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Abstract. We prove the Grassmann valued system of extended supergravity
JV= 1, d= 11 proposed by Cremmer and Julia is well proposed and causal.

Introduction

The extension of supergravity to d-dimensional models offers a synthesis between
ordinary d = 4, N = 1 supergravity [8, 14] which unifies a bosonic and a fermionic
field (graviton and gravitino) and the old ideas of Kaluza-Klein-Jordan-Thiry for
unification of gravitation and electromagnetism through a fifth dimension of space
time, an idea extended to Yang-Mills fields by B. DeWitt, R. Kerner etc. Among
the various extended supergravity models proposed for unification of all
fundamental interactions a particularly interesting one, called JV = 1, d=ll
supergravity, is an Einstein Cartan theory in an 11 dimensional space time with
source a spin 3/2 field, a spinor valued 1-form. However, it is necessary, in order to
have a coherent system, to add another field called the "three index photon", a
numerical valued 3-form.

We show in this paper - as we have done before for simple supergravity cf. [2],
that the system of partial differential equations of the JV = 1, d = l l extended
supergravity satisfied by the Grassmann valued fields is a well posed system for the
Cauchy problem, with constraints but causal: the solution at a point depends only
on the initial data which are in the past of that point, this past being determined by
the isotropic cone of the numerical part of the metric.

1. Notations

F = S χ ] R , 11 dimensional, C00 manifold, xM, M = 0, ...,10 local coordinates,
dM = d/dxM> e = (eA

M\ ^A = eAM^M: H dimensional moving frame, eΛ

M inverse
matrix of eA

M, ΘA = eΛ

MdxM moving coframe dual of e^.

QMN = eA

MeB

N^AB: hyperbolic metric g,

ΆAB — diag (1,—1,...,—1) Minkowski metric.
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Indices from the beginning of the alphabet are moving frame indices, from the end
of the alphabet natural frame indices. Components in the natural and moving
frame are interchanged through eA

M or eA

M. Indices are lowered by gMN, ηAB

[respectively raised by gMN, ηAB\ for instance dA = eA

MdM, eAM = gMNeA

N.
e = det(eA

M), τ = edx°...dx10, volume element, τMl' Mll = e~ίε™\'-{$ίl1: contrava-
riant components of the volume 11-form, ΓA standard Dirac matrices, ΓM = eA

MΓA,
ΓAΓB + ΓBΓA = 2ηAB,

ΓMί...Mp_ J_ Mi — MppNί rNp_Γ[Nί pNp]

~ p\ Nί'"Np " ~ '

tp = (ψN) 1-form with spinor values, in a spin frame associated to the Lorentz frame
e, tp = (!/)#) = iψΓ0, ~: transposed imaginary conjugate. ώ = (ώM^β): Riemann
connection of g:

<»MAB = eCMUC

AB = 2(CMAB + ^ MB + ^ BM) With C c V Λ = I>O *B\ >

thus cM

A

N = 2d[NeA

M] = dNeA

M - dMeA

N. (1.2)

ω = (ωM

A

B): metric connection with torsion:

<*>MAB = U*MAB + CMAB , C = (CM

A

B) contorsion tensor, (1.3)

C ^^ + S + 5 )

with S = (SC

A

B) = — (SB

A

C) the torsion tensor. V, V covariant derivatives in ώ and ω,
respectively. D: Riemannian co variant derivative on tensor indices, and on spinor
indices in the spin image of the connection ω

ϊωM

A

BΓAΓ
B. (1.5)

Curvature tensor:

RMNAB = 2(d[MωN

AB + ω[M

A

cωN]

CB). (1.6)

3-index photon: 3-form A = — ΛMNPdxM A dxN A dxp, F = dk.

