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Abstract. We examine the recently discovered dynamical OSp(1,1) super-
symmetry of the Pauli Hamiltonian for a spin $ particle with gyromagnetic
ratio 2, in the presence of a Dirac magnetic monopole. Using this symmetry
and algebraic methods only, we construct the spectrum and obtain the wave
functions. At all but the lowest angular momenta, the states transform under
a single irreducible representation of OSp(1,1). On the lowest angular
momentum states, it is impossible to define self-adjoint supercharges, and the
states transform under an irreducible representation of SO(2,1) only. The
Hamiltonian is not self-adjoint in the s-wave sector, but admits a one parameter
family of self-adjoint extensions. The full SO(2, 1) algebra can be realized only
for two specific values of the parameter.

The Pauli Hamiltonian is generalized to accommodate a 4%/r? potential.
The new Hamiltonian exhibits a dynamical OSp(2,1) supersymmetry. The
spectrum and the wave functions are obtained. The states at all but the lowest
angular momenta transform under the sum of two irreducible representations
of OSp(2,1). These two representations are distinguished by the “chirality” of
their ground state. On the lowest angular momentum states, the OSp(2,1)
group is still realized, since the supercharges can all be rendered self-adjoint
simultaneously, but the states only transform according to a single irreducible
representation of OSp(2, 1). The chirality of the ground state for this represent-
ation is related to the signs of A and eg. The Hamiltonian is not self-adjoint in
the s-wave sector when |i]<3. Only one of its self-adjoint extensions
supports the OSp(2, 1) supersymmetry, and yields the wave functions obtained
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from the group theoretic approach. The supersymmetry is always spontaneously
broken as there exists no normalizable zero energy states.

The massless Dirac Hamiltonian in the presence of a magnetic monopole
and a A/r potential is related to a generator of an OSp(2, 1) superalgebra which
also contains the Pauli Hamiltonian. This symmetry is used to generate the
complete spectrum of the Dirac Hamiltonian.

I. Introduction

The possibility of resolving an equation by means of algebraic methods alone is
related to the existence of large symmetries. In quantum mechanics, many systems
are known for which the presence of a symmetry greatly simplifies the wave
equation. For example, the Schrodinger equation for a spherically symmetric
interaction potential separates into an angular part—which can be solved by
algebraic methods only—and a radial part. In the special cases of the harmonic
oscillator, the Coulomb [1,2], 1/r* [3] or magnetic monopole [4] potentials, also
the radial equation may be solved by means of algebraic methods, because
additional symmetries exist. The symmetries that occur in such systems were always
generated by Lie algebras.

Recently, the authors have discovered that a physically interesting quantum
mechanical system can be solved completely because it possesses a large super-
symmetry invariance [5]. This symmetry is generated by a super-algebra instead
of a Lie algebra. It was shown that the Pauli Hamiltonian

1 ,
(Pi—ed)’——BS,  S=2 =123 (L.1)

Ho=51 M >

for a spin 4 particle with gyromagnetic ratio equal to 2, in the presence of a Dirac
magnetic monopole exhibits a dynamical OSp(1, 1) supersymmetry. The symmetry
algebra now contains bosonic and fermionic generators and the invariance algebra
OSp(1,1) is a superalgebra.

In the present paper, we shall show that the spectrum of the Hamiltonian H,
can be obtained using algebraic methods only. The Pauli Hamiltonian H, is then
generalized to accommodate a 1%/r? potential while preserving supersymmetry. This
can be achieved with Dirac y matrices instead of Pauli matrices and the new system
exhibits an OSp(2, 1) supersymmetry with 4 bosonic and 4 fermionic generators.
The new Hamiltonian is

1 e A2 ;
(i eA) — L BS e o riyiy®
H 2M(pt e l) M i t+2Mr2 +2Mr3 Yy,
25,=%,= (6" 0), i=1,2,3. (1.2)
0 o

With the help of its dynamical OSp(2,1) supersymmetry, H will be solved
completely using algebraic methods only. In the absence of the magnetic monopole,
the Hamiltonian H also provides a new supersymmetric extension of the 1/r?
potential, which can be generalized to arbitrary dimensions.
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The Dirac Hamiltonian for a spin 3 particle in the presence of a magnetic
monopole and a 1/r potential

h=adpi— ed) + 0 13

can be related to one of the supercharges of the OSp(2,1) algebra of H so that
OSp(2,1) is a spectrum generating algebra for h. Knowing the spectrum of H, we
deduce the spectrum of the Dirac Hamiltonian.

It is the object of the present paper to establish the symmetries of the
Hamiltonians Hy, H and h and to obtain their spectra using algebraic methods
only. The states will be obtained using group theory, whereas to find the wave
functions, we shall have to integrate linear first order equations only. Special
importance will also be attached to the questions of self-adjointness of the different
group theoretic operators. When the Hamiltonian is not self-adjoint, it always
admits a family of self-adjoint extensions. To preserve the symmetries of the
Hamiltonian, the Hermitian generator corresponding to that symmetry should be
well defined and self-adjoint on the self-adjoint extension of the Hamiltonian.
When the full symmetry is enforced, the results from this analytic procedure always
precisely coincides with those of the algebraic procedure.

We conclude the Introduction with the summary of our results.

In Sect. II, we examine the supersymmetry of the Pauli Hamiltonian in the
presence of a Dirac magnetic monopole and use it to construct all the states and
obtain the wave functions. It is found that all fixed angular momentum states (but
the lowest) transform under a single irreducible representation of OSp(1,1), and
can be labelled by energy and “fermion number.” In the lowest angular momentum
states (or s-waves), fermion number is not defined and the charges of the OSp(1, 1)
algebra are no longer self-adjoint. The supercharges admit no self-adjoint
extensions, and cannot be implemented as legitimate quantum operators in the
s-wave sector. The Hamiltonian admits a one parameter family of self-adjoint
extensions, but in order to properly define the other bosonic generator of the
SO(2,1) algebra, one must restrict to either of two special values of the extension
parameter. The states in the s-wave sector then transform under a single irreducible
representation of the SO(2, 1) algebra, and are labelled by energy only.

In Sect. III, we consider a spin % particle with gyromagnetic ratio 2, in the
presence of a Dirac magnetic monopole suitably modified to include a A?/r?
potential as in (1.2). We exhibit the OSp(2, 1) supersymmetry, compute the structure
equations for this algebra and find the representations, the states and the wave
functions. At fixed angular momentum, except for the lowest, states are labelled
by energy, fermion number and chirality. This representation is actually reducible
into two irreducible representations, each of which is labelled by the chirality of
the ground state. At lowest angular momentum, the charges are self-adjoint only
provided [4|=3, in which case OSp(2,1) supersymmetry is realized without
any further complication. When |1| <3, the charges are not self-adjoint, but
for certain values of the extension parameters, all charges may be rendered
self-adjoint simultaneously so that the full OSp(2,1) can still be realized in this
sector. However, fermion number coincides with chirality, and states transform
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under a single irreducible representation of OSp(2,1) and are labelled by energy
and chirality.

In Sect. IV, the Dirac Hamiltonian k of (1.3) is related to one of the supercharges
of OSp(2,1), and using the spectrum of the Pauli Hamiltonian H, the spectrum
of the Dirac Hamiltonian is constructed.

In Sect. V, we address the question of self-adjointness and extensions. The Pauli
Hamiltonian H, of (1.1) admits a one parameter family of extensions, none of
which supports supersymmetry. The full SO(2, 1) algebra can be realized for two
special values of the extension parameter. The Pauli Hamiltonian H of (1.2) is not
self-adjoint for || <3. For.2>|i/=%, H admits a one parameter family of
extensions, and only for a single value of this parameter does the extension support
the OSp(2,1) supersymmetry. When 3>|A|>0, a 4 parameter family of
extensions exists, but only for one value of these parameters does the extension
support OSp(2,1) supersymmetry. At A=0, H is the direct sum of two H,
Hamiltonian for left and right chiralities, and H still admits a four parameter
family of extensions, which typically mix the chiralities. OSp(2, 1) supersymmetry
can be realized for two well determined values of the extension parameter.

Finally in Sect. VI, we show that H has no normalizable zero energy states so
that supersymmetry is spontaneously broken and Witten’s index vanishes. We also
compute Tr(— 1)e #H which takes the value — egsign /4, and is fractional when
eg is a half integer. The spectrum is bounded by zero, but this value is not attained
by any (continuum) normalizable state.

In Appendix A, we show how, in the absence of the magnetic monopole, the
Hamiltonian H can be generalized to a supersymmetric system in arbitrary
dimension. In Appendix B, we present some definitions and results in the theory
of self-adjoint extensions.

