log log n

and choose n > N such that
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Then

^P(A(d4)nD(d4,d5)\A(d3))

= P(A(d4) I A(d3))P(D(d4, ds)\ A{d4))

or

Doing a similar argument we get the estimate

P(AN M Mϋ »«- PW,,d4)\A{d3)) loglogn (β+ε)(β+2ε)
P(A(d3)\A(d2))ί *

β

and since this is less than -—— (for n sufficiently large), we can do this again and

get

But
p(A(d3):

= P(A(d3)\A(d2))P(A(dJ\A(d1))

/loglog»V f(β + ε)(β+2ε)^2

However from (1.1) we know

Hence (2.8) cannot hold for an infinite number of values of n and therefore neither
can (2.7). This contradicts (2.5), which gives us the theorem.

Proof of Theorem 1. Fix β>7, and let e,- be an increasing sequence of integers
satisfying

e :==-

Then by (2.1) and Theorem 3,

f(ej) = P(A(ej)) = P(A(ej. J ) [1 - P(D(ej-lt e

where ρ̂  is a sequence of numbers approaching 1. Fix r > \, and choose γ, \ < y < r.
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Then for j sufficiently large

Let g(n) = (lognyr. Then

Hence

gj—jglogloggΛr

= Λ logloggΛΓ
(j) <

For j sufficiently large,

= Λ l
V

jY t _ loglo g e j

/ - F ' loge,

Let J be an integer such that (2.9) and (2.10) hold for j^J. Then

Hence for every z, by induction,

Hence there exists a c^>0 such that for all j , f(ej)^cχ\ogej)~r. Now for an
arbitrary integer n, choose; such that ejSn<ej+ί. Then

Since such an inequality holds for every r>\, we can conclude for

lim (logrc)r/(rc)= oo .

3. Proof of Theorem 2

Let 1 <β<a — 7<oo be fixed. Choose y>/? with y<α —7. For each rc let

and cM some number greater than n-\-bn.
For each j , let Ωj denote the set of two-sided simple random walks of length 2/,

i.e. the set of all nearest neighbor walks in Z 4, ω(ί), -j ^ i^j, with ω(0) = 0. We will
use P to denote the usual simple random walk measure, i.e. the uniform probability
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measure on Ωj. As in Sect. 2 we define the events

A(an) = {ωeΩc»:ω(j)Φω(k), -an^j^0<k^an},

D(bn, n) = {ωe ΩCn: ω(/) = ω(fc) for some (j, k) with

— n^j< —bn, Q<k^n or - π ^ j ^ O ,

On ΩCn define for 1 ^ ΐ ^ & n ,

^•(ω) = indicator function of the set

Of course, /̂  (as well as several other quantities defined below) depends on n. Then

£ ( / ; ) = / ( α n ) . (3.1)

Let

L(ω)= Σ /i(ω);
ί = l

then

E(L) = bnf(an). (3.2)

Also note that the {/J are (2αΛ)-dependent random variables, i.e. if |ί - j\ ̂  2αn, then
7t and /,- are independent.

Lemma 4. // Xu...,Xn are non-negative identically distributed m-dependent
random variables with Xt ^ M, then

n)^ 2nmM2.

Proof.

ύ Σ Σ
i=ίj=l

Lemma 5.
(a) Var(L)^2flΛ6B = 2
(b) For some c3>0, /or eϋerj ε>0,

c^ ε ^ -4(logn)2-<«-*>.
8

Proo/ Lemma 4 immediately implies (a) since It ̂  1. Chebyshev's Inequality on (a)
gives



590 G. F. Lawler

But by (3.2) and (1.1),

Therefore,

Let

and let P denote the conditional probability measure on Λn induced by P, i.e. P(ω)

-P(ω). We can restate Theorem 2 as

Λn={ωeΩn:ω(ϊ)Φω(Jl -an^i

/K)

lim
logn

v(logrcΓ

Unfortunately, the measure P is very difficult to work with. Instead we will replace
it by a more tractable measure which we can show is close to P. To set the
framework for our strategy, we state an abstract lemma.

Lemma 6. Let (Ω^PJ and (Ω2,P2) be finite probability spaces and T:Ωί^Ω2.
Suppose ΩγCΩU Ω2CΩ2 and for every ω2eΩ2,

- 1
P1(T-1(ω2)nΩ1)

Then if F:Ω2-*[0,M],

(l-ε)\EP(FoT)-M\(l-P1(Ω1))+(\--i—P(Ω2))
L ' L \ ! + ε /JJ

^EP2(F) S (1 + ε)EPί(F o T) + M[l -P 2 (Ω 2 )] .

