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The Cauchy Problem
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Abstract. We prove the Grassmann valued system of extended supergravity
N=1,d=11 proposed by Cremmer and Julia is well proposed and causal.

Introduction

The extension of supergravity to d-dimensional models offers a synthesis between
ordinary d =4, N =1 supergravity [8, 14] which unifies a bosonic and a fermionic
field (graviton and gravitino) and the old ideas of Kaluza-Klein-Jordan-Thiry for
unification of gravitation and electromagnetism through a fifth dimension of space
time, an idea extended to Yang-Mills fields by B. DeWitt, R. Kerner etc. Among
the various extended supergravity models proposed for unification of all
fundamental interactions a particularly interesting one, called N=1, d=11
supergravity, is an Finstein Cartan theory in an 11 dimensional space time with
source a spin 3/2 field, a spinor valued 1-form. However, it is necessary, in order to
have a coherent system, to add another field called the “three index photon”, a
numerical valued 3-form.

We show in this paper —as we have done before for simple supergravity cf. [2],
that the system of partial differential equations of the N=1, d=11 extended
supergravity satisfied by the Grassmann valued fields is a well posed system for the
Cauchy problem, with constraints but causal: the solution at a point depends only
on the initial data which are in the past of that point, this past being determined by
the isotropic cone of the numerical part of the metric.

1. Notations

V=SxIRR, 11 dimensional, C* manifold, x™, M =0, ...,10 local coordinates,
Oy =0/0xM, e=(e,M), e,=e,Md): 11 dimensional moving frame, e*,, inverse
matrix of e M, 04=e4,dx™ moving coframe dual of e,.

Iy =€ ve®\n45:  hyperbolic metric g, )
nqp=diag(l, —1,..., —1) Minkowski metric. .
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Indices from the beginning of the alphabet are moving frame indices, from the end
of the alphabet natural frame indices. Components in the natural and moving
frame are interchanged through e, or e#,,. Indices are lowered by gy, Mz
[respectively raised by gMN, 48], for instance 0,=e,M0,, e*™=g"Ne4,.
e=det(e?y), T=edx’...dx'°, volume element, tM*--Mi1= ¢~ 1M1 Mit: contrava-
riant components of the volume 11-form, ' standard Dirac matrices, ' =e ,MT'4,
FAFB + I"BI"A — 2,,’AB,
FMl...Mp= lng...MpFN1 . FN"=F[N‘ B FN"]
p! Ni...Np . . s

y=(py) 1-form with spinor values, in a spin frame associated to the Lorentz frame
e, P=(Py)=iPpIl° ~: transposed imaginary conjugate. ®=(d,*): Riemann
connection of g:

Oy p=eudc' g =3(Cr s+ yp+py) With cc?pe =[ec 5],
thus ¢y y=20ve” sy =0ne" s — e’y - (1.2)
o =(w,,*p): metric connection with torsion:
Wy =0y g+ Coy,  C=(Cy™tp) contorsion tensor, (1.3)
CMAB =%(SMAB + SABM + SAMB) > (1.4)
with S = (S45) = — (S5*c) the torsion tensor. V, V covariant derivatives in @ and o,

respectively. D: Riemannian covariant derivative on tensor indices, and on spinor
indices in the spin image of the connection ®

Loy Al B, (1.5)
Curvature tensor:

Ryy*?= z(a[MwN]AB + CU[MACCUN]CB) . (1.6)

. 1
3-index photon: 3-form A= B ApnpdX™ A dxN A dxF, F=dA.

The fields e and v take their values in a Grassmann algebra ¥, whose
generators are denoted by (’, I=1,...,N (possibly N=o0), and obey the
anticommutative law:

CICJ= _CJCI~

Each field f admits a decomposition (formal series if N= oo, cf. [11])

N
F= B 10 FO= fra e O

where f;, . ;,is a usual (numerical) field. Usual laws of differential tensor calculus
are applicable to f through their application to each f;, . ;,. If the series contains
only even [respectively odd] powers of the generators, f is called even [respec-
tively odd]. Two odd elements anticommute. Even elements commute with all
elements. The field e is supposed to be even and y to be odd. A 4 valued matrix is
invertible if and only if its body (term of zero order in %) is invertible. We
suppose e(0) invertible, g(0) is then a usual hyperbolic metric.
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We suppose that ¢ is a Majorana spinor, i.e. a real spinor (the I' matrices are
pure imaginary).