II. Dynamical Supersymmetry of the Pauli Equation in the
Presence of a Dirac Magnetic Monopole

In this section, we establish the OSp(1, 1) supersymmetry of the Pauli Hamiltonian
H, for a spin 4 particle, with gyromagnetic ratio equal to 2, in the presence of
a Dirac magnetic monopole field'. We then use this symmetry to solve for the
complete spectrum and obtain the wave functions using algebraic methods only.
The Hamiltonian H, is given by [5]

1 , € .
—m(pi—eAi) — 37850 i=1,23. 2.1)

H,
Here M is the mass of the spin 4 particle, e its electric charge, B; = g(r;/r?) is the
monopole magnetic field strength and A; the corresponding vector potential, which
can be defined by patches so as to avoid string singularities [6]. It will always be

1 Theexistence of the OSp(1, 1) supersymmetry was first discussed in ref. [5] where several of the results
of this section were announced
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understood that the wave functions are similarly defined by patches. Electric and
magnetic charges of course obey the Dirac quantization condition

eg = tinteger (2.2)

A. Symmetries.

To establish the different symmetries of H,, it is most convenient to consider the
associated Lagrangian,

Ly = Lgin + Lints (2.3)
1o
Ly =5 M7t + Sy, (2.4)
2 2
Liny = eAf, + 2 B,S 2.5)
vt = €A+ B, .

Here the ; are real generators of a Grassmann algebra describing the spin degrees
of freedom of a classical particle [7] with position r;. They satisfy

Y+ i =0, (2.6)

and we have

i
Si=— Esijk'//j'ﬁk- (2.7)

The Lagrangian L, is invariant under spatial rotations if both r; and y, transform
as vectors.

Ot =&ty Ol = &0 (2.8)
The Nother charge is just total angular momentum

Ji=M8ijkrj7:k_egfi+Si, (2.9)

so that S; is correctly interpreted as the spin of the particle.

To find the dynamical symmetries of L, we first establish that the interaction
Lagrangian Lyyy is invariant under arbitrary reparametrizations of time2. Consist-
ent with rotation symmetry, we make the following Ansatz for infinitesimal linear
transformations of r; and y;:

or;= [t +io; + gry, (2.10a)
Sy = f+ iBF+ b+ yry. (2.10b)

Here f, g and h are ordinary functions of ¢, while «, 8 and y are Grassmann algebra
valued functions of ¢, which anticommute with each other and with the ¥’s. The

2 The interaction term A,7; was shown to be reparametrization invariant in [4]
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change in the interaction Lagrangian under the transformation (2.10) is given by

Loy = %(Aiéri + % fBiSi>
e . . . p
+ Msijklpk(riBj(uxM — B —iy;BGf +9g—h)

ie
+MaiBi“‘p1‘//2'//3- (2.11)

Upon setting the third and fourth terms equal to zero, we obtain two relations
between the transformation functions namely, § = iaM and h=%f + g. The last
term is proportional to 9;B;, and vanishes due to Maxwell’s equations for all
magnetic fields, except for the magnetic monopole, where we have

0,B; = 4ngd(v). 2.12)

Hence, Ly is invariant only if we excise the origin, where the monopole resides.
We shall come back to this important question in more detail when we consider
the quantum problem. With the help of the relations between transformation
parameters, the interaction part of the Lagrangian is now invariant under the
following arbitrary reparametrization of time

or;= fr;+iap; +gr;, oY= U, —aMF + Gf + g, +yr. (2.13)

The kinetic part of the Lagrangian is invariant only under a small subset of
transformations, which we list below.

Time translations Opti=Ti SuWi= Vs, (2.14a)
Dilations Spt; = ti; — 31y, Sp¥i =1, (2.14b)
Conformal Sty = 3 — tr;, S =t (2.14c)

Oty = i, Oo¥; = — aMF,, (2.144d)
Supersymmetry Ogr; = iaty;, Osy; = aM(tr; — r,), (2.14¢)

with a constant Grassmann parameter.

The first three transformation laws are familiar from the conformal invariance of
the Schrédinger equation in the presence of the magnetic monopole and close by
themselves on an SO(2,1) algebra [4]. The supertransformations 6, and Jg are
new, and (2.14) closes under composition yielding an OSp(1, 1) superconformal
algebra. (The structure equations will be given in subsection B). The associated
Nother charges are

e
H,=31Mi?— —B,S,; 2.15
0 2 MT; M Qi ( a)
M
D = tHo - T(rifi + firi), (215b)

M
K= —t2H0+2tD+7ri2, (2.15¢)
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0=/ Mi, (2.15d)
S=—tQ+./Mry,. (2.15¢)

We have thus found the complete set of symmetries of the Lagrangian L.

B. Quantization and Quantum Numbers

Canonical quantization is straightforward; the momentum conjugate to r; is given
by

oL

Pi= 2= Mi; +eA,, (2.16)
OF;
and the canonical variables satisfy
[ri, p;] =1idy, (2.17)
i} =9y (2.18)

The canonical anticommutation relations for y; define a real (or Hermitian) Clifford
algebra, whose lowest dimensional representation is given in terms of the Pauli
matrices

o;
j=—, 2.19
Y NG (2.19)
so that
g;
S, = X (2.20)

as expected. With the help of (2.19), it is easily shown that J; obeys the standard
angular momentum algebra.

[Ji’ J]] = i8iijk. (2.21)

Similarly, the charges H,, D, K, Q, and S of (2.15) are all Hermitian (i.e. symmetric)
operators and obey the structure equations of an OSp(1, 1) superalgebra®:

[H,,D]=iH,, [H,,K]=2iD, [D,K]=IK, (2.22a)
(0,0} =2H,, {Q,8}=-2D, {S,8}=2K, (2.22b)
[H,,0]1=0, [K,S]=0, (2.22¢)
[H,,S1=—iQ, [K,Q]=iS, (2.22d)

i i
[D,0]=-50, [D,S]=5S (2.22¢)

Relations (2.22a) define the SO(2,1) subalgebra. Naturally, (2.22) only holds

3 The OSp(1.1) superalgebra was studied in [8] and has been found to play a crucial role in con-
formally invariant supersymmetric two dimensional field theories (see e.g., [9])
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provided 0;B; =0. At the level of the quantum mechanical states, this suggests
that the supersymmetry can be realized only on the states whose wave function
vanishes at the location of the monopole. By construction, the charges H, D, K,
Q and S are rotation invariant and commute with J;. Thus, the full invariance of
H, is specified by the group

GHO = SO(3)rotations X OSp(l, l)superconformal‘ (223)

The OSp(1, 1) symmetry is dynamical: the charges D, K and S do not commute
with H, because they explicitly depend on time, but their total time derivative
vanishes. For example we have

S=%§+ i[Hy,5]1=0. (2.24)
Henceforth we shall consider the charges at t = 0 only, without loss of generality
since their time evolution is given by (2.24). Because Gy, is a dynamical symmetry
of H,, the states must span a representation of this algebra. The spectrum of H,,
is found by looking for the action of H, on this representation space. The
representations of O(3) are labelled by the eigenvalues of J? and J,, which we
shall denote by j(j + 1) and m. Their range is

J=JosJo+Ljo+2,..., (2.25a)
Jo=legl —3. (2.26)

In classifying the unitary (infinite dimensional) representations of OSp(1, 1), it will
turn out to be convenient to label the states by the Casimirs of the canonical chain
of maximal subgroups:

0Sp(1,1) 2 02, 1) 5 O(2). 2.27)

In the case of OSp(1, 1), this is equivalent to specifying the representation by its
highest (or lowest) weight. The Casimir of the O(2) algebra is just the compact
generator R of SO(2, 1)

L,

K+

R=32%*3

H,. (2.28)

Here a is an arbitrary parameter which fixes the scale. The Casimir of SO(2, 1) is
well known [10] and is given by

Co=4(H,K + KH,)— D, (2.29)

It commutes with Hy,, D and K, but does not commute with Q or S. It is
convenient to express C, in terms of the coordinate representation,
Co =1(J? — J,0, — egh o, — €*g?). (2.30)

It is easy to see that within OSp(1, 1) there exists another SO(2, 1) invariant operator
(we shall call it a Casimir as well) which is expressed in terms of Q and S solely:
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Ao =i[0Q,S]—7 (2.31)

The operator A commutes with H,, D and K but anticommutes with Q or S, so
that it plays the role of “fermion number.” In terms of the coordinate representation,
we find

AO = Jko-k + egka'k - %. (232)
Clearly then, the combination
Cy=Co+4Ag+7s=4{Ho, K} — D* + [0, 5] +75, (2.33)
which in coordinate representation yields
€ =302 =g+ 1), 234

is a Casimir of the full OSp(1, 1) algebra, since H,, D, K, Q and § are rotation
invariant. Now, we see that the Casimir C, is completely specified by the quantum
numbers of the rotation group*. Furthermore, we have

C, =343, (2.35)

so that the norm of the eigenvalue of 4, is fixed. [We shall see in the next subsection
that the eigenvalue of 4, can actually vanish so that then sign A, is ill-defined.]
A complete set of labels is given by eigenvalues of the remaining Casimirs

J2,J,, sign A, and R, (2.36)

which clearly commute. All representations of G, for our problem will be specified
by the eigenvalues of the Casimirs. Instead of R, we could have diagonalized H,,.
The reason for considering R first is that it arises naturally in representation theory.
The eigenstates and wave functions in the energy representations are obtained in
Subsect. D through further group theoretic reasoning,

C. States and Wave Functions

We now derive the spectrum of R by means of algebraic methods, and determine
the wave functions by solving linear first order differential equations only. To do
so, we construct the representations of Gy,. We need to know the eigenvalues of
the Casimirs given in (2.36). The eigenvalue of sign A, is denoted by «, and takes
on the values of + 1. The eigenvalues of R are r,=§;, + n for a representation®
of the bosonic subgroup SO(2,1) with the following eigenvalue for C, [4, 5, 10],

Co = 51',(1(5]"“ - 1) (2.37)

4 Strictly speaking, this means that the product of O(3) and OSp(1, 1) in (2.23) is not direct
5 Please note that here ¢, , does not stand for the Kronecker delta symbol
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With the help of (2.33) and (2.34), we get an expression for §; , in terms of j and o:

0500 — 1) =3d] —0d; — 75, (2.38)
where
dj=\/j(j+ D —joljo+ 1), Jjo=legl—3. (2.39)
Since R is a positive operator, we only need to consider §;,>0 and we obtain
a 1
Sja=3d;—7+7. (2.40)

We can now list the quantum states by their quantum numbers:
Pjmouny = j+ Dljmso,n),
Jlj,myo,n) =mlj,mo,n,
Aoljymyonn) = adj|j,m;a,n,
Rjjma,n) = (6, +mlj,many, nz0 (2.41)
All these states are connected to each other through the action of the OSp(1, 1)

group at fixed j and m. Raising and lowering operators are defined in the Cartan
basis [5] where the basic generators are R (the compact diagonal generator), and

1 a?