The fields e and ψ take their values in a Grassmann algebra ^, whose
generators are denoted by ζ1, 1=1, ...,N (possibly N=oo), and obey the
anticommutative law:

Each field / admits a decomposition (formal series if N= oo, cf. [11])

/=Σ/(p). ^
O

w h e r e / / l < 7 is a usual (numerical) field. Usual laws of differential tensor calculus
are applicable to / through their application to each flγ,.Λ . If the series contains
only even [respectively odd] powers of the generators, / is called even [respec-
tively odd]. Two odd elements anticommute. Even elements commute with all
elements. The field e is supposed to be even and φ to be odd. A ̂  valued matrix is
invertible if and only if its body (term of zero order in 0) is invertible. We
suppose e(0) invertible, g(0) is then a usual hyperbolic metric.
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We suppose that ψ is a Majorana spinor, i.e. a real spinor (the Γ matrices are
pure imaginary).

2. Equations

The Lagrangian of d=ll, N=l extended supergravity is (cf. [6, 7])

^ = ί \e/eA

MRMN

AB + 2ίψMΓM

_L F FMNPQ ί M1M2...M11P
12 MNpQ ~ 3 4 2 Γ M I . . .

(2.1)

The equations, ^-valued, are obtained by equating to zero the coefficients of the
"variations" δe, δ(o, (Sip, and δA in the "variation" of «£? (a dot denotes the g scalar
product):

= ί {2ΣM

ΛδeA

M + DMB

AδωM

A

B

obtained by the classical procedures of the linearization of the integrand and
integration by part, with zero boundary terms.

1) We first vary ω. We will then, as in usual Einstein-Cartan models with first
derivative couplings, obtain the torsion as a function of the other fields. Indeed,
one deduces easily from (1.6), setting δωM

ΛB=fM

AB, antisymmetric in A and B

s p AB 917 r AB . c Q f AB

0KMN = Z V[MJN] + !>M NJQ

The only terms in δ5£ which contain δco come from <5R and δDNψP, and are

Since we have identically VMeA

N = 0 we have

Ίo Mo NU f AB — ΊU f MB — ΊV f M β _ L ? Γ M f NB
ZeA eB V[MJN] —ZyMJB — LVMJB + Z ( - M NJB

The first term, a Riemann divergence, disappears by integration and we are left
with

C M NJB -T-^A BJQ + 2 ^ M 1A1B)ΨPJN

that is an integral of the form

f JΛQ f AB _ Λ

) u ABJQ τ — U ,

where DQ

AB is the tensor, antisymmetric in A and B, which we shall equate to zero:

0, (2.2)

which implies

, - n c M

M

B + ι - ψ M r M A P r A B ψ p = o .
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Thus, since [cf. (1.4)]

A o M si M
A B~^M B~^M B >

M — l m ΓMΛP

S A

Q

B = - \wMrMPQrABxpP+l^MrMCPrC[BWpdA^. (2.3)

2) Equating to zero the coefficient of δeA

M gives:

ΣM

A = (GM

Λ-TM

Λ) = 0, (2.4)

where GM

A = RM

A—\eA

MR is the (non-symmetric) Einstein-Cartan tensor which
comes from the variation oϊ R = eA

MeB

NRMN

AB and Ύ = (TM

A) is the stress energy
tensor, of the type (recall ΓM = eA

MΓA)

even polynomial in ψ, 3ψ of order 4 (linear in 3ip), polynomial in F of order 2, in e,
de of order 6 (linear in δe).

3) By equating to zero the coefficient of δA = a, and since <5F = f = δdA = da [V
is the coderivative operator: (V F)NPQ = VMFMNPQ

i * denotes the metric adjunction
of forms, kί9k2 numbers] we get an equation of the form1

# - Ξ k 1 F F + /cf(FΛF)+Γ Φ = O, (2.5)

with Φ = Φ(ψ, e) a polynomial in ψ, homogeneous of degree 2, polynomial in e of
degree 6.

4) Equating to zero the coefficient of δψM =fM gives the Rarita-Schwinger
equation2

where rM = rM(tp, e, F) is an odd polynomial in ψ of degree 3, depending linearly on
F, and on e by polynomials of degree 6.