2. Equations
The Lagrangian of d=11, N=1 extended supergravity is (cf. [6, 7])

L i
L= {eBNeAMRMNAB +2ip, MNP I:DNWP 3 (ol Nas2R Rl ABlPP]

1 1
+ EFMNPQFMNPQ_ 34,95 M MuFy P s meArs . o

1 _ _
- W(WMFMNWXYZLUN + 129" T p?) 2F yyyz— 31P[WFXY1PZ])} T(20)

The equations, %-valued, are obtained by equating to zero the coefficients of the
“variations” de, dm, Sy, and A in the “variation” of £ (a dot denotes the g scalar

product):
0L =[{25,"0e M+ D"E 5wy g+ 0A - F +4i0p R}t

obtained by the classical procedures of the linearization of the integrand and
integration by part, with zero boundary terms.

1) We first vary @. We will then, as in usual Einstein-Cartan models with first
derivative couplings, obtain the torsion as a function of the other fields. Indeed,
one deduces easily from (1.6), setting 5w, = f,,®, antisymmetric in 4 and B

5RMNAB: 2 V[MfN]AB + SMQNfQAB'
The only terms in 6% which contain de® come from R and 6Dyyp, and are
[ {eses Vi fay*® + STin fo B) + 50N S Py

Since we have identically V,.e,~ =0 we have

2e,Meg" l7[1\41’1\!]"“3 =2V 0 "8 = 200 5B+ 2C0 M f5N".
The first term, a Riemann divergence, disappears by integration and we are left
with

i _

) {2CMMNfBNB+ SAQBfQAB + E(WMF MNPL AI};)V)PfNAB} T,

that is an integral of the form
IDQABfQABT =0,

where D2, is the tensor,antisymmetric in 4 and B, which we shall equate to zero:
I
D,5=8,2%+CpM 1052 — Ciy™50 0+ P P MO =0, 22
which implies

i_
S5+ CyMp—11CyMp+ ) P M ygypp=0.
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Thus, since [cf. (1.4)]

SAAB = SMMB = CMMB >
i
CMMB = 2.9 Pyl MAPT ABYp>

i_ i_
SAQB= - ‘2‘1PMF Mrer, as¥pt §1PMF MCPE:[BWP5A]Q . (2.3)

2) Equating to zero the coefficient of de M gives:
2ut=(Gy - Ty =0, (2.4

where G,,4=R,;,*—1e?,,R is the (non-symmetric) Einstein-Cartan tensor which
comes from the variation of R=e,Me;"R,y*2 and T =(T,,") is the stress energy
tensor, of the type (recall '™ =e¢ MI4)

T(e, 0e, F, ¢, 0y),

even polynomial in v, dy of order 4 (linear in dv), polynomial in F of order 2,in e,
Oe of order 6 (linear in Oe).

3) By equating to zero the coefficient of SA =a, and since 6F =f=0dA =da [V -
is the coderivative operator:(V - F)N? =V, FMNP2 * denotes the metric adjunction
of forms, k,, k, numbers] we get an equation of the form!

F=k,V F+ki(FAF)+V - ®=0, 2.5)

with ® = @(y, e) a polynomial in 3, homogeneous of degree 2, polynomial in e of
degree 6.
4) Equating to zero the coefficient of dy,,=f;, gives the Rarita-Schwinger
equation?
%MEFMNPDNwP"‘rM:O, (2.6)
where ™ =rM(yp, e, F) is an odd polynomial in y of degree 3, depending linearly on
F, and on e by polynomials of degree 6.