Bi=ﬁK—7HO-I_-iD, (2.42)
F,= El&srr ’-z‘fQ. (2.43)
The structure equations (2.22) in the Cartan basis are:
[R,B,]=+B,, [R,F,]=+3F,, (2.44a)
[B,,B_]= —2R, {F,,F_}=R, (2.44b)
{F,,F,}=B,, [B,,Fr1=FF,. (2.44c)

With the help of the expressions of C, and C, in terms of J*> and A4,, one can
easily obtain the action of raising and lowering operators on the states:

J limony = /jG+1) —mm=+1)|j,m+ Lo,n), (2.45a)
Bilja m; a,n} = \/(éi,az + n)(aj,u +nt 1) - 5j,a(5j,a - I)Ua m; o, n + 1> (245)
F limo,n)=./50;,+n) +%+2ad;|jm —o,n—La+1). (2.45¢)

We now examine the case where j = j,, and d;, = 0. On those states, 4, vanishes
and the quantum number « is not defined. To better understand why this happens,
let us recall that in the s-wave states, the wave function overlaps with the origin,
so that the complete superalgebra (2.22) is not realized. Mathematically the reason
is that on the s-wave states, the supercharges Q and S are not self-adjoint, and
admit no self-adjoint extensions. (Note that Q is proportional to the helicity
operator, which is known to possess this property [11]; see Sect. V.) Thus Q and
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S are not legitimate quantum operators. The action of the non-self-adjoint charges
0 and S on s-wave states is ill-defined, and so is fermion number. This is consistent
with the fact that 4, vanishes on s-wave states so that fermion number cannot
be defined and J2, J, and R are the only Casimirs. The bosonic charges H,, D, K
and R are not self-adjoint either on the s-wave states, but H, admits a one
parameter family of self-adjoint extensions. Only for two specific values of this
extension parameter (¢ = + 1) can the SO(2, 1) algebra be defined. In each case,
the states of the s-wave sector transform under a single irreducible representation
of SO(2,1) (see again Sect. V).

Returning to the case where j # j,, we learn from (2.45) that for each angular
momentum, two states are annihilated by B_:

B_|j,m;a,0) =0, (2.46)
of which one is also annihilated by F_:
F_lj,m;1,0>=0. (2.47)

This state defines a ground state, from which all higher states are constructed by
applying F, or B, . First we have

lsm; —1,0) = (Gd; + 37 2F ,|j,m; 1,0, (2.48)
which allows us to compute
. _ I (26j,a)
s on) = (mr(z(s et 1)
We see that at fixed angular momentum, all states of the spectrum can be obtained
by applying F, or B, and thus transform according to a single irreducible

representation of OSp(1, 1).
When j = j,, there still exist two states annihilated by B_ and labelled by o

1/2
> B’ |j,m;a,0). (2.49)

B_ljo,m;0),=0, (2.50)
and
. res,) \2.
oy, = () g i, @5
: Jo,a

with « = + 1, but now « is determined by the self-adjoint extension on which H,,
B, B_ and R are properly defined so that H, and R are self-adjoint and B, is the
adjoint of B_. Of course, only one single choice of a self-adjoint extension can
be made once and forever, so in this case « is fixed as part of the definition of the
operators.

Now that we have constructed all states, we also wish to obtain the wave
functions. We first restrict to the case where j# j,, so that sign A, is a good
quantum number and start by diagonalizing the Casimirs J2, J,, sign 4, and R
simultaneously. The quantum numbers j, m and o fix the angular dependence of
the wave function, whereas n pertains to the radial dependence. In a basis where
[?=(J —S)* is diagonal, the wave functions are just the standard monopole
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harmonics [6]

LLy =11+ DL,L), (2.52a)
LlL 1L =LILLD, (2.52b)
O, ¢lL1.> = Yey1,1(0, ). (2.53)

Standard Clebsch—Gordan coefficients relate the states in which I2, L, and S, are
diagonal to the ones where J2, J, and I? are diagonal

AZAY =(C+5t+1/2,j_ C—al—l/z,j)llam_%> ®|%>%>
F(C_di41)2,j+ Cidypp)Im+3> @3, —3), (2.54a)

_ l+3Em
C,= /T-’rl (2.54b)

In this basis the operator A4, is not diagonal. To diagonalize A,, we first express
it in terms of angular momentum operators:

Ag=J?—I? +egfio; + 4. (2.55)

with

Both J? and I? are diagonal in the basis |j,m,[), so it suffices to evaluate #;0".
Since A, commutes with J;, we can restrict to the case m= — j and using the
explicit expressions for the monopole harmonics [6,11] we find:

o T S, -8
<J,—1;J—o|a‘filj,—j;1—a>=<_ ! 2) , (2.56a)

with
_ —2eg 24
VU241 TP+
It is then straightforward to evaluate A4, in this basis and diagonalize it to find
the normalized eigenvectors:

(2.56b)

|j) _j;a>=Nj,a!j+%9 _1_%> ®|%9%

1 . .
+Nj,a<_ ——|j+3, -+ ®F -3
2j+1

+Milj—3,—j+3>®| (2.57)

. 1
j_ [itz—od; )
Ni= | s (2.58a)

o [2j+2
P eg N 2j + 1

N
|
D=
v
\—/

where

(+73+od). (2.58b)
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The angular part of the wave functions (#; ,, (6, ¢)) is now easy to obtain:
’7,',—]';.1(9, ¢) = <07 ¢’ Jlja _ja O‘>

Yeg,j+ 1/2,—j— 1/2(9, ¢)
1
—\/mYe””l/z —i+1720: D) + MY g 172, 1/2(6, ¢)
(2.59)

The wave functions with m # — j are obtained by applying J7* ™. Let us recall that in
this basis, we have

= Nj,a

Aoljsmy o) = adjlj,m; o), (2.60a)
a'filjmay = —|j,m —o). (2.60b)

A similar analysis yields the wave functions for the lowest angular momentum
states where j = j,. It is found that

"jo,—jo,a(ea d’) = <0’ ¢9 O'Ijo, —j0>
1 Yey, legl, — Iegl(g’ 4))

S — (2.61)
/1 + e? 2 1
g - @ Yeg,legl,—legl + 1(9’ ¢) ¢
In this basis, L? is diagonal and we have
, eg .
oifiljo,m> =—ljo,m> 2.62)
Jo legl Jo (
The radial dependence of the wave function is factorized, so that
(r,0,¢,0lj,mo,n)=0a, (r)<0,,alj,ma). (2.63)

We could now diagonalize R by using its expression in a basis with fixed angular
momentum (see ref. [4] and [5]). Instead, we prefer to construct the ground state
wave function first, after which we obtain the wave function for an arbitrary state by
applying F, or B, . From (2.47), we see that the ground state wave function (for
J #Jo) is determined by

r,0,¢,0|F _|j,m;1,0) =0. (2.64)

With the help of (2.31), and the structure equations, we obtain a useful form for
F_:

1 3.1
Fo=-S% a<8S+4SA0+2DS) (2.65)

The coordinate representation of Dis given by [4]

D= 3( §r+3> (2.66)
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The action of S on the ground state is simple

Sjms 1,05 = [ rlms — 1,05, 67
and (2.65) leads to the desired equation for @, (r):
1d Mr d;
;ﬂr¢0,1(r) + (a—z — —;—)dio,l(r) =0, (2.68)

whose normalized solution is

2 V2 Mr2 N0
— —Mr2/2a2
Do,1(r) <r3r(25,.,1)> <a2> e . (2.69)

Using (2.48) and the definitions of F | in (2.43), it is easy to compute the radial wave
function for |j,m; —1,0):

M
(R0, puolFolim 1,05 =" [Zr 0 dolim — 1,05, (270

from which we extract the radial dependence:

2 12/ M2\ % .
= ~Mr?/2a% 2.71
D (1) <r3 F(25j,a)> (az ) e (2.71a)

The wave function for an arbitrary state is obtained by applying the raising operator
B, and using Rodrigues’ formula for the generalized Laguerre polynomials L}’

One finds:
Sl O\ M
d)n,a(r) = (_ 1) <r31"(25,~,a + n)) ( az )

21242 Mr?
x e—Mr /2a L?"’“"(‘a%)- (271b)

For j=j,, the ground state wave functions are obtained by requiring
(r,0,¢,0B_|j,m;05,=0. 2.72)

Formally B_ can still be factorized as 2F% , and it is found that the wave functions
are still given by (2.71), but « is uniquely determined by the boundary condition
at the origin (i.e. by the self-adjoint extension for H, or R).