3. Identities

When the torsion is given by (2.3) the variation of i f reduces to

= \(2ΣM

AδeA

M + AiδψMStM + δA # > . (3.1)

1 One used the identity (kt some various numbers)

$*(FΛ f) Aτ = kί$A* -(FΛ f)τ = k1f A* d{F

2 One uses the identity

NfP = DN(ψMΓMNPfP)-DN(ψMΓMNP)fP
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1) «£? is invariant under Lorentz transformations of the moving frame e and
associated transformations of the spin frame. That is, δ$£ = 0 whenever

δeΛ

M = UABeBM, δψM =iψMUΛBΓAΓB, δA = 0,

with Ufx

B a generator of Lorentz transformation in the tangent space TXV, i.e. an
antisymmetric 2-tensor. We therefore have, identically

2Σ[AB] + ίψMΓAB@
M^0. (3.2)

2) From the invariance of if by the gauge transformation3 δA = dφ, φ
arbitrary 2-form, we deduce the identity

V &ΞΞO. (3.3)

3) By diffeomorphism (or change of local coordinates) the Lagrangian is also
invariant. That is, <5if = 0 whenever4 (ξ generator of local diffeomorphisms, i.e.
arbitrary vector field)

Zp M _ zLτ7 M Lrr zM Z.j. _ z
OeA —Q VLe(A) ~eA VLQ J °ΨM — Q

where VL acts only on the natural coordinate index

If we take into account the previous identities5, we obtain

2VLΣM

L-Ml{VMxpL-VLψM)^L-ψMVL^ + F ^ ^ . (3.4)

4) The infinitesimal invariance of if by the supersymmetry

δeA

M = iεΓMψA, δxpM = DMε + φMε, δΛMNP=

(where φM is a given polynomial6 in ψ, even of degree 2, polynomial in e of degree 6
and linear in F), is equivalent to the identity

+ 2iΓMψAΣM

Λ+ΪΓlMNψP]^
MNP = 0. (3.5)

3 F is unchanged by the transformation A\-> A + άφ and we have

$*(F Λ F) .(dφ)τ = kι$(V -*(F Λ F)) φτ = k2$(*d(F Λ F)) > φτ =

4 The parenthesis on A means that this index here is just a label, not to be covariantly derived
5 We use the fact that

Thus

ΣL

AVMe(A)L = ΣBAωM

BΛ = Σ[BA]ωM

BA.

Also

\ d { ξ Ά ) - j F τ = / c { ( ξ A ) -{V•

6 φM= ^ Λ Λ Γ + ^ ( ^
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4. Gauges

1) The Rarita-Schwinger gauge, introduced by these authors in 4-dimensional
Minkowski space time to separate pure spin states is the condition

χ = ΓMψM = 0. (4.1)

In such a gauge the Rarita-Schwinger equation can be shown to be equivalent to
an equation with the hyperbolic principal part βψ. Indeed, we have the identity:

^M = 0ψM-ΪΓMlΓN0ψN + {0Γp)ψP - 0χ] + (DMΓp)Wp - Mχ, (4.2)

where

UNΨP>

from which we deduce7

@M = dM + rM = (0ψM + QM)-\ ΓM ΓN(0ψN + ρN)-DMχ+±ΓM0χ, (4.3)

if

QM = rM+γz7d ΓMrN + ΦMΓp)xpP.

2) The harmonic gauge (yp

MN Riemannian connection in the natural frame)

= 0 (4.4)

is well known to turn Einstein equations into a hyperbolic system due to the
identity, for the Ricci tensor of a Riemannian connection

dM$), 5)

= -h Π QMN + rMN(g, dg), D = gLPd2

LP.

3) The 0(1,10) gauge introduced in simple supergravity by Bao et al. [1] limits
the moving frame by the condition

eA[MUeA

N] = 0. (4.6)

7 The following identity holds irrespective of the dimension (ΓMΓN + ΓNΓM = 2gMN)

From it we deduce

ΓM^M = ΓMΓMNPDNψP = (d- 2)ΓNPDNψP

and

ΓMΓLstfL = (d- 2)(ΓMNPDNΨP + ΓpDMψP - 0ψM).