3. Identities
When the torsion is given by (2.3) the variation of % reduces to
0L =22\ A0e M+ 4i5p R +0A - F)r. 3.1)

1 One used the identity (k; some various numbers)
[*(FAf)-Av=k[A* - (FA f)r=k, [ A*-d(F r a)t
=k, [(F-A%) (FAra)t=—k,[*F-(FAa)t=k; [*(FAF)-at
2 One uses the identity
Pl MNPDNfP = DN(V—)MF MNPf ») —Dn(Ppl MNP)fP
=Pn P ™™ fo) + Fud T Dypp + (DN Py )
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1) & is invariant under Lorentz transformations of the moving frame e and
associated transformations of the spin frame. That is, 6. =0 whenever
6eAM=UABeBM, 51,[) % MUABFAI}’ 5A=0,
with U{S a generator of Lorentz transformation in the tangent space TV, i.e. an
antisymmetric 2-tensor. We therefore have, identically
25+ 1Pyl =0. (3.2)

2) From the invariance of # by the gauge transformation® SA=dg, @
arbitrary 2-form, we deduce the identity

V.F=0. (3.3)

3) By diffeomorphism (or change of local coordinates) the Lagrangian is also
invariant. That is, 6. =0 whenever* (¢ generator of local diffeomorphisms, i.e.
arbitrary vector field)

de M= fLVLe(A)M’“eALVL‘fM, OPp=EMV Ppr + P Vi EM,
where 7, acts only on the natural coordinate index
0A=¢-dA+d(&- A).
If we take into account the previous identities >, we obtain
W E 0 — 4L (Vo — Vi p) R — oV B+ F - F =0. (3.4)
4) The infinitesimal invariance of .# by the supersymmetry
deM=itT™yp,, Opy=Dye+oue, OAynp=3El MNY¥P]

(where @, is a given polynomial © in v, even of degree 2, polynomial in e of degree 6
and linear in F), is equivalent to the identity

3 F is unchanged by the transformation A 4 +d¢p and we have
[*(FAF)-(dp)t=k, [(V-*(FAF))- o=k, [(*d(F A F)) - o1=0

4  The parenthesis on A means that this index here is just a label, not to be covariantly derived
5 We use the fact that

L __ B L
Ve =Wy €5

Thus
ZA VMe(A)L =Zp40p"t =3, [BA](UMBA
Also
Id(é-A)~%=k!(<f-A)~(V’9)r,
Pu= (UJNF MAB WP)F By (F NPQ —IPeRsY, wE NPQR ™ 3pyI; PQ’PR)

32 (12)
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4. Gauges

1) The Rarita-Schwinger gauge, introduced by these authors in 4-dimensional
Minkowski space time to separate pure spin states is the condition

x=TMy,=0. 4.1)

In such a gauge the Rarita-Schwinger equation can be shown to be equivalent to
an equation with the hyperbolic principal part Py. Indeed, we have the identity:

Ay =Dy — 3Ty [T¥ Dy +BIPypp—Dy]+ Dpl P Ypp—px s 4.2)
where
P=I"D,, y=I""Dyyp,
from which we deduce’
Ry=Ay+1y =Dy +or)—3 Dy T (Dyy+ox)—Dyx +30,Py,  (4.3)
if
FN
=Tyt 7.4 Lyry+ Dy pp.
2) The harmonic gauge (y},y Riemannian connection in the natural frame)
PP =y g™V =0 (44)

is well known to turn Einstein equations into a hyperbolic system due to the
identity, for the Ricci tensor of a Riemannian connection

Ryn=R§n+3GupOn®” + gnp0y @),

B (4.5)
Riv=—30gun+run(9,09), O=g""otp.