D. Diagonalization of the Hamiltonian

Instead of diagonalizing the compact generator R, we may also diagonalize the
Hamiltonian. States are then labelled by the energy E, and we have

Holj,myo, E) = El|j,myo, E ). (2.73)

To determine the wave functions in the energy realization, we can of course separate
the Pauli equation in angular and radial dependence, and solve directly. However,
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we prefer to first compute the overlap between the states in the R basis |o, n) g,
and in the H, basis |a, E)y, (we shall suppress the angular momentum
labels). This can be achieved using algebraic methods only [4]. The operators of
the OSp(1, 1) algebra can be realized in terms of Hermitian generators in an energy
representation:

H,=E, (2.74a)
1
D= —i<Ed—dE+§>’ (2.74b)
a2 d 1 a\?
0=./Ed, (2.744)

d;

) d 1 1 2
s_z(ﬁd—E+4ﬁ>a Nk (2.74¢)

Then, we calculate the overlap {1, E|1,0)  using the fact that 5 (1, E|F _|1,0)x =
0. We find

1

LE|1 = ———
Ho< s , 30>R (ET(251,1)

172
> (2a2E)’1e~E, (2.75)

The overlaps of the higher states are obtained by application of raising operators,
and we find that

E an! /2 DV
H0<0€, |ot,n>R—oz ﬁ(zw ( a )J,
x e~ “E[ 2927 (2a2E). (2.76)
The wave functions in the basis where energy is diagonal are then obtained by
<ra0'|0‘aE>H0=Z<r,0]°‘,n>RR<“,n|°‘,E>HO~ 2.77)

With the help of formula (2.71) for the wave functions in the R-basis, we get
@, u(r)=<rla, ED g,

2a \17? — Mr2/2a2 — a2
(— 1l s <Mr2> 25 iim 2
X Y —————— L% —5— | L% (2a°E), (2.78)
7 1(26;,+n) a?

and after performing the sum over n [4], we obtain the properly normalized wave
function:

D, 4r) = a<g—]‘rf‘~‘>”2J%_l (/2ME). (2.79)

This construction of course only holds for the j # j,. When j = j,, only the generators
of SO(2,1) can be used. The states are determined by the condition that
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B_{r|0>,=0, which yields two inequivalent self-adjoint extensions of R (see V)
and which has two independent solutions: @, , given by (2.70). The overlaps can
be constructed in an analogous fashion, and we find that the wave functions in
the energy representation for the two different extensions are still given by (2.77).

III. Generalization to Include the 2 Potential

We shall now prove that the Hamiltonian H of (1.2) describing the dynamics of
a spinning particle in the presence of a magnetic monopole and a A%/r? potential
has a dynamical OSp(2, 1) supersymmetry. Using this symmetry, the spectrum will
be constructed with the help of purely algebraic methods only. For brevity, we
shall immediately introduce the quantum charges, instead of deriving them from
the Lagrangian and the invariance transformations. We shall briefly return to the
Lagrangian formulation in Subsect. C.

A. Hamiltonian and Charges

The simplest generalization of the Pauli equation for the Dirac monopole which
includes a 4%/r? potential preserving the existing symmetries is realized with Dirac y
matrices instead of the Pauli matrices. This Hamiltonian is

2

1
H=——(p;—eA;)* — '_e—BiZi +

i.,0 X
M M e o (312)

with
i
{7”, Yv} = 20" 2 =Zgijk [vjs 7ied (3.1b)

and / a real parameter. Please note that in a basis where y° is diagonal, H is block
diagonal. When 1 =0, we recover the problem of the magnetic monopole with
more spin degrees of freedom, which can be reduced to the case examined in the
previous section. The dynamical symmetries are® dilations (D), conformal
transformation (K), parity (Y) and four supersymmetries (Q,, Q,,S; and S,), and
we have

D =tH —(p;r; +r;py), (3.2a)
K= —t?H + 2tD + Mr?, (3.2b)
Y =393(ZLi + 3+ Ay%'F), (3.2¢)
1 . A
0 =——— 5<* . —eA,; +i°—>, (3:2d
1 \/mv Y(p )+ iy . )
0,=—iy°0;, (3:2¢)

6 For all charges, except for the Hamiltonian, we use the same symbols as in Sect. I, even though their
expression in coordinate representation contains additional terms
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M ..
Si=—1Q: + |59, (3.26)

S, = —iy5S,. (3.2g)

The charges H, D, K and Y are bosonic, while Q, and S,(a = 1,2) are fermionic.
The structure equations are

[H,D]=iH, [H,K]=2iD, [D,K]=iK, (3.3a)
{04, Qp} =20,4H, {S,,S5} =20,4K,

(0,85} = — 28,4D + 26,57, (3.3b)
[H.0,]=0, [K,S.]=0, (3.3¢)
[H,5]= —i0, [K.Q]=iS. (3.3
[D,01= ~ 30, [DS1=35. 630)
[Y,H]=0, [Y,D]=0, [Y,K]=0, (3.30)
[V,00 = 5640 [Y.S.J=52uS). (33g)

This superalgebra’ is known as Spl(2,1) or OSp(2,1) [8] and is of rank 2. This is
clear from the fact that the generator Y commutes with any other bosonic generator.
Thus the total invariance algebra at this stage is

GH = SO(3)rotations X OSp(za l)superconformal‘

In fact this result only holds for ||+ |egl. We shall see in Subsect. C that
A= + eg, the invariance algebra can be enlarged to include an SO(3) group which
leaves the spatial coordinates ; alone, but rotates the spinning degrees of freedom.
We shall also see that it introduces no new quantum numbers. Thus at A = + eg,
we have

GH|1= +eg = SO(3)rotations X SO(3)spinning X Osp(za 1)superconformal

B. Casimir Operators, Quantum Numbers and States

The representations of OSp(2, 1) have been studied in the literature [8]. Rather
than making use of the general theory of representations for this algebra, we shall
start from scratch.

Let us consider the canonical chain of maximal subgroups.

0Sp(2,1)>S0(2,1) x 0(2) 5 0(2) x O(2). (3.4)
C2,C3 Co Y R

7 Analternative supersymmetric extension of the A2/r? potential has recently been proposed [12], when
there is no magnetic monopole. The Hamiltonian of [12] is different from ours, its invariance group
however is also OSp(2,1)
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We have listed the different Casimir operators, and OSp(2, 1) has in principle a
quadratic and a cubic Casimir since its rank is 2. The Casimirs are given by

1 2

a
Co,=%(HK + KH) — D?, (3.5b)
i i
C,=Co+ Z[Ql’ Si]+ Z[QZ’ S,1—Y? (3.5¢)
Cy=(Y —y°)C,. (3.5d)

The expression of the cubic Casimir is special to the form of the supercharges.
The general expression was given in [8], and (3.5d) is obtained by using

Q,=—1iy°Q, and S, = —iy®S,. In terms of the coordinate representation, we
find
Co =42 = I, Xy — egh Zy — 1y%y*h, — &2 g% + 4%), (3.62)
C,=Cy=0. (3.6b)

We see that neither C,, nor C, label the states, and the representations of G are
so-called non-typical [8]. The general theory states that such representations of
Gy are not completely determined by the values of the Casimirs.

Instead of C,, a new Casimir 4 may be introduced for SO(2, 1):

A=i[Q1, 51 —3=1[05,8,] 7. (3.7

The Casimir 4 commutes with H, D, K and Y, but anticommutes with Q, and
S,, and can be interpreted as “fermion number.” In coordinate representation, we
have

A=Ay + Ay°y*F,, (3.8a)
AO = szk -+ egzkfk - %, (3-8b)

and the square of 4 is determined in terms of angular momentum,
A2 =J?—e2g? + 1+ 2% (3.9

which never vanishes when A+ 0.

Instead of Y, we can again use the slightly more convenient operator y°, or
“chirality.” Chirality commutes with all bosonic charges and rotates the super-
charges, so that it can play the role of Y:

[,})5, Qa] = 2i8aﬂQﬂ: (393.)
[7, 851 = 2ie,yS,. (3.9b)

Thus, all states can be labelled by the eigenvalues of angular momentum (J2,J,),
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fermion number (sign A), chirality (y°) and R:
Jollmo, ,n) =mlj,mo, g, n),
AU,m;(X,X,n> = aDjlj7m;(x9X’n>a
Pl mopn> = xljmo, 1,0y,

Rlj,m;o,,n) =(4;,+n)lj,mox,ny, nz0, (3.10)

with

D;=/ji+ 1) —jojo + 1)+ 12, (3.11a)

1 o 1

=—D.——+—. 3.1

A, 5D 4+2 (3.11b)
and

w?=y2=1.

For j =j,, there are some restrictions, which we discuss later on.

