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Abstract. We provide lower bounds on the eigenvalue splitting for — d2/dx2 +
V(x) depending only on qualitative properties of V. For example, if V is C00 on
[α, b~] and £„, £„_ 1 are two successive eigenvalues of — d2/dx2 + V with u(a) =
u(b) = 0 boundary conditions, and if λ = max \E— V(x)\1/2, then

Ee(En_ ^EJ xem

The exponential factor in such bounds are saturated precisely in tunneling

examples. Our results are not restricted to F's of compact support, but only

require En < lim V(x).

1. Introduction

There are two cases where it is well known that Schrodinger operators have
non-degenerate eigenvalues: The lowest eigenvalue in general dimension and all
one dimensional eigenvalues. One can ask about making this quantitative, i.e.
obtain explicit lower bounds on the distance to the nearest eigenvalues. Obviously,
one cannot hope to do this without any restriction on V9 since, for example, if χ
is the characteristic function of (— 1,1), one can show that, for / large, — d2/dx2 —
χ(x) — χ(x — /) has at least two eigenvalues and Eί— £ 0 -• 0 as / -• oo (see e.g. Harrell
[5]). Thus, we ask the following: Can one obtain lower bounds on eigenvalues
splittings only in terms of geometric properties of the set where V(x) < E (E at or
near the eigenvalues in question) and the size of V on this set. We will do precisely
this for the one dimensional case in this note, and we will prove results on the
ground state in multi-dimensions in [8] (see also Wong, Yau and Yau [12]).

While these questions are of interest for their own value, we came upon them
with specific applications in mind [7,9].
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Let us state our basic results, (α, fo) will denote an interval connected with V
which, for simplicity, we take continuous. En and En_ί will denote the (n+ l) s t

and nih eigenvalues of — d2/dx2 + F, and we define

λ= max \E-V(x)\1/2. (1.1)
£e[£ l l-i,£B],xe(β,6)

Theorem 1. Lei FeQ? wiίft supp F cz [α, fo]. Lei 0 > E n > £ n _ ! foe eigenvalues of
- d2/dx2 + F, and feί /I foe #*ι;en by (1.1). Then

Theorem 2. Let V be continuous on R (but perhaps not bounded above), and suppose
that for a > 0 , F ( x ) ^ £ M + a 2 on #\[a,fo], where En>En_1 are eigenvalues of
-d2/dx2 + V(x). Then

En - En.ί ^ πλ2oc(λ + a)-le-W-a\

As a "warm-up," we will prove Theorem 1 under the extra assumption that
V(x) is even (and a = — fo) in Sect. 2 and the general results in Sect. 3. In Sect. 4,
we give bounds on widths of bands in one dimensional solids. Our proofs in
Sect. 2,3 use the Prϋfer variable Arctan(u'/ — λu).

In order to understand the above bounds, we point out several facts:
(a) The proof only uses A as a bound, so λ may be replaced by any larger

constant even if that increases the right side of the bounds, i.e. πλ2a(λ + oί)~1e~λ{b~a)

can be replaced by max πμ2oc(μ + oc)~1e~μ{b~a).

(b) There is a scaling covariance here: Making the unitary transformation that
takes x-^μx, and multiplying H by μ2 takes us to — d2/dx2 + μ2 V(μx). This
change multiplies λ2 and En,En_1 by μ2 and fo, a by μ~1. One can check that both
sides of the various bounds only get multiplied by the same factor of μ2.

(c) Let χc be the characteristic function of (— c, c) and let Vc/(x) = —
(χc(x) + χc(x — /))• Then, so long as c is chosen so large that Eo for £ large is smaller
than —\(this is certainly true since lim lim Eo= — l\ΔE ~ e~λeίoτ£ large (see [5]),

so that the factor e~
λ(b~a) cannot be replaced by e~λ(1 +εH&-«) for any ε > 0. In this

sense, these are precisely tunneling type lower bounds. In fact, the proofs show that, in
a sense we will make precise, the results must be fairly close to tunneling examples to
saturate the exponential factors in the bounds when (fo — a)λ is large.

(d) From the point of view of tunneling, (fo — a)λ should be replaced by

— E)+ dx = ί(wherey+ =max(y,0)). With our methods, one can probably
a

replace λ by [(b-a)-1$(V(x)-E)dx]1/2

9 which is better than max | F ( x ) - £ | 1 / 2

a

but not as good as (fo — a)~1t. By making assumptions on derivatives of F one
might be able to get t out by using an x-dependent scaling factor where we use
the constant scale factor λ in defining Prϋfer variables. Of course, most detailed
tunneling analyses require some control on derivatives.
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(e) Our results are a kind of analog of those of Harrell [6] for resonances.
Da vies [1,2] has emphasized the need for bounds valid in more than an asymptotic
regime.

(f) While we stated the results for ( - oo, oo), there are results for finite volume
with various boundary conditions. See, for example, the end of Sect. 2.

