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Abstract. In the multi-dimensional case it is shown that the increase of the
topological support of the probability measure describing the randomness of
potentials implies the increase of the spectrum. In the one-dimensional case
the converse statement for the absolutely continuous spectrum is valid.
Especially the spectrum (in general dimension) and the absolutely continuous
spectrum (in one-dimension) are determined only by the topological support
of the random potentials.

1. Introduction

Let Ω = {g;g:Rd-•[(), 1], measureable} and impose the Schwartz distribution
topology on Ω. Denote by {TXJxeRd} the shift on Ω defined by Txq(-) =
q(- + x). For any shift invariant ergodic probability measure P on Ω it is known
that there exists a unique closed subset Σ(P) of R such that the spectrum of
self-adjoint operator L(q)= — Δ+q(-) on L2(Rd,dx) coincides with Σ(P) for
almost every qeΩ with respect to P. Suppose we are given two such measures
Pλ and P 2 on Ω. Then we have in Sect. 2:

Theorem 1. Supp P1asuppp2 implies Σ(P1)dΣ(P7). (SuppP means the topo-
logical support of P in Ω)

This theorem is an extension of what they have observed in Kirsch-Martinelli
[2] and Kunz-Souillard [4]. An easy consequence of this result is that if Oesupp P,
then Σ(P) = [0, oo).

In the one-dimensional case, instead of the above Ω, we consider

x+l

Ω = {q;q: Random measure on R satisfying J q~(dy) ^ c for any xeR},
X

where g_ denotes the minus sign of the lower variation measure of q and a constant
c may depend on q. A modified Schwartz topology is given to Ω and for any
qeΩ a self-adjoint operator L(q) formally defined by — d2/dx2 + q( ) on L2(R, dx)
is introduced in Sect. 3. In the one-dimensional case Theorem 1 is valid in this
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more general space Ω. The absolutely continuous spectrum of a self-adjoint
operator L is defined, following Simon [5], by an essential support of the resolution
of the identity of L with respect to Lebesgue measure on R. This spectrum is
determined uniquely up to Lebesgue measure zero sets. Suppose we are given a
shift invariant ergodic measure P on Ω satisfying j|g(O, l)\P(dq)< oo. Then

Ω

as in Kotani [3], in this case too, it is shown that there exists a Borel set Σac(P)
in R such that the absolutely continuous (a.c.) spectrum of L(q) coincides with
Σac(P) for almost every qeΩ with respect to P.

Theorem 2. Let Px and P2 be two shift invariant ergodic probability measures
on Ω satisfying J|<?(0, ί)\Px(dq) < oo, J|g(O, l)\P2{dq) < oo. Then suppP± c

suppP 2 implies Σ^iPJ ^ ΣΛ,e{P2).
As a corollary of this theorem there will be given in Sect. 3 deterministic random

potentials having no absolutely continuous spectrum almost surely.

2. Support Theorem for Spectrum in Multi-dimensional Case

It is easy to see that Ω is a compact metrizable space. We need the following:

Lemma 1. For any feL2(Rd,dx) a map

is continuous for any fixed λeC + 9 where Gλ(q) = (L(q) — λ)~ι.

Proof. Because of the uniform boundedness of the norms of Gλ(q), we can assume
that / is a smooth function with compact support. We show that if qn^q in Ω,
then for any fixed ί > 0 and xeRd

9

un(t, x) = etL^f(x) - etL^f(x) = u(t, x).

Denoting Tt = etΔ, we see

uJtt, x) = TJ(x) - \(Tt_sqnun(s, ))(x)ds = f(t, x) + G A ( ί , *)•

Therefore un can be expanded in a Neumann series

φ) Σ
p = 0

However by induction we have

^ t > forp = 0,l,2,..., where U / L = sup|/ | .

Hence we have only to prove that for each fixed p ^ 1, G%f(t,x)^>Gpf(t,x) as

t

n->oo, where G/(ί,x)= — \(Tt_sqf(s, -))(x)ds. However
o

J J T^q.-T^qJit^x^dti-dt,
0<tι<t2< <tp<t
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holds and Tt has a bounded smooth kernel for t > 0, so it is not difficult to conclude
from qn^>q in Ω that Gζf(t,x)^>Gpf(t,x) as rc->oo. This completes the proof.