When j#j, the states |j,m;o,x,ny form a reducible representation of
OSp(2,1). To see this we notice that there exists a Casimir operator of OSp(2, 1)
which does not vanish. Clearly y> and 4 both commute with all bosonic charges,
but anticommute with supercharges, so that their product

Q=954 (3.12a)

commutes with all generators of OSp(2, 1) and is a Casimir. Using the expressions
for Y and 4, it is easy to show that

Q=2Y — 1% =2C,4/C,. (3.12b)

Thus, even though the set of all “canonical” Casimirs does not specify the
representations uniquely there are in fact further Casimirs in the problem which
allow for complete reduction of the representation. The eigenvalues of £2 are

Qlj,myo, x,n) = wD;|j,m;a, y,n) with o = yo. (3.13)

Thus, « is an independent quantum number, and the representations labelled by
o and y decompose into two irreducible representations labelled by |j,m; x, x,n)
and |j,m; — x, . 1.

When j =j,, another accident occurs and we have

AOIjO’m;(x9Xan>:0- (314)

Combined with the fact that L? is diagonal for j=j,, we find, exactly as for
(2.55) that

, eg .
fi2i|]0’m;aaXan>=@|]Oam;a’){an>' (315)

With the help of the fact that y%y'= —y5X" it is straightforward to evaluate A
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on these states:
, . — Aeg

Al]Osm;'an’n>=“DjI]09m;a’X>n>’ o= Yo, and wO=W' (316)
When 4 # 0, 4 is proportional to the chirality on s-wave states, and w, is completely
determined by the parameters of the problem. Only a single irreducible represent-
ation of OSp(2, 1) occurs, and o is related to the chirality. When A =0, D; =0, and
A vanishes on the s-wave states, so that « is not defined. Contrary to the case of
the fermion monopole coupling discussed in Sect. II, the supercharges now admit
self-adjoint extensions, and the full algebra can be realized for two values of the
extension parameters, corresponding to w, = ya = + 1. This situation may also be
thought of as the limiting cases when 4 — 0, which can happen either with 1 <0 or
A>0, yielding w, = + eg/leg| respectively. The cases with j+j, and j=j, can
be treated in parallel, if we remember that in the latter case we have the restriction
o= {Wq.

Now that we have identified the representations and the states, we shall show
that at fixed j, m and w, these states are all connected to each other through the
action of OSp(2, 1). Raising and lowering operators are again defined in the Cartan
basis where R and Y are simultaneously diagonal, and we find

1 2

B,=—K-2 H+iD, (3.17a)
t 242 2
1 ia
LR _ ~ LR HLR
FLR = SLRF QM (3.17b)
1 .
QLR = ﬁ(Ql FiQ,), (3.17¢)
1
SL’R = ‘—_(Sl $ iSz). (3.17d)

NG
Here FX® are the purely left (right) creation and annihilation operators, and we
have

(FL)' = FR, (3.18)

where 1 stands for the adjoint of the operator. The Cartan equations are very
simple in this case:

[RaBi]= '_tBi’ [B.,B_]= —2R, (3.19a)
(F5FLR =0, (FLFE =B, (FLFS=REY, (19
[RPL™)= £3FE% [VPL]= —4FL; [GFR1=1F%, (.19
[B,,FbR]=0, [B,,FL*]= T FLK, (3.19d)

Next, we determine how raising and lowering operators act on the states. The
action on the quantum numbers o and y is obtained from the fact that fermion
number and chirality anticommute with F’s and commute with B’s. Normalization
of this action is easily deduced with the help of some further commutation relations.
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[F5,FR]1=3(-A-3-2Ry"), (3.20a)
[FR,FL]1=4(— A —1+2RyY). (3.20b)
One finds
By lim o ,n) =/ (A;a+ (A +nt D)= 4;(A;, — D]jmo, zn £ 1),

1 1 « o 1
Li: . _ 12 204, ¢ _ _ 4z
Filjymo,,ny=~1+y) /2(11,,a+n)ir8 4D ‘], m; Xh 2J—’2>’
1 oc o 1
1/2 i _ .z
|]9m a’X>n> _(1 X) \/ (A]a+n) 8 4 ‘]a —a, XLhn 2i2>3

(3.21)

The only fundamental difference between these relations and (2.45) is the appearance
of the factors depending on the chirality. Their presence implies that an operator
of given chirality annihilates all states with that chirality. From (3.21), we also
learn that there are two basis states for each angular momentum, and they are
distinguished by their chirality.

FL|j,m1,1,05=0, (3.22a)
FRlj,m1, —1,0>=0. (3.22b)

Of course, for j =j,, only one of these states actually exists. The two irreducible
representations of OSp(2, 1) for any given j, m are then obtained by applying a
definite chain of raising operators:

red,) \v ,
i 1,n> = (W@%\%?)) FRFL .. FRFL |j,ma, 1,0, (3.23a)
. j,a

o (L TQA) N\ ok o emps
ljymya, —1,n) —<n!F(n+2Aj,,)> FLFL .. . FiFI|jma, —1,0>.  (3.23b)
This concludes our construction of the states.

The wave functions for each of these states may be easily constructed, in exactly
the same fashion as for the case of the monopole alone as discussed in Sect. II.
Of course, as the spin algebra is realized in terms of the Dirac matrices instead
of the Pauli matrices, the wave functions will be four component Dirac spinors.
The angular basis for these spinors is obtained by direct product of the angular
basis for two component spinors (the #;,,, of (2.59)) and the quantum number
chirality (y),

+
(2 (")'7 (99 ¢)>
b N ) el Il . 3.24
imazal>0:9) (wn,a,x(r)n,-,m,a(e, 9 529
It is clear that in a basis where chirality is diagonal, we also have ¢, ;=

@ra+1=0. The ground state wave function is obtained by resolving the
differential equations,
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(r,0,¢,0|FER{j,m;1,0,0>=0. (3.25)
With the help of the expressions
1 a(3 1 i
L.R _ LR 2GL.R { “ QLR 4 1 ° pQL.R )
F3 2aS +K<8S +4S +2 S >, (3.26)

the equation (3.25) is readily reduced to an equation for the radial functions
®0,1,+1 and @g 1 _i:
1d

Mr
=1, 1(r) + <a—2 -

D.
rdr ]> ?31,41() =0, 3.27)

r
whose normalized solutions are

2 1/2 Mrz Aj1
+ — —Mr2/2a%
(pO,l,il(r) <r3r(2Aj’1)> ( a2 ) € ’

®41,71(r) =0. (3.28)

where D/ and A;, are defined in (3.11). The radial functions for both chiralities
are thus the same, reflecting the perfect symmetry between them. The general radial
solution may be obtained by application of F5® and B, , and we find

. 2n! 2 M\ a2 [ Mr?
Pz () =(=1) <r3F(2A. +n)) < @ ) e T Ly (7)
Jrx

P 71(r) = 0. (3.29)
We have now constructed the wave functions for all states. Please remember that
for j =j,, there is just one ground state with chirality w, = — deg/|deg|, so that

o = wyy. With this restriction, the wave functions are given by (3.29).

So far we have diagonalized the compact generator R. With the same group
theoretic techniques as in Sect. II, we may also construct the wave functions in
the representation where H is diagonal. The overlap functions are

on! 172
X Elo, ¥, =qf —— 2140~ 92ET 24; ,~1( 2
a0, Elot, x,n) g a<Ef(2AM+n)> (2a*E)%iee”*FL2%""(2a*E). (3.30)

The phase between the two irreducible representations (labelled by w = ay) is
arbitrary, and set to zero by definition. The wave functions in the energy
representation are now easily obtained:

oM\ 12
(pg—ia’il(r)=oc<i ) J24;,-:(./2MEY),

PEy71(r)=0. (3.31)

It should be stressed that the present construction holds for j = j, included.

It may seem surprising that, nowhere in the erection of the s-wave states, the
question has arisen as to whether the Hermitian charges, utilized to derive the
representations are truly self-adjoint so that the representations are truly unitary.
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The problem of self-adjointness will be addressed in full in Sect. V, but we shall
here list the results of the analysis.

For |4 =3, the operator R (or H) is self-adjoint, all wave functions vanish at the
origin, and all Hermitian charges of OSp(2, 1) are self-adjoint.

For$ £ || <3, the operator R (or H) is not self-adjoint, but admits a one parameter
family of self-adjoint extensions. The operators Q, are well defined
only for two specific values of the extension parameter, and the
remaining charges are defined and self-adjoint only when a single
value is chosen for this parameter.

For 0 £ |4 <4, the operator R (or H) is not self-adjoint and admits a four parameter
family of extensions. The charge Q, is self-adjoint only on a one
parameter subfamily. To make also Q, self-adjoint, the choice is
further restricted, and only two values of the latter parameter are
retained. Self-adjointness of the remaining charges fixes the
parameter uniquely for 1 # 0, while for A =0, two different values
are allowed.