3) The O(1, 10) gauge introduced in simple supergravity by Bao et al. [ 1] limits
the moving frame by the condition

eA[M D eAN]=O. (4.6)

7  The following identity holds irrespective of the dimension (I'y 'y + I'y[ 3y =2gan)
Dyne =TI np—9unIp+9upln -
From it we deduce

Lyt ™ =L TMNPD pp = (d— 2) VP Dy

and
Mt =(d—=2) (" Dyyp+ TP DMypp— Pyp™).
Thus
d-2
FL&(LE u(ﬂx—(EFPﬁPP—FP”WP)
and
FM

M (By—(BI"ypp—T*Byp)— DMy +(DMTPypp+ PypM

T2
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In such a frame we have
O gun= 0O (eqne? ) =2e4p O e’y + 2QPQ‘31"3,<11aneAN . 4.7
4) On the “3 index photon” we shall impose the gauge condition, analogous to
the Lorentz one®
0- A=(0,AM)=0. (4.8)

In this “Lorentz gauge” the principal part of #, V' - F reduces to [ A. Under all
these gauge conditions the system takes the form (where ¢ stands for “truncated”)

Iyi—tety'E= — ety + fA(e, de,p, 0y, F) =0, 4.9)

I,
Py — 225 Iy R=Dyy + o =VOwpy+ fule, e, F)=0,  (4.10)
‘% =0 A+ f(e, 0¢,A,F, p,09)=0. (4.11)

If e, y, A were numerical valued this system would be a non-strict hyperbolic®
system in the sense of Leray-Ohya (cf. criterion in [4]) with causal propagation
governed by the light cone of the metric g.

If the truncated equations (4.9)«4.11) hold, the identities of the previous
paragraph give the following equations for the left-hand side of the gauge
conditions:

1) We have
tZMNEZMN_%(QMPaN‘pP+gNPaM¢P_gMNaP@P)_eA[M U eAN]' (4.12)
In particular:
2 =Rium— ’IEMN]=tZ[MN] —%eA[M 0 eAN]‘
Therefore, when (4.9) and (4.10) are satisfied, we deduce from (3.2) the equation
_%eA[M O eAN]—iq}PFMN(_%DPX"'%FPBX) =0. (4.13)
2) When (4.11) is satisfied we have
kil =d(0-A).

The identity V - # =0 gives therefore an equation linear and homogeneousin ¢ - A,
of the type

0(-A)+h-8(d-A)=0, (4.14)

where h is a given function of e and de.
3) When (4.9) is satisfied we have

Ry =—Dyy+3T\ Dy .

8 Wechoose 0 A instead of V' - 4 in order not to introduce unnecessary non-diagonal terms in
the coupled system

9  The characteristic matrix is non-diagonal due to the appearance of terms in de in the Rarita-
Schwinger equation. For such a system the existence theorem is valid only in a Gevrey class (C*®
functions with restrictions on growth of derivatives), but the domain of dependence properties,
which give the causality, hold
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Then when (4.9) and (4.11) are satisfied the identity (3.5) gives a linear
homogeneous equation of the type

—1DMD, 4 +1lin(y, Oy, B, 00,d(0- A))=0, (4.15)

where lin(...) denotes an expression linear in its arguments, with coefficients
which are functions of e, de, 9%e, v, .

4) Using (4.12), (4.13), and also (4.14) we deduce from the Bianchi identity that
the solutions of Eqs. (4.8)(4.10) satisfy also a linear homogeneous equation of the
form

0 @ + lin(®, 0, 0 - A, 8(3 - A)) =0. (4.16)

If the unknown were scalar valued the system (4.14)—(4.16) would be a linear
homogeneous hyperbolic system for the gauge conditions.

5. Cauchy Problem. Constraints

The Cauchy data, on the submanifold S, =S x {0} are:

The moving frame e and its time derivative dge.

The spin 3/2 field .

The 3-form A and its time derivative 0yA.

These quantities must satisfy on S, the following equation which depends only
on them

RO =T 0wp+ fO(e, Oe,y,0A)=0. (5.1)
We suppose also that 1 satisfies the Rarita-Schwinger initial gauge condition
x=I""p,=0 onS,. (5.2)
We determine dyy on S, by the equation
Pyp+1f=0 onS,, (5.3)
and we suppose that we have then
IMO=0 on §,, (5.4)
FON=0 on S, (5.5

(these quantities depend only on e, ¥, A and their first derivatives, now known

on Sy).
We deduce from (5.1), (5.4), and (5.3) [cf. identity (4.3)]

aox=0 on SO . (5.6)

We suppose that the initial data for e and d,e are such that the corresponding
metric satisfies the harmonicity conditions

®=0 onS,, (5.7)
and that the initial data for A, d,A satisfy
0-A=0 onS§,. (5.8)
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For a solution of the truncated equations (4.9) and (4.11) with initial data satisfying
the constraints (5.4) and (5.5) we then have also

0, D=0, 8,(0-A)=0 on S,. (5.9)

The homogeneous system (4.14)4.16) and the vanishing on S, of y,0 - A, ® and
their first derivatives would insure by known theorems the vanishing of these
quantities in all the domain of dependence of the solution, if the unknown were
numerical values.