Proof of Theorem 1. Suppose qesuppP1. Since suppP x czsuppP 2, there exists
{qn}™=i <= Ω such that qn->q in Ω and for every qn the spectrum of L(qn) is equal
to Σ(P2). However from Lemma 1 we have the weak convergence of the Green
operators Gλ(qn) to Gλ(q) for every fixed λeC+. On the other hand, for any
feL2(R\dx)

{Gλ{qn)f f) = J γ-j , (2.1)

where E(dξ,qn) is the resolution of identity of the self-adjoint operator L(qn). Since
the weak convergence of the measures (E(dξ, qn)f f) follows from the convergence
of the right-hand side of (2.1), we easily have Σ(P2) => the spectrum of L(q). This
implies Σ(Pt) c Σ(P2).

Remark. Obviously the above Ω can be generalized to much wider classes assuring
the essential self-adjointness of L(q).

3. Support Theorem for Absolutely Continuous Spectrum in
One-Dimensional Case

First we have to realize the L(q) as a self-adjoint operator in L2(R,dx). For this
sake a domain of L(q) is defined by

= {</>; absolutely continuous function on R with compact
support. Moreover its derivative φ' has a bounded variation
modification satisfying — dφ' + φq(dx) = f dx for some
feL2(R,dx) with compact support.}

If we introduce functions φl9 φ2 defined as solutions of - dφ' + φq(dx) = 0,
satisfying φ1(0)=ί (φ2(0) = 0) and </>Ί(0) = 0 (^2(0) = l) respectively, then the
above φ can be represented by

Φ(x) = ί"{φ1(χ)φ2(y) - ΦΛy)Φ2(χ)}f(y)dy,
— 00

where feL2(R,dx) with compact support should satisfy \f(x)φi(x)dx = Q for

i = 1 and 2. Therefore it is not difficult to see that the @(L(q)) is dense in L2(R,dx).
Define an operator L(q) by L(q)φ = f for φG@(L(q)). Then L(q) turns out to be
a symmetric operator in L2(R, dx).

Lemma 2. The L(q) has a unique self-adjoint extension in L2(R, dx)for any qeΩ. In
other words, the two boundaries + oo are of limit point type. Moreover the self -adjoint
extension L(q) (we use the same notation as the original one) satisfies

(x)\2dx (3.1)

for any φe@(L(q)) with some positive constants ε, δ independent of q. c(q_) is
the constant c appearing in the definition of Ω. We can choose ε arbitrarily small
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Proof. The estimate (3.1) is clear from an inequality

where ε, δ are constants independent of x e R and φ. ε can be chosen arbitrarily
small (for a proof see [1] p. 193). We show that the boundary + oo is of limit
point type (the same thing can be shown also for the boundary — oo). For this we
prove that there does not exist two linearly independent solutions of — dur +
uq(dx) = λu dx belonging to L 2(R+, dx) for λ < 0 (R+ = [0, oo)). Suppose a solution
u belongs to L2(R+,dx). Observe

2 i-
i

x

^ ci + ίί Γ ί - ί Λ e )
1 X

\ l / 2JCMγγ\2 /oo \

where H(x) = f-^f- dx and c, = - w'(l)w(l), c 2 = 2 ( f φ ) 2 dx
1 X \1 /

Set Q(x) = g_[l,:x). Then the second term of the above inequality is

1 X 1 X

Since qeΩ,wε have Q(x) ^ c(g_)x for x ^ 1. Hence

1 X 1 X

Moreover (w(x)2/x2)Q(x) ^ φ_)(w(x)2/x), and

X ί X ί X

S w(l)2 + c2H(x)1/2.

Therefore we have

uf(x)u(x) < 1 / 2

x 2 =

with some positive constants c3, c 4 . If H(+ oo) = + oo, then the above estimate
shows

u\x)u{x)

X2

for all sufficiently large x. However this contradicts the fact that ueL2(R+). Thus
H(+ oo) < +00. Now assume that u1 and u2 are two linearly independent solutions
of L(q)u = λu belonging to L 2(R+, dx).We can assume that

u1{x)uf

2{x)-u\{x)u2{x)=\

identically on R + . However this obviously contradicts the above argument. This
completes the proof.
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Now for λeC define φλ9 ψλ as unique solutions of integral equations

φλ(χ) = l + 1 (x - y)ΦAy)(q(dy) -λdy)9

ψλ(x) = x + 1 (x - y)ψλ(y)(q(dy) -λdy).