C. The Lagrangian and Points of Higher Symmetry

As the Hamiltonian H is expressed in terms of Dirac y matrices, it is not hard to
see that at the Lagrangian level four Grassmannian spinning coordinates are
needed. It turns out that these can be chosen to be real and we obtain the following
Lagrangian:

2

. . A
L= %Mr,z — eAir,- —2]\4—"2 + Lspin’

spm l//ul// B El]k‘//]‘pk M 3 l// l//o"v u= 0’ la 25 3 (332)

Canonical quantization is performed by requiring
[ri,p] =10y, {Yy" P} =", (3.33)
and the Clifford algebra is realized in terms of the (Minkowski space) Dirac matrices

1 0 i__ i i

\/Ev, Y ﬁv- (3.34)
From (3.32), it is manifest that the kinetic term of ¥* is O(4) invariant, and we
shall now see that this O(4) symmetry can be shared by the interaction terms
when 4= + eg. To do so, we remark that Y/, is an antisymmetric tensor, which
can be decomposed into its self-dual and anti-self-dual parts with the help of the
’t Hooft 7 symbols [13]. In this notation, the spin part of the Lagrangian becomes:

Y=

spm l/ju!pu 1(2' + eg)nuv l/’ywv gBl(/1 - eg)ﬁ:w l//ul//v (335)

Under an O(4) transformation, given in terms of its infinitesimal generators
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Oy = My @ + 1, D, (3.36)
the # and 7 symbols transform as O(3) vectors:

Sulliy = — ™01,

Ouflfy = — €@ (3.37)

With 1 # + eg, rotation on the spatial coordinate r; cannot compensate for a general
O(4) rotation, and the largest invariance is obtained for @*= ¥ ie. ordinary
rotation on ¥; and ¥, left alone. However, when for example 1 = eg, & transform-
ations do not act on L, at all, and w transformations can be compensated by
ordinary rotations. At the points A = + eg, the full invariance group is thus

GH]/'I,:ieg = SO (3)rotations X SO(3)spinning X Osp(z’ 1)superconformal'

All Casimir operators associated with this additional O(3) spinning are easily
shown to be fixed, so that no new quantum numbers are needed at these points.

IV. Generating the Spectrum of the Dirac Hamiltonian with the
OSp(2,1) Algebra

So far, we have considered only dynamical or Lagrangian symmetries. These are
characterized by the fact that under the corresponding symmetry transformation,
the Lagrangian changes by a total time derivative, so that the equations of motion
are left invariant under the transformation. At the Hamiltonian level, dynamical
symmetries give rise to NoOther charges which are, in general, time dependent
and which, together with the Hamiltonian, form an algebra that closes. Thus, the
total time derivative of the charges vanishes. When the invariance algebra is a
superalgebra, the Hamiltonian should be an even or bosonic charge, so that time
translation is given by Schrodinger’s equation.

Spectrum generating symmetries are rather different in character. They do not
correspond to symmetries of the Lagrangian or of the equations of motion. Rather,
it is first established that the spectrum of the Hamiltonian (say H) coincides, as a
whole or in part, with the spectrum of a different Hamiltonian (say H’'). When H’
possesses a dynamical symmetry G, then its spectrum transforms under a unitary
representation of G, and so does (part or the whole of) the spectrum of H. In this
sense, a spectrum generating symmetry is an “on shell” symmetry which is not a
symmetry of the equations of motion. The famous example is the Coulomb problem,
whose spectrum transforms under a representation of O(4,2) [2].

In this section, we generate the spectrum of the Dirac Hamiltonian & for a spin
1 particle in the presence of a Dirac magnetic monopole and a scale invariant
mass with

h=oci(pi—eAi)+%ﬁ, @4.1)

and A; the monopole field. This Hamiltonian is clearly related to the supercharge
Q, of the OSp(2,1) algebra given in (3.2). In fact, h is obtained by replacing in

/2M Q, the Dirac matrices — iy’ by o, which simply amounts to a change in the
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representation of the y matrices. The complete correspondence is then easily derived,
and we have

70 -5,
yi ol = iy%y,
y® = iy%y°. (4.2)

After this substitution is made, we may identify h with Q, of the OSp(2,1)
algebra. So h is in fact part of the superalgebra. The reason that OSp(2,1) is not
a dynamical symmetry of h, is that h does not obey commutation relations, but
anticommutation relations. Thus there is no sense in which h generates time
translation which is necessarily a bosonic operation. Nevertheless, the spectrum of
h(or Q,) is readily derived from the spectrum of H, which was obtained in Sect. ITL.
Working at fixed angular momentum, we have

Hlo,y,E)> =E|o, 3, E), 4.3)

where the chirality y and fermion number « can take values + 1 independently,
except in the s-wave where they are related (see Sect. III).
The action of Q, is also known:

QZIOC9X5E>=\/EI*‘“=‘X9E>9 (44)

so that @, is easily diagonalized.

Q2(|1>1>E>i|—13_1’E>)= i‘\/g('19laE>i|_1’_l,E>)a
0,1, - LEY+|-LLEY) =+ /E(Il, - LE) + |- L,LE)).  (45)

In the s-wave sector two of the four states defined above are dependent. It is clear
that (4.5) provides the general solution to the eigenvalue problem for Q,, and thus
for h.

V. Self-Adjointness in the s-Wave Sector

For states not belonging to the s-wave sector, the centrifugal barrier is strong
enough to make the wave functions vanish at the origin. All operators, encountered
in our analysis, are then self-adjoint on this restricted set of wave functions [11].
They are legitimate quantum operators, and the states in this sector fall into unitary
representations of the corresponding algebra.

In the s-wave sector on the other hand, the situation is quite different. It has
long been known that the magnetic monopole has an attractive potential, strong
enough to cancel the centrifugal barrier which normally exists for orbiting spin
1 particles [11,14]. As a consequence, the particle can travel down to the center
of the monopole and can actually be absorbed by it. A different way of expressing
this property is to say that a net current can flow into the monopole; the evolution
operator is not unitary, the Hamiltonian is not self-adjoint, and the quantum
mechanical problem is ill-defined [11]. Physically, one expects new physics to set
in at very short distances (as compared to the inverse mass of the spinning particle).
A complete description of the monopole spin 3 particle system is expected to be
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given in terms of a self-adjoint Hamiltonian and a unitary evolution operator. For
monopoles, such a framework is very plausible within the context of non-Abelian
gauge theories [15] and it has been shown [16] that physics at the scale of the
full theory imposes definite boundary conditions at the center of the monopole
which prevent the spinning particle from collapsing. Mathematically, when an
operator is not self-adjoint, it may under certain conditions be extended to a
self-adjoint operator which then correctly describes the physics.®

In the present section, we shall analyze the question of the self-adjointness of
the different operators encountered in Sects. II and III in Subsect. A and B
respectively. Interestingly, and unlike most of the cases treated in standard
mathematics literature, we shall primarily deal with the simultaneous self-adjoint
extension of several operators. Indeed, to justify the group theoretic manipulation
which lie at the heart of our approach, it is necessary to deal with operators which
are self-adjoint on the same space of representations. It is a remarkable fact that
the results obtained from the algebraic, group theoretic manipulations on the one
hand and from the analytic theory of simultaneous self-adjoint extensions on the
other hand are always in precise agreement. Group theory knows about self-
adjointness and extensions. We shall directly restrict to the s-wave sector and
indicate this restriction by appending a subscript “(s)” to the operator under
consideration. Also a factor of 1/r is extracted from the wave functions, so that
the problems are reduced to those of a one dimensional quantum mechanical
system restricted to the half line.® In Appendix B, we recall a few definitions and
facts from the theory of self-adjoint extensions.

A. Spin % Particle in the Presence of the Monopole
The Hamiltonian

d2
is Hermitian on the set of wave functions that vanish at the origin, but it is
not self-adjoint and has deficiency indices n, =n_=1. Thus H,, admits a

one parameter family of self-adjoint extensions [17, 11], labelled by the real
parameter c:

HO(S) = — r

1\%

0, (5.1

Y'(0) = — cy(0). (5.2
The normalized eigenfunctions satisfying Ho = Ey/y; are
Vlr) = (@E)" Y cos(JEr + ¢p),  EZ0, (5.3)

¢y = Arctg (5.4)

C
JE
8 Excellent expositions of the problem are given in [17]

9 All properties discussed in this section are independent of the value of M and a, so we set M =+ and
a=1
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For ¢ >0, there also exists a negative energy bound state, whose wave function
is given by

Vo) =/2ce 0(+c), (5.5)

and they form a complete set, for all values of c:
g AEY W s(t') + 0(+ W 2 (W -2 (') = 6(r — 7). (5.6)

By Von Neumann’s theory, Hy, is now self-adjoint on this Hilbert space #; its
new deficiency indices are both zero. (See App. B.). The operator R is self-adjoint
on s, but D is not. Even though D satisfies

(1, DY5) = (DY, ¥5) (5.7)

for all ¥, y,€5#,, the operator does not respect the boundary condition (5.2)
for any general value of c. Indeed, if i satisfies (5.2), and we can expand it in a
Taylor series, we have

V)= Y0+ (0) + 00, 69
B = Dytr) = 90) + 5 (0) + 0(),

so that
¥'(0)= —3c (0), (59
which is compatible with (5.2) only if
Y (0)=0 (5.10a)
or
¥(0)=0. (5.10b)

The fact that the dilatation generator does not respect the boundary conditions
(5.2) for finite c is to be expected since ¢ introduces a length scale in the theory,
breaking dilatation invariance. It is easily seen that all charges now map regular
functions of #, into #, and that H,, R, D, and K are self-adjoint and B, is the
adjoint of B_. The two boundary conditions (5.10a) and (5.10b) correspond to the
case o = + 1 and « = — 1 of the algebraic procedure, as is clear from (2.71).