6. Grassmann-valued Cauchy Problem

We have supposed, and it is necessary for the identity (3.5) to hold, that the fields
take their values in the Grassmann algebra ¢, with e and A even valued, v odd
valued. The numerical equations satisfied are obtained by equating to zero each
component in ¢ of the ¢ valued equations. The identities obtained in Sect. 3 hold
in ¥, therefore, they give a set of numerical valued identities. The Cauchy data on
Soareeven valued for e, dye, A, oA, odd valued for y, and supposed to satisfy the ¥
valued constraints (5.1)~(5.7). Equations (5.8) and (5.9), with values in ¢ are then
satisfied.

Theorem. The Cauchy problem for the equations of d =11 extended supergravity,
with values in a Grassmann algebra 9 is well posed and causal. If 4 has N generators
and the Cauchy data (satisfying the constraints and the initial gauge conditions) are
such that®, on S, (with s a non-negative integer and 0<p<[(N+1)/2]),

A(2p), e(2p), w(2p—1) e HYS [N/2]—p+s>
00A(2p), 00€(2p) € HES (21— p+ 5
the solution exists in a neighborhood Q of S, globally hyperbolic for g(0), and

belongs to HYS ..
If % has an infinite number of generators the Cauchy data must belong to C*,

and the solution exists as a formal series of C* functions.

Proof.** 1) The “body”, terms of order zero in %, of the original equations
(2.4)~2.6) reduces to the Einstein equation for the body g(0) of the metric g with
source the Maxwell field F(0) =dA(0) of the body A(0) of the 3-index photon, and
the Maxwell equation for F(0), namely 2

2Zyn(0)= Gyp(0) _%(F MPQR(O)F NPQR(O) _%gMN(O)F PQRS(O)F PQRS(O)) , (6.1a)
FNPY0) = V,,(0)FMNP0) + 18cr%)‘ MSNPQF?})I M4F}8)5 o Ma- (6.1b)

10 A function S, [respectively Q] belongs to H'° if its restriction to any compact set of
So[respectively Q] belongs to H.

A(2p), e(2p), w(2p—1) belong on each S, to the same Sobolev space as on S,, and the
dependence on ¢ is as given in [16], or [5]. Thus if N =2n we have A(2p), e(2p), w(2p—1) € HYS ,
p<n, and if N=2n+1 we have again A(2p), e(2p) € H¥S,, p<n while y(N) e HYS,

11 Afield f(p) is a set of N!/p! numerical fields. In a numerical equation of finite order only a
finite number of the numerical fields of order < p appears, only one of order pif p=0. We say that
f(p)eH, if each f,, _, eH,

12 Various exact solutions of these equations, candidates for a “ground state” of the theory have
been obtained (cf. [12, 13, 15] and references in [18])
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The Cauchy problem for these equations, with data e(0), d,e(0), A(0), d,A(0)
satisfying the constraints (verified as a consequence of the %-valued constraints)

IMO)=0, FO°PY0)=0 on S, (6.2)

is well posed and causal, with propagation determined by g(0), because'* when
®(0)=0 and 0-A(0)=0, they reduce to a strictly hyperbolic system (of second
order on an 11 dimensional manifold), and because the gauge conditions are
preserved by evolution for initial data satisfying the constraints, due to the
identities, deduced from (3.3), (3.4)

2V,(0)2,/(0)+ F(0)- #(0)=0, ¥(0)- #(0)=0,

which give, when Eqgs. (6.1) are satisfied in the gauges, an ordinary linear
homogeneous hyperbolic system for ®(0) and (7 - A)(0), body of the system (4.15),
(4.16), while the body of Egs. (5.9) shows that the Cauchy data on S, for these
quantities vanish. These results hold (cf. [16, 5]), for Cauchy data e(0), A(O)in H, , ,
and de(0), 0A(0) in H,,, with a non-negative integer. The solution is in H,,,
where Q is some neighborhood of S, in S x IR, globally hyperbolic for g(0). The
Sobolev spaces can be taken to be local Sobolev spaces.