Since the two boundaries ± oo are of limit point type, we can show that

exist as holomorphic functions on C\[— δc{qJ), oo). If we denote the Green
function of L(q) — λ by gλ(x, y, q), then

gλ(09 0,«) = - (h+(λ, q) + h.(λ, q))-1. (3.2)

For later use, we estimate h±(λ,q) and gλ{0,0,q) for λe(— oo, — δc(qJj). Since
we have (3.1),

0<^(0,0,^)^c 1 (c(^_)-λ)- 1 / 2 , (3.3)

where cί depends only on c(qJ). To estimate h+, we observe that — Λ+1 is the
Green function evaluated at 0 of the operator L(q) — λ with Neumann boundary
condition at 0. To obtain an upper estimate of — Λ+1, we check for any smooth
function φ with compact support in R + and (//(0) = 0,

f \φ'{x)\2dx+ f \φ(x)\2q(dx)^(l+ε) J \φ'(x)\2dx
R+ R+ R+

+ δ $\φ(x)\2\q[0,x)\dx, (3.4)
R +

where ε can be chosen arbitrarily small. (3.4) follows immediately from the
integration by parts of the second term of the left-hand side and a trivial inequality
\xy\ Sε\x\2 + δ\y\2- Therefore — h+ί(λ,q) is greater than the Green
function evaluated at 0 of the operator — (1 + ε)(d2/dx2) + δ\q[0,x)\ in
L2(R+,dx) with Neumann boundary condition at 0. However, generally

(3.5)
ψλ(X)

holds for any λ< —δc(q^). Hence, if we note that the solution ψ(x) of
- ( 1 + s)(d2u/dx2) + δ\[0,x)\u = λu satisfying w(0) = 0, ι/(0) = 1 has an estimate

i/2 / χ \i/2

i ^ J x
for any x > 0 and λ < 0, then we obtain from (3.5),

0<-/I4A,^)^4j^|^[0,x)|-A)exp('-2('-^y/2χ^x (3.6)

for any λ< —c(q_)δ.

1 The dependence on qeΩ will be denoted by φλ(x,q), h + (λ,q),...,.
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Now we introduce a topology to Ω by giving a fundamental system of
neighbourhoods at each point q of Ω:

q')<^ a n d \\qf\\k<n

where dk(q,q') = £ J φp(x)(q-q')(dx)\ 1/2
p=l \x\<k

for some countable dense set {φp} in C(|x|^fe), and \\q'\\k denotes the total
variation of q' on [— fc,/c]. In this topology Ω turns out to be a Hausdorff space
satisfying the first countability axiom. It should be remarked that a sequence {qn}
in Ω converges to q in this topology if and only if on each compact interval of R
qn^q weakly preserving a uniform bound of their total variations on the interval.
If we denote the shift on Ω by {Tx;xeR}9 then Tx defines a one-parameter
group of homeomorphisms on Ω. Now we can discuss (Borel) shift invariant ergodic
probability measure P on Ω. If P satisfies

flί[0,l)|P(d«)<oo, (3.7)
Ω

t h e n ( 3 . 6 ) i m p l i e s t h e f i n i t e n e s s o f J \h+(λ,q)\P(dq) f o r λ < — c(P)δ, w h e r e
Ω

x+l

c(P) = sup J q~(dy) which is independent of q a.e. because the right-hand
xeR x

side is a shift invariant function on Ω and we assume the ergodicity of P. Similarly
we have the finiteness of the expectation of h-(λ, q). The finiteness of J gλ(0,0, q)P{dq)

Ω

comes from Remark (3.3). Consequently it is not difficult to check the all theorems
in [3] in this more general case. Among them we need
Lemma 3. Regξ+iO(0909q) = 0 a.e. on Σac(P) holds for almost every qeΩ with
respect to P. (See the definition of ΣΆC(P) in Sect. 1.)

Introduce for c > 0 Ωc = {qeΩ; c(q_) ^ c}. Then we have

Lemma 4. The correspondence

is continuous for any fixed /ίeC\[— c<5, oo).