Of course, one may wonder why H, was rendered self-adjoint first, instead of,
say R. To see what happens in this case, we start by obtaining the self-adjoint
extensions of R.
1d*> 1,
2dr2+8r . (5.11)
The deficiency indices are n, =n_ = 1, and the extensions are again given by the
boundary conditions (5.2). The eigenfunctions satisfying Ry, = zy, are so-called
Whittaker functions [18].

R =

o) =No W ) (5.12)

NG
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These functions satisfy the boundary condition (5.2) provided z, is a solution to
the equation

L
/2
where I denotes the gamma function [18]. This equation can be easily solved for
¢=0 or ¢c= o0 and we get

IG-z)=—72IG—2z) (5.13)

c=0,

Z,=z+n, (5.14a)
c=00, z,=

+n, (5.14b)

Bl P

corresponding to the symmetric (respectively antisymmetric) eigenfunctions of R.
We see that in both cases the levels are spaced by an integer. When c is neither
0 nor oo, the equation must be resolved approximately and the following qualitative
features appear

i) for ¢ > 0 there exists one negative eigenvalue z_;

ii) the spectrum lies entirely on the real axis, is discrete, and interpolates
between the spectra at ¢ =0 and ¢ = + o0;

ili) consecutive eigenvalues are not separated by integers.

The last fact (iii) is in contradiction with the results derived from group theory. If
indeed B, and B_ were each other’s adjoint on the domain on which R is defined
and self-adjoint, then the eigenstates of R would be generated by successive
applications of B,, and the eigenvalues of R are separated by integers. The
operators B, and B_ are not, however, adjoints of each other on the Hilbert space
defined by (5.2) since the operator D respects the boundary condition (5.2) only if
(5.10) is realized. Thus, we see that simultaneously requiring R to be self-adjoint
and the Cartan generators, B, and B_ to be adjoints admits only two possible
and consistent solutions, given by (5.14). These two solutions were indeed obtained
group theoretically in Sect. IT; (5.14a) corresponds to « = 1, while (5.14b) corres-
ponds to o = — 1. It is easily shown that all other Hermitian charges are now also
self-adjoint. In both cases we have
1

o
zn,a=§—z+na (515)

and the Whittaker function (5.12) reduces to

2
Yyoalr) = N,y =274 0l (%) (5.16)
in agreement with formula (3.29), obtained by algebraic methods only.

Let us remark that the operator R, of (5.11) is also the radial part of the
Hamiltonian for a three dimensional harmonic oscillator, and one may wonder
what the above discussed extensions correspond to. The answer is that (0) =0 is
the only viable solution of the eigenvalue problem, as functions with y(0) =b #0
produce & functions at the origin. The extensions are the result of an artificial
singularity at r = 0 of spherical coordinates. In the case of the monopole, the origin
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(where the monopole resides) is a physical singularity, and the different self-adjoint
extensions are not artifacts. As was shown in ref. [16], different self-adjoint
extensions are the result of different short distance physics.

Now that we have settled the self-adjointness properties of the bosonic SO(2, 1)
subalgebra, we turn to the adjointness properties of the supercharges. Concentrating
on the Cartan supercharges F,, we have

_1d 1
Fj-_(s)— +§5+Zr. (517)

Clearly, F satisfies the hermiticity conjugation condition

(‘//1’F¢‘p2)=(F: Yi,¥5) for all Yy, Y€,

provided ¢ = co((0) = 0) only. However, even on this space, F, will not respect the
boundary condition (0) =0, and F . is not the adjoint of F_. Alternatively, the
supercharge Q

d
Q(s)=—l_

dr
is Hermitian on 2, but does not respect the boundary condition (0) = 0. Hence,
for no self-adjoint extension of R (or H), is it possible to render Q self-adjoint.
Consequently, on the s-wave sector, only the bosonic subalgebra SO(2,1) can
be unitarily implemented, whereas the superalgebra OSp(1,1) has no unitary
implementation.*®
One could have started by attempting to render Q self-adjoint first, and then
implement the bosonic generators. However, the deficiency indices of Q, are
ny =1,n_=0[11], and from the theory of self-adjoint extensions, we know that
for this operator, no self-adjoint extensions exist [ 18]. The fact that the supercharge
Qis maximally Hermitian [ 17] implies that the Hamiltonian always has an extension
for which there exists a negative energy bound state, so that supersymmetry is not
realized.

(5.18)

B. Spin { Particle with Two Spin Degrees of Freedom in the Presence
of the Monopole and the 1*/r* Potential

Following the philosophy of the previous subsection, we shall analyze the
self-adjointness properties of the generators of the OSp(2, 1) superalgebra (defined
in (3.1) and (3.2)) in the s-wave sector. We start again by analyzing the Hamiltonian
of the system,

> A*+ e’

Hy = T4t 12

(5.19)

Here o5 is the chirality operator with eigenvalue . The deficiency indices are easily

10 The infinitesimal generator of a unitary operator must be (anti) self-adjoint; (anti-) Hermiticity is
not sufficient. [17]
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found from
Hgyy* = iy, (5.20)
and we have the following solution, converging to zero exponentially fast as r — o,
Ui ()= /rHD (%), (5.21a)
Uy (1) = /rHD (374). (5.21b)
Here H® denotes the Hankel function [18], and we have used the shorthand
v, = I/l +% . (5.22)

The functions will be normalizable only if they are square integrable at r =0, so
that

v, <1. (5.23)

x

We deduce the deficiency indices and the number of parameters in the extension:

0 3|4 Case 1 : self-adjoint,
N,(A)=41 %=|A<3 Casell: 1 parameter family,
2 A<} Case III: 4 parameter family. (5.24)

For Case I, the eigenfunctions of H y are Bessel functions which vanish at the
origin, and all Hermitian charges of OSp(2, 1) are self-adjoint (see also [19]). The
algebra is realized in terms of self-adjoint operators and the representations are
unitary.

For Case II, the Hamiltonian is self-adjoint in the sector of one chirality, but
not in the sector of the opposite chirality. The extensions in this sector are labelled
by one real parameter ¢ and the normalized eigenfunctions are

1/2
V0 =5 ) Aol /ED+ B, ()

EV
A,=1- 008 TV,
Vx<1 v s
B, =+ p sinzv,
A =1
> x . 5.
v”_l{B)(:O ( 25)

When ¢ > 0, there also exists a negative energy bound state at E, = (c)!"x and its
normalized wave function is given by

2 : 1/2
Vg (r) = (l% Eo) K, (JEon, forv,<1, (5.262)
X

Ve (1) =0, forv, =2 L (5.26b)
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With the help of some contour integrals, one can show that this set of eigenfunctions

is orthonormal®! and complete:
[ vz ()= o8~ E) (5.27)
:f dEYEWET) + O™ g, (YL g, () = 0(r — 1'). (5.28)

Following the same arguments as we presented in the previous subsection, we see
that R is well defined, self-adjoint and respects the boundary condition implied
by (5.25) for all ¢. The Hermitian operator D however, fails to respect the boundary
condition implied by (5.25) except when ¢=0 or ¢ = co. We now discuss the
adjointness properties of the supercharges:

. d A
Q1(s)— —10'12‘—0'2;,
and
d A
QZ(S) = — iO’2 E + 0'1 ;. (529)

Since both Q, and Q, exchange the chirality, it is clear that the asymptotic behavior
for small r of the chirality for which v, < 1, is completely determined by the behavior
of the opposite chirality (for which v_, > 1). As the wave function for v_, > 1
vanishes faster than r3/? as r — 0, the wave function of % must vanish faster than
r'/2, so that B, =0 and we must choose ¢ = co. Alternatively, if one starts by
analyzing the supercharges Q, and Q,, one finds that both are self-adjoint. Thus,
of the one parameter family of extensions of H, supersymmetry is supported for
only one value of the parameter, in agreement with the results from group theory.

For Case III, the Hamiltonian is not self-adjoint in either chirality sector and
the extensions are labelled by four real parameters. The dependence of the wave
functions on these parameters is quite involved, and we shall not exhibit them
here. Instead, we examine the self-adjointness properties of the supercharge Q,
first. Its deficiency indices are n,. =n_ =1, and Q, , admits a one parameter family
of self-adjoint extensions, labeled by the real parameter ¢. The normalized
eigenfunctions of Q,,

Q¥ =+/E¥, E=0, (5.30)

are given by

1/2
w+(r)=(ﬁz-)> (AM \/E")+BYV+(\/E;‘)>,

iwW_(r)= <m)1/2<(A cosmv_ + Bsin nv_)Jv_(\/Er)
+(—Asinnv_ +Bcosnv_)Yv_(\/Er)), (5.31)

11 It is convenient to prove that the left-hand side is the identity operator in a basis which one knows
to be complete, like J, +(\/Er) with E >0
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with
C .
A(\/E) = F-'_ CoSTV,, B(\/f) =sin7nv,. (5.32)
There are no bound states, and the wave functions satisfy

jf (s (JENW (JED + Y (JEN _(JED)=8E—-E).  (533)

The Hamiltonian is of course self-adjoint on this set of functions. We consider the
supercharge Q,,, and request that Q,, be Hermitian on the space of functions
defined by (5.31). This can be realized only when the coefficient of either Y,, or Y, _
vanishes in (5.31) so that'2 C =0 or C = o0. For 4 # 0, the remaining supercharges
are defined and self-adjoint provided C = oo, whereas for A = 0, there are no further
restrictions. The wave functions of (5.31) then (for 4 # 0) reduce to

Vo) =10 (JED, ()= /rd -, (JED. (534)

Keeping in mind that « is related to the chirality, we see that the result (3.31) of the
algebraic method is recovered in this case (a factor of 1/r has always been absorbed
in the wave functions in this section).