Thus

T^ = y-^(0X-(0rpypP-rp0rpP)

and

sίM = ^ (fix - (0Γp)ψP - Γp0ψP)-DMχ + (DMΓp)ψP + 0ψM
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In such a frame we have

D gMN = D (eAMeΛ

N) = 2eAM D e\ + 2gP(*dPeAMdQeA

N. (4.7)

4) On the "3 index photon" we shall impose the gauge condition, analogous to
the Lorentz one8

dΆ = (dMAMNP) = 0. (4.8)

In this "Lorentz gauge" the principal part of J^, V F reduces to D A. Under all
these gauge conditions the system takes the form (where t stands for "truncated")

V ~ W N * Σ = - Π eA

N+fA

N(e,Se,φ, dψ,F) = 0, (4.9)

^ N e,de^F) = O, (4.10)

<#" = D A + /(e,de,A,F,ψ,dψ) = 0. (4.11)

If e, ψ, A were numerical valued this system would be a non-strict hyperbolic9

system in the sense of Leray-Ohya (cf. criterion in [4]) with causal propagation
governed by the light cone of the metric g.

If the truncated equations (4.9)—(4.11) hold, the identities of the previous
paragraph give the following equations for the left-hand side of the gauge
conditions:

1) We have

*ΣMN = ΣMN-^(gMPdNΦp + gNPdMΦp-gMNdPΦ
p)-eA[M D eA

m. (4.12)

In particular:

Therefore, when (4.9) and (4.10) are satisfied, we deduce from (3.2) the equation

-\eA[M D e\-iψPΓMN(-^Dpχ+^2Γ
p0χ) = O. (4.13)

2) When (4.11) is satisfied we have

The identity V ϊF = 0 gives therefore an equation linear and homogeneous in d A,
of the type

(d A) = 0, (4.14)

where h is a given function of e and de.
3) When (4.9) is satisfied we have

8 We choose d A instead of V A in order not to introduce unnecessary non-diagonal terms in
the coupled system
9 The characteristic matrix is non-diagonal due to the appearance of terms in de in the Rarita-
Schwinger equation. For such a system the existence theorem is valid only in a Gevrey class (C00

functions with restrictions on growth of derivatives), but the domain of dependence properties,
which give the causality, hold
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Then when (4.9) and (4.11) are satisfied the identity (3.5) gives a linear
homogeneous equation of the type

-ίDMDMχ + lin(χ, dχ9 Φ, dΦ, d(d A)) = 0, (4.15)

where lin(...) denotes an expression linear in its arguments, with coefficients
which are functions of e, de, δ2e, ψ, 9ψ.

4) Using (4.12), (4.13), and also (4.14) we deduce from the Bianchi identity that
the solutions of Eqs. (4.8)-(4.10) satisfy also a linear homogeneous equation of the
form

D Φ + lin(Φ,3Φ,3 A,3(δ A)) = 0. (4.16)

If the unknown were scalar valued the system (4.14)-(4.16) would be a linear
homogeneous hyperbolic system for the gauge conditions.

5. Cauchy Problem. Constraints

The Cauchy data, on the submanifold S0 = Sx {0} are:
The moving frame e and its time derivative doe.
The spin 3/2 field \p.
The 3-form A and its time derivative d0A.
These quantities must satisfy on So the following equation which depends only

on them

mo = rONPdNψP+f°(e, δe, ψ, 3A) = 0. (5.1)

We suppose also that ψ satisfies the Rarita-Schwinger initial gauge condition

χ^ΓMψM = 0 on So. (5.2)

We determine 30ψ on So by the equation

0 ψ + f = O on So, (5.3)

and we suppose that we have then

ΣMO = 0 on So ? (5.4)

^ONP = 0 on S o (5.5)

(these quantities depend only on e, tp, A and their first derivatives, now known
on So).