Proof Because of the identity (3.2) we have only to check the continuity of h+(h _).
Fix λ < — 2cδ. Set f(x) = φλ(x, q) and κ=—λ — c>0. First we claim that if qeΩc,
then

f{x) ^ /(2) + (/'(2) - c)(x - 2) + 1 f(2)(x - 2)2 (3.8)

is valid for any x ^ 2. To show this we observe that for any a > 0

(l-cε) \ \φ'(x)\2dx
[0,α]

-cδ f \φ(x)\2dx (3.9)

j \φ'(x)\2dx+ J \φ(x)\2q(dx)^(l-cε) \ \φ'(x)\2dx
[0,α] [0,α] [0,α]
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holds for every smooth function φ on [0, α] satisfying φf(0) = 0 and φ(a) — 0. The
proof can be done similarly to (3.1). However to prove an analogous estimate for
φ such that φ'(0) = 0 and φ'(a) = 0, we have to restrict a ̂  2 and replace ε by 2ε
and δ by 2δ in (3.9). Actually we have only to divide the integral J \Φ(x)\2 x

[0,β]

q _ (dx) into the integration of the same thing on the intervals [0, α/2], [α/2, α] and use a
similar estimate

\φ(x)\2f^ε j \φ'(x)\2dx + δ J \φ(x)\2dx.
x-ί x-ί

One conclusion from (3.9) is that f(x) never vanishes on R + , and hence f(x) > 0
on R+. Similarly we can prove f'(x) φ 0 on [2, oo). In order to prove (3.8) we need
the monotone increasing property of f(x) on [2, oo), that is

/'(x)>0 on [2,oo). (3.10)

Since / is positive on R+, we have

f(x) = f(2) + f'(2)(x-2)+]dy]f(:
2 2

f'(2)(x - 2) - /(2) J (Q(y) + λ(y - 2))dy

+ )dy) f'(z)(Q(z) - Q(y) + λ(z -y))dz9 (3.11)
2 2

where β(x) = g_[2,x). Now assume /r(x) ^ 0 on [2, oo). Then noting

- y + 1 ) (3.12)

for 2 ^ y ^ z if gef2c, we have

'" •(z)dz + cUy]f'(z)dz

-f(2)](Q(y)-c(y-2))dy (3.13)

^ /(2) + (/'(2) - 2c/(2))(x - 2) + c J/(y)dy + x; f dy ] f(z)dz,

where we have used the fact Q(y) ^ c(y — 1) for y ^ 2. On the other hand, since A
is not in the spectrum, / does not belong to L2([2, oo),dx). Therefore, together

00

with 0 < f(x) ^ /(2) on [2, oo), this implies J f{y)dy = oo. However, in view of

(3.13), this shows the unboundedness of f(x) on [2, oo), which contradicts the
assumption f'(x)^0 on [2, oo). Hence we can conclude (3.10). Coming back to
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(3.11), we have

f(x) Z /(2) + f'(2)(x - 2) - /(2) f Q(y)dy - λ ) dy ] f{z)dz

f'(2)(x - 2) + A2) ] ( - λ(y - 2) - β(jθ)dj,
2

/'(2)(x - 2) - c(x - 2) + 1 f(2)(x - 2)\

which yields the desired (3.8). Here we have used (3.10) and Q(y) ̂  c(y — 1).
From the definition of h+9 we see

oo AΎ oo /7γ

SP
 (3 i4)

for at least /ί < - 2c<> because of (3.8). It is not difficult to see that φλ(x, q) as a
function oϊqonΩ is continuous for each fixed λeC. Therefore the uniform bound
(3.8) combined with (3.14) shows the continuity of h+(λ,q\ and hence that of
gλ{O,O,q) on Ωc for λ < — 2cδ. For general λeC\[— cδ, oo) we have only to note
(3.3) and gλ(0,0, q) can be represented by a Stieltjes transformation of a non-negative
Radon measure on [ — cδ, oo). This completes the proof.

The following fact was already pointed out in [3], however for the sake of
completeness we give the proof here again.

Lemma 5. Let {hn} be a sequence of holomorphic functions on C+ with
non-negative imaginary part. For a Borel set A of R assume Re hn(ξ + iO) = 0 a.e.
on A holds. Then this is true also for any limit point h of {hn} in the sense of
point-wise convergence on C+.