VI. Supersymmetry Breaking and the Witten Index

Supersymmetry can be broken down spontaneously even in quantum mechanics.
This happens when the Heisenberg equations of motion are invariant under
supersymmetry, but no state exists which is annihilated by the supercharges. For
the problem at hand, this definition should be slightly generalized, since the
supercharges satisfy the structure equation only for r # 0. Thus we shall require
that the superalgebra be realized only on the states, i.e. in a weak sense.

In the case of the magnetic monopole alone, discussed in Sect. II, supersymmetry
is not even realized in this weaker sense, since no self-adjoint supercharges can be
defined. Thus, the full Hamiltonian and the full quantum mechanical system is
not actually supersymmetric, and there is no point in discussing breakdown.

In the case of the quantum mechanical system described by the Hamiltonian
H, supersymmetry is realized in the weak sense, and we shall now examine when it
is spontaneously broken. We always assume that an extension has been chosen
for which the full algebra is realized on the states. The states of interest are the
ones of zero energy.

Hy =0. 6.1)

From conformal invariance, it is already clear that no states exist with normalizable
wave functions, and supersymmetry is always broken. This is the familiar situation
of a system whose spectrum is continuous and extends down to zero, but zero
energy is not actually attained by a state of the spectrum [3].13

12 The fact that the algebra spanned by H, Q, and Q, can be realized only for two values of the
extension parameter was noted in [20]
13 Such systems have also recently been shown to exist in quantum field theory [21]
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The Witten index [22]
A =ng_o—ng-o (6.2)

vanishes, as there exist no states at zero energy at all. Since the spectrum of the
Hamiltonian is continuous and extends down to zero energy one may also wish
to consider the index Tr(— 1)F. It is easily realized that there are two choices for
(= DF. Indeed, the only requirement on (— 1)F is that it commutes (respectively
anti-) with all bosonic (respectively fermionic) charges. Two such operators are
known: sign A4, which we have so far called fermion number and y°, which is the
chirality. On the self-adjoint extensions on which the full algebra is defined, sign
A and y° anticommute with Q, and S,. In the case A =0, A vanishes on s-wave
states, and sign A is defined through the self-adjoint extension or as a limit of
A—0%, so both operators are always properly defined. We shall see that they are
inequivalent. Before evaluating Tr(— 1)F in the energy representation it is instructive
to evaluate Tr(— 1) first in the representation where R is diagonal. [23].

A A =Tresign A=Y {j,m;a,wo,n|sign A|j, m; o, wo,nd.
Jjm,alel,n (6.3)

The summation over w is denoted by [w] because it is always understood in the
following sense: when j # j,, @ = + 1 is summed over, whereas when j = j,,  is
set to the fixed value w, determined in (3.16). Clearly we have

Asiend — , (6.4a)

and similarly
A =0, (6.4b)
in agreement with (6.2). The evaluation and interpretation of the index Tr(— 1)*
in energy representation is complicated by the fact that the spectrum is continuous

and extends down to zero. Denoting by (— 1)F either of the operators sign A or
7°, we have

AP =Try(— 1)fe™
—jdEe PEN S CGomy o, o, E(— 1|, m; o, 00, ED. (6.5)
Jm a,[w]

Clearly (— 1) is equal to either « (for sign A) or aw (for y%), and the energy integral
may be evaluated with the help of the overlap functions given in (3.30):

Del;, = j dEe™PE j,m; o, oy, E|j, m; o, wot, E >

o0

dEe PE|{j,m; o, wa, E|j, m; o, wor, E H|?

ng

n

]
;i <ﬁ+2 > (1+/3/202) ZANP(ZA -1, 0)<lﬁg2+4a4>’ (66)

where P{? are the Jacobi polynomials [18]. With the help of the generating
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function for P’s and introducing a regulator ¢, we get

1 L 24;,,) + O(e). (6.7)

Peliso =3T3 g0 2
Thus
Ayt =3, @i+ D34 (68)
J=Jo ()

The sum over w gets a contribution from all angular momenta and the total sum
diverges: A§f;“ =oo. This is of course to be expected, since on the ground
state (for fixed j and m) a is always equal to 1, and bosonic states are favored. On
the other hand,

A=Y, (2j+1) [Z] 30 = (2jo + 1)500, (6.9)
J=Jo [
and we find that this index is finite and non-zero:
5 — Aeg
AY s =wplegl, ®wog=-—. 6.10
H,p 0| gl 0 M-egl ( )

This result was obtained in ref. [20] for the special case A =0 and when |eg]| is
half integer A} 4 is fractionalized. The p dependence has completely disappeared,
but A};,B does depend on the sign of 4, and is discontinuous at 4 =0.

Of course, the OSp(2, 1) conformal supersymmetry encountered in this analysis
is rather different from the usual supersymmetries; in particular all supercharges
are rotation invariant. Thus one may be interested in answering different questions
about the way in which supersymmetry is realized on the states. For example,
what is the symmetry realized on the ground states for fixed j and m, i.e., which
generators of OSp(2,1) annihilate the ground states |j,m;1,,0)? The state
lj,m;1,1,0)> is annihilated by the charges F-, F®, FR, B_ and R—Y, and
the broken generators are F%, B, and R+ Y. Similarly the ground states
lj,m;1, —1,0) are annihilated by F-, F®, F5, B_ and R + Y. These results are
independent of 4.

Appendix A Supersymmetry of the 1/r> potential in the higher dimensions

Setting the monopole field to zero in the Hamiltonian H and in the charges D, K, Y, Q,
and S,, we see that little is special about three dimensions.

We can define a supersymmetric extension of the 1/r* potential for any
dimension d in the following fashion:

1 Ar, A2
H=— a ar0~"a ,
2M(p,,p +2rr 3 +r2 ),

(ro,r*y=2, {ro,r<=0, {Iere=25% ab=12...d (Al
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Clearly, H is invariant under the rotation group SO(d), as well as under the
previously discussed SO(2, 1) algebra, with generators

D=tH - %(para + rapa)’ (AZ)
M
K= —t*H+2tD + 7rz, (A.3)
It is also clear that there are two supercharges
0 L <—iF“p +F°é) (A.4)
2 r—zM a ¥ 5 .

S,=—1tQ,—i gnra. (A.5)

Together with H, D and K, these form an OSp(1,1) superalgebra. To construct
further supersymmetry charges, it suffices to find charges which anti-commute with
0, and S,. When d is odd, there exists a matrix,

ri=rort..re (A.6)
which has this property, and consequently we also have the supercharges
Q, =ir*g,,
S, =il*s,. (A7)

The charges H, D, K, Y=%{0,,S,}, Q, and S, then satisfy the OSp(2,1)
superalgebra of (3.3). When d is even, no such matrix exists in the irreducible
representation, and the supersymmetry is really OSp(1, 1). The Casimir eigenvalue
of the OSp(1,1) group (which is also a Casimir of OSp(2, 1) in the case of odd
dimensions) is completely determined by the quadratic Casimir eigenvalue of SO(d)
(LabLab)

C;=3(HK +KH)—D*+ %[Qz, S,] =4GLsL™ —4(d* —3d)+ 2%, (A9)

and the representations of OSp(1,1) are labelled by the eigenvalues of R and
A=i[Q,,S,]—% as before.

It is remarkable that the supersymmetric generalization of the 1/r* potential we
have discovered here is distinct from the one discussed by S. Fubini and E.
Rabinovici [12].

Appendix B. Definitions and results on self-adjoint extensions

We collect a few definitions and results in the theory of self-adjoint extensions [17].
Let # be a Hilbert space and T a Hermitian operator with adjoint T".
The operator T is said to be self-adjoint if D(T) = D(T"). The space K(z) defined
by
K(z) =Ker(T'—z), (B.1)
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has constant dimension throughout the upper (respectively lower) half planes, and
we assume these dimensions to be finite. The deficiency subspaces are then
isomorphic to

K, =Ker(T" +i), (B.2)
and the dimensions are the deficiency indices of T

n, =dimKi. (B‘3)

From the definition of T", we have the canonical decomposition
D(TY=D(T)®K,DK_. (B.4)

Clearly when n, =n_ =0, T is self-adjoint. If n, =n_ = n +# 0, there exist unitary
transformations parametrized by U(n) which map K, into K _, extending T to a
self-adjoint operator. For this extended version of T, the new deficiency indices
vanish by Von Neumann’s theorem [17]. Ifn . =0,n_ # O(orn, #0,n_ =0), T has
no self-adjoint extensions and T is said to be maximally Hermitian.
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Note added in proof. Since this paper was submitted we have supplemented the results of section II by
providing a superspace formulation of the supersymmetries of the magnetic monopole. See
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