Proof Let U = {ω1: Γωx eΩ2}. Then

) ^ Σ_ P i ( Γ " 1 ( ^ 2 ) π Ω 1 ) ^ Σ_ Ί Pii^i)

^ Σ_ F(ω2)P2(ω2)
CO2ei?2

- ( 1 " e ) LS 1 TωiφΩ2
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Similarly,

EP2(F)= Σ_ F(ω2)P2(ω2)+ Σ_ F(ω2)P2(ω2)
ct>2e£?2 ω2eί?2

Σ

We will now apply Lemma 6 to our particular case. Let (Ω2, P2) t>e (Λn, P) as
defined above. The function F: Ω2-•[(), 1] will be the indicator function of the set
D(n(\ogn)~β, n). The probability space (Ω l5 P J will be defined so that the measure
ΓPX on Ω2 will correspond to the measure P as described in Sect. 1. Let

Ω1 = {(ω, fc): ω G Ωc", fe e {1,..., fej with /k(ω) = 1} .

Define P x on Ox by P^co, fe) = P(ω)[L(ω)]~1. That is, we take a point ω at
random, using P, then randomly, according to a uniform distribution, choose an
"an loop-free" point. Note that P1(Ωί) = P{L^ 1}. An easy estimate using (2an)-
dependence gives

P{L=0} g ( l - / K ) ) ^ "

We let ί2x =Ω 1 u{*}, where * is a dummy element with P1(*) = P{L=0}.
Define Γ : Ω 1 ^ Ω 2 by

This is just a shift making ω(/c) the origin. Since /fe(ω) = 1 if (ω, k) e Ω l 5 Γ(ω, /c) e Ω2.
We extend T to Ωx by defining T(*) arbitrarily.

For ω 2 G Ω2, 1 ̂  i ̂  ί?π, let

Then by definition of T,

= P2(ω2)/(αn)ΣWω2)]-1. (3.3)
7 = 1

It is difficult to analyze Jj directly because there is a dependence on the fact that
ω 2 GΛ n . Instead we define for ωGΩ", 1 ̂ Ϊ'^foπ,

j=i-ί
\j\^2an

Then for every ω,

(3.4)
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and Hi is independent of the algebra of sets generated by {Bη}9 η e Ωan, where

(3.5)

(3.6)

What we will show is for some θ> 1, φ>2,

P

7 = 1

However, since the Ht are independent of the sets {Bη} we can replace P in the
above inequalities with P 2 . Then (3.4) gives

(3.7)

In the notation of Lemma 6, let Ω2 be the subset of Ω2 given by

We now consider EPl(Fo T). Since the transformation T shifts the walk ω by at
most bn, we get that

άO,n]υΠ2[0,bJ)nΠ2[n(logn)^,n+ftj + 0 or

By (2.2) and (2.4), both the left- and right-hand sides of these inequalities equal
log log n n—: (4p) (l+o(l)). Theretore

\ogn

1 ^\ CT I /™v rx M

(3.8)

Plugging (3.7) and (3.8) into the result of Lemma 6, with s = (\ogn)~θ, we get

which gives Theorem 2.
It remains to derive (3.5) and (3.6). First note that each Hj is a sum of (2an)-

dependent random variables. The ideas of Lemma 4 and 5 can be applied to Hj
giving (uniformly in j)

- 1
EH
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or, in other words,

1
EH,

- 1

593

(3.9)

Let

Lx{ω)=nΣnh{o>), L2(ω)= Σ " h(ω).
i = 2an ί= -2anfbn

The ideas of Lemmas 4 and 5 can again be applied to Lx and L2 giving

EL

Since EL(^EL^EHp and for each;, Hj^min(L1,L2),

P{HJ^EHJ for some j = l,...,fcJ^O((logn)2-(α-rt) (3.10)

Choose l<θ<μ such that ^>2, where φ = (a — γ) — 2 — 2μ — θ. Let

Γj = - 1
Ίj

Then (3.9) states that for some c 4 >0, for all , P(/})^c4(logn)
Now let

Δ = j a l l j } .

If ωeΛ, since ^ - 1 ^ 7, we must have

or

But

# {;: ω e Γj} ^&B[(lognΓ β-(log»Γ μ]

= bnθ({logn)-θ).

P{ω: Σ

Therefore,

Combining (3.10) and (3.11) we get

P<

(3.11)
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In a very similar way one can show that

But, using (1.1) and (3.1),

We therefore can conclude (3.5) and (3.6).

4. Remark

We have proven that f(ή) = F(n) (logn)~1/2, where F(n) ̂  c29 and for every s >0,

lim F(ή)(logn)s=co.
n-> co

It is still an open question whether or not

limF(n) = 0,
n-> oo

i.e. does there exist a c 6 >0 such that cβ(logn)~ίl2Sf(n)Ί
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