We deduce from (5.1), (5.4), and (5.3) [cf. identity (4.3)]

doχ = 0 o n S 0 . (5.6)

We suppose that the initial data for e and δoe are such that the corresponding
metric satisfies the harmonicity conditions

Φ = 0 on So, (5.7)

and that the initial data for A, d0A satisfy

<3 A = 0 o n S 0 . (5.8)
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For a solution of the truncated equations (4.9) and (4.11) with initial data satisfying
the constraints (5.4) and (5.5) we then have also

<90Φ = 0, do(d A) = 0 onS0. (5.9)

The homogeneous system (4.14)—(4.16) and the vanishing on So of χ, d A,Φ and
their first derivatives would insure by known theorems the vanishing of these
quantities in all the domain of dependence of the solution, if the unknown were
numerical values.

6. Grassmann-valued Cauchy Problem

We have supposed, and it is necessary for the identity (3.5) to hold, that the fields
take their values in the Grassmann algebra ^, with e and A even valued, ψ odd
valued. The numerical equations satisfied are obtained by equating to zero each
component in ^ of the ^ valued equations. The identities obtained in Sect. 3 hold
in &9 therefore, they give a set of numerical valued identities. The Cauchy data on
So are even valued for e, δoe, A, d0 A, odd valued for ψ, and supposed to satisfy the CS
valued constraints (5.1)—(5.7). Equations (5.8) and (5.9), with values in ^ are then
satisfied.

Theorem. The Cauchy problem for the equations of d=\\ extended supergravity,
with values in a Grassmann algebra & is well posed and causal. If & has N generators
and the Cauchy data (satisfying the constraints and the initial gauge conditions) are
such that10, on So (with s a non-negative integer and O^/?rg

, d0e(2p)eHι

6

oc

+[N/2]_p+s,

the solution exists in a neighborhood Ω of Sθ9 globally hyperbolic for g(0), and
belongs to Hι£c

+S.
If @ has an infinite number of generators the Cauchy data must belong to C00,

and the solution exists as a formal series of C™ functions.

Proof.11 1) The "body", terms of order zero in ^, of the original equations
(2.4)-(2.6) reduces to the Einstein equation for the body g(0) of the metric g with
source the Maxwell field F(0) = dA(0) of the body A(0) of the 3-index photon, and
the Maxwell equation for F(0), namely 1 2

)), (6.1a)

(6.1b)

10 A function So [respectively Ω~] belongs to Hι°c if its restriction to any compact set of
So[respectively Ω] belongs to Hs.

A(2p), e(2p), tp(2p —1) belong on each St to the same Sobolev space as on SO, and the
dependence on t is as given in [16], or [5]. Thus iΐN = 2n we have A(2p), e(2p), ψ(2p— 1) e Hl°%s,
p^ n, and if N = 2n +1 we have again A(2p), e(2p) e H\oc

+S, p^n while ψ(JV) e Hψ+S

11 A field f(p) is a set of Nl/p\ numerical fields. In a numerical equation of finite order only a
finite number of the numerical fields of order ^ p appears, only one of order p if p = 0. We say that
/(p)eff,ifeach/,,...,, e if,
12 Various exact solutions of these equations, candidates for a "ground state" of the theory have
been obtained (cf. [12, 13, 15] and references in [18])
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The Cauchy problem for these equations, with data e(0), 30e(0), A(0), 50A(0)
satisfying the constraints (verified as a consequence of the ^-valued constraints)

ΣMO{0) = 09 ^OPQ{0) = 0 onS0 (6.2)

is well posed and causal, with propagation determined by g(0), because13 when
Φ(0) = 0 and d A(0) = 0, they reduce to a strictly hyperbolic system (of second
order on an 11 dimensional manifold), and because the gauge conditions are
preserved by evolution for initial data satisfying the constraints, due to the
identities, deduced from (3.3), (3.4)

2FL(0)ΣM

L(0) + F(0) nθ) = 0, P(0) &(0) = 0,

which give, when Eqs. (6.1) are satisfied in the gauges, an ordinary linear
homogeneous hyperbolic system for Φ(0) and (β A)(0), body of the system (4.15),
(4.16), while the body of Eqs. (5.9) shows that the Cauchy data on So for these
quantities vanish. These results hold (cf. [16,5]), for Cauchy data e(0), A(0) in HΊ+a

and δe(0), 9A(0) in H6+a with a non-negative integer. The solution is in HΊ+a,
where Ω is some neighborhood of So in S x R, globally hyperbolic for g(0). The
Sobolev spaces can be taken to be local Sobolev spaces.