Proof. z = λ — i/λ + i maps C+ onto D = {zeC; |z |< l } comformally. Set
fn(z) = log hn(λ) and f(z) = log h(λ). Then hn, heC+ implies 0 < I m / n ( z ) < π ,
0 < Im/(z) < π for every zeΏ. The identity in Lemma is equivalent to

on A,

where A is the image of A by the above fractional mapping. We can suppose
Im/M(z)->Ίm/(z) for every zeD for simplicity. Here note that every bounded
harmonic function on D can be represented by its boundary value through the
Poisson kernel. Therefore the above convergence combined with the denseness of
all linear combinations of the Poisson kernels in L2(dD,dθ) shows the weak
convergence of lmfn(eίθ) to lmf(eiθ) in L2(dΌ,dθ). Especially the property
lmfn(eίθ) = π/2 a.e. on A is inherited by lmf(eίθ), which proves the lemma.

Proof of Theorem 2. We remark that since the property c{qJ) ^ c is preserved in
the limit, supp P a ΩC(P) is valid for any shift invariant ergodic probability measure
P on Ω. Now choose any function q from supp Pi. Then the assumption
suppP x d s u p ρ P 2 together with Lemma 3 implies that there exists {qn} in Ωc
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(c = c(P2)) such that

Regξ+i0(090,qj = 0 a.e. on Γ a. c.(P2),

qn->q in ί2 c .

Therefore from Lemmas 4 and 5 we can conclude Regξ+iO(0,0, q) = 0 a.e. on
ΣΆC(P2\ However this implies in particular Im gξ+iO(0909q) Φ 0 a.e. on ΣΆC(P2\
which shows Σa c (P2) a the absolutely continuous spectrum of L(q). This
completes the proof.

Remark. In the proof of Theorem 2 we have not used f|g[O, l)\P1(dq)< oo.
Ω

Moreover what we have really proved is the following:

"Suppose that we are given a shift invariant ergodic probability measure P on Ω
satisfying J \q[0, l)\P(dq) < oo. Then for any qesuppP, Σac(P) c the absolutely

Ω

continuous spectrum of

Remark. In the lattice case also it is possible to establish theorems corresponding
to Theorems 1 and 2 if we take as Ω the set of all bounded sequences Zd with the
point-wise convergence topology by applying [5].

Remark. Obviously the restrictions c(P) < oo and J |g[0, l)\P(dq) < oo are too
Ω

strong to prove the theorems. It is natural to conjecture that in the one-dimensional
case the two theorems are valid for any pair of shift invariant ergodic probability
measures on Ω:Ω is the set of all potentials defining unique self-adjoint extension.

We close this section by giving deterministic random potentials with no
absolutely continuous spectrum.

Let {Xx(ω); xeR} be an iΛcontinuous ergodic stationary Gaussian process
with mean zero. We assume that {Xx(ω)} is non-constant. Then the ergodicity is
equivalent to the continuity of the spectral measure of its variance. This implies
the strict positive definiteness of the bilinear form on L2([— Γ, T~\,dx) induced by
the variance for any T > 0. Therefore the support of the probability measure on
L 2 ( [ - T9 T~\,dx) induced by this Gaussian process coincides with the full space
L2([— T, T], dx). Let F be a bounded continuous function on R. If we assume that
F is non-constant, then the support of the probability measure on Ω induced by
the process {F(Xx(ω))} contains a set {q inϊFSq(x)^suppF, q is continuous}.
Since the latter set coincides with the support of the stationary random process
considered by the Russian school (a functional of a Brownian motion on a compact
Riemanian manifold), applying Theorem 2, we easily see that the following
random Schrodinger operator:

has no absolutely continuous spectrum almost surely. In [3] it was proved that
any non-deterministic random potential gives the absence of absolutely continuous
spectrum. The above examples show that there exist a lot of deterministic random
potentials with this property.
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In a forthcoming paper by Kirsch, Kotani and Simon, various examples with
no absolutely continuous spectrum will be given by using Theorem 2.

Acknowledgement. The author appreciates B. Simon and W. Kirsch who gave him valuable comments,
especially pointed out the importance of generalizing classes of potentials.
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