2. Even V of Compact Support: A Warm-Up

Our goal here is to prove Theorem 1 under the additional assumption that V is
even in x (so α = - b ) . We use Prufer variables defined with an extra factor
(following [3]):

u(x) = r(x)cos(θ(x)% (2.1a)

u'(x)=-λr(x)sin(θ(x)l (2.1b)

where λ is given by (1.1) and u solves

- u" + Vu = Eu. (2.2)

θ is only determined mod2π; we will determine it completely by appropriate
boundary conditions. From the Ricatti equation: (u'/u)' = (V — E) — {u'ju)2, one
immediately obtains

ff(χ) = λ~\E - F(x))cos2 θ(x) + Asin2 θ(x). (2.3)

For each E < 0, let u solve (2.2) with the boundary condition u(x) = Gxp(^/ — Ex)

for xe(— oo,a). Then tanθ(x,E) = — λ~x^/ — E on (— oo,a) and θ is normalized by

θ(x, E) = - Arctan ly/^E/λ]; - oo c x < a, (2.4)

i.e. by requiring θ(— oo,£)e(— π/2,0). We will see in the next section (as is
well-known) that for x fixed, θ(x, E) is increasing in E. From (2.3), we see that if
θ= ±π/2, 3π/2,..., then θ'>0 so that one can count up zeros of u by looking
at arg θ. In particular, on account of the symmetry

β(0,£M) = mr/2, (2.5)

where En is the (n + l) s t eigenvalue.
Define φ(x,E) = dθ/dE(x,E% so by (2.4):

φ(a,E) = λil^f^E)- \λ2 -E)~\ (2.6)

Taking a derivative in (2.3)

φf = {λ-λ-1lE-V(x)^}lsin2θ']φ + λ-1cos2θ (2.7)

which, by (1.1), has the form when £ e [ £ n _ l 5 £ J ,

φ\x) = f(x)φ(x) + g(x); \f(x)\ ̂  2λ; \g(x)\ ίλ'1. (2.8)

From (2.7)
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Integrating (recall a < 0)

φ(O)e2λa ^ φ(a) + \λ~2\\ - e2λa] ^ φ(a) + \λ~2 (2.9)

(in most cases of interest \λa\ > 1, so we drop the e~2]λal term but it could be retained).

Using (2.6) and the monotonicity of y/\E\(λ2 + |£|) in |£|, we see that

φ(0) ^ e*λ\{2λ2)-ι + ^λ{J\EA(λ2 + \En\} " x ] .

If we note that 2\a\ = b — a, the bound in Theorem 1 results if we note that

?- = θ{%En)-θ{^En^)^l max φ(0, £)](£„-£„_!)•

This completes the proof of Theorem 1 in the symmetric case. Note that in
going from (2.8) to (2.9), we could have used GronwalΓs inequality, replacing

JC

2λ(x — a) by J f(y) dy and have improved our result (but make it appear more

complicated; we would adjust λ differently). We could also deal with Dirichlet or
Neumann boundary conditions on an interval. We state the results in general,
although the above proof only works if V is even (the ideas in the next section
handle the general case). Note that with these fixed boundary conditions, φ(a) = 0,
so the bound is simpler to state:

Theorem 2.1. Let En_l9En be two successive eigenvalues of —d2/dx2+ V(x) on
[α, h] with either Dirichlet or Newman boundary conditions at both a and b. Let λ
be given by (1.1). Then

3. The General Case

In handling the general case (V may be not of compact support and not necessarily
even) there are two issues which must be addressed in using the idea of the last
section:

(i) Because V is not even, we cannot be sure that at (a + b/2) θ(x, En) — θ(x, En_ x)
isn't very small.

(ii) We cannot compute θ(a,E) and φ(a,E) = dθ/dE(a,E) exactly and so we
need a separate argument to see that φ(a9 E) isn't too large.

Let us solve (i) first; by doing that, we will have explained how to prove
Theorem 1 and Theorem 2.1 in the non-even case. For this step it is useful to
consider V{x)=V(a + b-x). Since H=-d2/dx2 + V and -d2/dx2 + V are
unitarily equivalent, they have the same eigenvalues. For E < inf σ e s s(#), let θ(x, £),
8(x, E) denote the Prύfer angle associated to the solution which is L2 at — oo via
the transformation (2.1). Because En and En_1 are eigenvalues, we have

S{x9 En) = nπ-θ{a + b-x, En\ (3.1b)

where this relation only holds for eigenvalues E. The minus sign comes from the



One Dimensional Schrδdinger Operators 457

flip of sign in u\ and we obtain the factors of π by noting that as x-+ — oo,
θ(x,£M_1), 9(x,En_1)G(— π/2,0) and as x-»oo, 0 must pass through the values
π/2, 3π/2,... exactly n times, each once. From (3.1), we immediately obtain

Lemma 3.1. One of θ((a + b)/29EJ-Θ({a + b)/29En-1) or θ{(a + b)/29E
n)-

θ((a - b)/2, En_ x) is at least π/2.

Proof. By (3.1), the two numbers sum up to π. •
Thus we can make the analysis on either V or V9 and so, without loss, we

can suppose that

/ „ L̂ U \ / „ _1_ U \

π/2. (3.2)
2 J \ 2

As for problem (ii), we will use an explicit formula for φ = dθ/dE:

Theorem 3.2. Let E < inf ess sρec(- d2/dx2 + V\

φ(x, E) = λ J u(y)2 dyl\_λ2u(x)2 + w'(x)2] (3.3)
— oo

vv̂ βrβ u is the solution of (2.2) which is / 2 at — oo.