2) The terms of order 1 in the system are only (1), and #(1)=0 is a linear
Rarita-Schwinger type system !# for y(1) when e(0) and A(0) are known in
HYS (),

RM(1)=T"NPO)V(O0)yp(1) +r¥(1)=0.

The Cauchy problem for this system is well posed and causal, with propagation
determined by g(0) because the system

POypa(1) +es(1)=0

[where g,,(1) is of the form a, (O)y (1), a, 0) function of e(0), de(0), F(0)] is
strictly hyperbolic, and the gauge condition y(1)=I“0)p(1)=0 is preserved
through evolution'> due to the identity (4.14) and Egs. (5.4), (5.18) taken at the
order 1 in 9. These results hold for Cauchy data y(1) on S, in'® H¢_ (S,), the
solution exists in all the globally hyperbolic domain €, and is in Hg, ().

3) Suppose we have solved up to order 2n Eq. (2.4)+2.6), as well as the gauge
conditions (4.1), (4.4), (4.6), (4.8).

The equations of order 2n in 4 are

Zyn(2n) = Gpn(2n) — Tyyn(2n) =0, (6.32)
FQ2n)=V -F)2n)—k*(FAF)2n)+ ¥ - ¥)(2n)=0. (6.3b)

If the gauge conditions
D(2n)=0, (eqye*y)2n)=0, (3-4)(2n)=0, (6.4)

13 These results are well known for ordinary Einstein Maxwell equations

14 (1) is a set of N numerical fields v,

15 The integrability condition 7,,(0)%™(1)=0 is satisfied mod Z,;y(0)=0, #(0)=0

16 We lose one derivative here because a,“(0)is only in H, ,(@) when e(0), A(0) are in H, , (Q)
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are satisfied, these equations reduce to a system of the type:
O (0)ey(2n) + @y =0, (6.5a)
00)4A22n)+ ¢ =0, (6.5b)

where ¢“y and ¢ are affine functions in e(2n), de(2n), A(2n), dA(2n) whose
coefficients are known functions of e(2p), A(2p), 0 < p <n, and their derivatives of
order <2, and of p(2p+1), 0<p=<n, and its first derivatives.

The linear hyperbolic system (6.5a), (6.5b) has a global solution in @, A(2n),
e2n)eH;,,, for Cauchy data in H,;,, XHe.,, if e(2p), A(2p), Hgy,,
p(2p+1)eH,,,,0<p=<n, with a, a non-negative integer. This solution satisfies
the gauge conditions (6.4) by the identity of Sect. 3 and the constraints and initial
gauge conditions of Sects. 4 and 5 written at that order and the properties
supposed satisfied at the lower orders.

The equations of order 2n+ 1 reduce to the linear system in p(2n+ 1)

AM(2n+1)=0, (6.6)
while Eq. (4.10) gives, at this order the linear hyperbolic system
P(Oyp(2n+1)+f=0, 6.7)

where f is an affine function of e(2p), A(2p), w(2p—1), 0<p=<n, and their first
derivatives. A solution of the Cauchy problem for (6.7) satisfies (6.6) [by the
identity (3.5) written at the order 2n+ 1] if the Cauchy data satisfy the constraints,
and the initial gauge conditions. These results hold for Cauchy data w(2n+1) on
SoinHg ., ,ife(2p), AQ2p), y(2p—1)e H,,, for 0<p=<n;thesolutionisin Hg,,
on Q.

The conclusion follows by induction on n, choosing a,=s+[N/2]—n.
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