2) The terms of order 1 in the system are only ^?(1), and ^2(1) = 0 is a linear
Rarita-Schwinger type system 1 4 for ψ(l) when e(0) and A(0) are known in

mM{\) = ΓMNP(0)VN(0)ψP(ί) + rM{\) = 0.

The Cauchy problem for this system is well posed and causal, with propagation
determined by g(0) because the system

[where ρM(l) is of the form αM

L(0)φL(l), αM

L(0) function of e(0), δe(0), F(0)] is
strictly hyperbolic, and the gauge condition χ(l) = ΓL(0)ιpL(l) = 0 is preserved
through evolution15 due to the identity (4.14) and Eqs. (5.4), (5.18) taken at the
order 1 in ^. These results hold for Cauchy data ψ(l) on So i n 1 6 H6+a(S0), the
solution exists in all the globally hyperbolic domain Ω, and is in H6+a(Ω).

3) Suppose we have solved up to order In Eq. (2.4)-(2.6), as well as the gauge
conditions (4.1), (4.4), (4.6), (4.8).

The equations of order 2n in ^ are

ΣMN(2n) = GMN(2n) - TMN(2n) = 0, (6.3a)

^(2n) = {V F)(2n)-k * (F A F)(2n) + (V- Ψ)(2ή) = 0. (6.3b)

If the gauge conditions

Φ(2n) = 09 (eA[N Π eA

M])(2n) = 0, (dΆ)(2ri) = 09 (6.4)

13 These results are well known for ordinary Einstein Maxwell equations
14 ψ(\) is a set of AT numerical fields ψI

15 The integrability condition PM(0)^M(l)=0 is satisfied modZMiV(0) = 0, #X0) = 0
16 We lose one derivative here because aM

L(0) is only in H6+a(Ω) when e(0), A(0) are in H7+a(Ω)
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are satisfied, these equations reduce to a system of the type:

Π(0)eΛ

N(2n) + φΛ

N=0, (6.5a)

Π(0)A(2ή) + φ = 0, (6.5b)

where φΛ

N and φ are affine functions in e(2ή), de(2n), A(2ri), dA(2n) whose
coefficients are known functions of e(2p), A(2p), O^p^n, and their derivatives of
order ^2, and of ψ(2p+\\ O^p^n, and its first derivatives.

The linear hyperbolic system (6.5a), (6.5b) has a global solution in Ω, A(2ή),
e(2n)eHΊ+an, for Cauchy data in HΊ+anxH6+an, if e(2p), A(2p), #8+«n>
ψ(2p+ \)eH7+an, Of^p^n, with an a non-negative integer. This solution satisfies
the gauge conditions (6.4) by the identity of Sect. 3 and the constraints and initial
gauge conditions of Sects. 4 and 5 written at that order and the properties
supposed satisfied at the lower orders.

The equations of order 2n+1 reduce to the linear system in ψ(2n+l)

0, (6.6)

while Eq. (4.10) gives, at this order the linear hyperbolic system

f(0)ψ(2n+\)+f=0, (6.7)

where / is an affine function of e(2p), A(2p), ψ(2p—l), Of^p^n, and their first
derivatives. A solution of the Cauchy problem for (6.7) satisfies (6.6) [by the
identity (3.5) written at the order 2n+ 1] if the Cauchy data satisfy the constraints,
and the initial gauge conditions. These results hold for Cauchy data ψ(2n + 1) on
S0in/ί6+αM,ife(2p), A(2p),ψ(2p- l)e HΊ+an for O^p^rc; the solution is in H6+an

on Ω.
The conclusion follows by induction on n9 choosing an = s + [iV/2] — n.
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