Proof In order to check that u can be chosen to be smooth in E near some Eo

(so that θ is C1), we pick W =V near + oo so inf spec (VF) > £ 0 and PF is bounded
below. Let feCξ have support in ( - 1,1). Then, on ( - oo, - 1), we can pick

lf~\
{x) ( 3 4 )

(u is non-zero since (—d2/dx2 + W — E)'1 has a strictly positive integral kernel).
From (3.4) and the fact that D(d/dx) a Q(-d2/dx2 + W), we see that u,uf are in
L2 at — oo. Similarly

du -2

obeys ύ, ύ'eL2 at — oo. We note that u is C 1 in E (in L2

OC in x-sense) because
of the smooth dependence of u(x) on u(j)9 u'( — %). From θ = Arctan(— u'/λu) we
see that

φ = θ = λ(ύu' - uύ')Hλ2u2 + (u')2l (3.6)
Let

η(x) = W(X)M'(X) — w(x)zi/(x).

Then, by (2.2) and — ύ" + Vύ = Eύ + u, we see that dη/dx = u2. Since η is L1 at — oo,
we see that

η(x)= j u2(y)dy

which, given (3.6), proves (3.3).

u2(
— 00
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Before turning to the proof of Theorem 2, we make two remarks about (3.3).
First of all, it provides the promised proof that φ > 0. Secondly, the only way that
φ((a + b)/29E) can be exponentially large for £ e [ £ n _ 1 ? £ J , which is required for
our bounds in Theorems 1, 2 to be saturated is if λ2u(x)2 + u'{x)2 is exponentially
small. This is precisely typical of tunneling situations, that these M'S which are
small at — oo are also small in the center of the region (α, b) of importance.

We can now solve problem (ii) by using:

Lemma 3.3. Let

V(x) ^E + oc2 (3.7)

on ( — oo, α], and let u solve (2.2) and be L2 and positive at — oo. Then for xe( — oo, α]:

u(x)^e«(χ-a)u(a). (3.8)

Proof. We will show that e~axu(x) is monotone increasing on (— oo,α]. Since

(e-"*u(x))' = e~ax(uf - au) = λe-*xr(x)(- sinθ(x) - J~z cos θ(x))

(where s = oc2/λ2) and θ(x)e(— π,0) on (— oo,α), it suffices that

(x) (3.9)

on ( - oo, a).
Note first that since V — E>0 on (— oo,α), u and u' are both positive there

by a standard ODE argument. Thus, on (— oo,α), θ(x) < 0.
By (2.3) and (3.7)

θ\x) < >l(sin2 θ - s cos2 θ). (3.10)

Pick εr < ε. We will show that (3.9) holds with ε replaced by ε' and then make a

limiting argument. Let θo= -Arctan^/ε 7. By (3.10), θ'(x)^c<0 if 0(x)e(0o,O).

But, if θ(x) > θ0 for some xe(— oo, α), this inequality implies that θ(y) = 0 for some

ye(x — 0o/2,x) which is impossible by the above remarks. Thus, (3.9) holds. •

Proof of Theorem 2. By (3.3) and (3.8)

φ{a)^λ J e2^x-a)u{a /
— CO

By (2.7) and the argument following it

But, by (3.2),

sup
Ee[En_vEn]

which yields the bound of Thm. 2.
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4. Widths of Bands in One-Dimensional Solids

Another situation where non-zero objects can be exponentially small due to

tunneling is the case of band widths in one dimensional periodic potentials [4,11].

Here, we want to note an elementary lower bound on such widths. It is related

to what has gone earlier in two interlocking ways: (i) One could think of the

argument in Sect. 2 as comparing operators on (— oo,0] with Dirichlet and

Newmann boundary conditions; band widths compare a periodic and antiperiodic

eigenvalue, (ii) We will use the discriminant which is intimately related to θ.

Theorem 4.1. Let [ £ b , £ J be a band of the spectrum of —d2/dx2+ V(x)9 where

V(χ + L) = V(x). Let Em = max(|£b |, \Et\). Then

£ ί - £ & ^ 2 e x p [ - ( y p Ϊ L + v ^ J + l)L]. (4.1)

Remark. The tunneling results of [4,11] show this is optimal in the sense that L

cannot be replaced by (1 + ε)L.

Proof Let Δ(E) be the discriminant. Then [10]

\Δ(E)\ £2exp(Lj\E\)cosh(Lj\\V\U. (4.2)

([10] proves this for L = π; the general case follows by scaling.) Since Δ(E) is

analytic and (4.2) holds for all complex £, a Cauchy estimate using the circle

E - E\ = 1 shows that

\Δ'(£)| S 2expl(^WL + y/\E\ + 1)]. (4.3)

Since, by the theory of the discriminant [10]: \Δ(Et)—Δ(Eb)\ = 4, and (4.3) implies

(4.1). •
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