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A Proof of the Axial Anomaly

John Lott*
Department of Mathematics, Harvard University, Cambridge, MA 02138, USA

Abstract. The local form of the axial anomaly with both left and right-handed
gauge fields and a metric present is given and proved using the families index
theorem

The axial anomaly is the variation of the determinant of the Dirac operator P
under axial changes of the gauge field [1]. More specifically, the zeta-function
definition of operator determinants gives that Indet ) = — i(finite part at s =0)
(d/ds) Tr(P?)~*. Under a variation 6P = {ay® D}, dln detlD=2liné Tray3(P?) "~

Thus all we need know is LmTry3(P?) ~5(x,x)=1lim(1/I'(s)) | Try>Ts"*-
s=0 s—=0 0

e~ TP*(x, x)dT, which is given by a certain term in the asymptotic expansion of
e~ TP(x, x). It has become clear that the nontriviality of this variation is related to the
topology of the space of gauge fields modulo gauge transformations [2]. We wish to
show that in fact the exact form of the anomaly is given from topological arguments.
In the physics literature the above heat kernel term is computed by expanding the
kernel perturbatively around the flat kernel [1]. We believe that the following is the
first nonperturbative (i.e. nondiagrammatic) proof of the axial anomaly in arbitrary
dimension. The situation is similar to the special case of vector gauge fields, in which
the heat kernel expansion of the square of the Dirac operator can be used to prove
the index theorem [3]. With axial gauge fields present the direct analysis is
surprisingly complicated. We work backwards and use the families index theorem
along with invariance arguments to derive the expression for the local anomaly.

In the physics terminology, Lemma 2 below is the Wess-Zumino consistency
condition and Lemma 4 amounts to showing the uniqueness of its nontrival
solution.

Let A", A~ be connections on a principal G-bundle G—>P —M with G a
compact Lie group and M an even n-dimensional closed Riemannian spin manifold
with metric g. Let V be an associated bundle to P and let S=S* @S~ be the
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spinor bundle over M. With the Clifford algebra {y;,y;} = 28;;, define & ="~ 1/2
Y1.-.7n, SO that (1/2)(1+¢) is projection from I'(S) to I'(S*). Define §,:
rS*®V)-IrS ®V) as §,=—iy(V;+A4;), and define D + I (S®V)—
IS®V)as Py+ 4- =94+ + §}-. Let t denote a spinor trace, Tr denote a matrix
trace and Tr denote an operator trace.

Let a,,(x)eEnd(V@S) be the n™ term in the asymptotic expansion

_TBA+A (x X)NT n/2 Z a(A* A~ )(x)T;/z

Lemma 1. Under the zsomorphzsm between A°(M) and A"(M), t(e(a (A, A7)+
a(A~,A"))) is a differential form on M which is a polynomial in A*, A~, g, g !
and their derivatives.

Proof. For convenience write V =(1/2)(4* + A7) and A=(1/2)(4* — A7), so
that Pi+ ,- =[—iy/(V;+V;+¢4;)1*=—D;D;+ E with D;=V;+W,; W,;=
V;+2e0’4,, and —E=0d"(V;;+¢A;;)— (1/4)R +eD,A; + (n — 4)0”[A,, A,] +
(n—2)4,4; Here V;= (1/2)(F(A+)., +FA7)), Ay= (1/2)(F(A+)l, F(A™)y),
DiA;=VA;+[V,,Aj] and 6" = (1/4)[¥',7'].

Then a,(A™, A )+ a,(A~,A%)is . /det g times a polynomial in W, E, g, g~ ! and
their derivatives [4] which is even in 4. The ¢ terms in E and W always accompany
one A, and so there is one net ¢ in ea,(A*, A7)+ a,(47,4%)). But t(cIly)
always contains a factor gti#2#n= (\/ detg) '[u;...u,] and the factors of
/detg cancel. []

By a faithful SU(N) representation of G we can hereafter assume G = SU(N)
with N arbitrarily large. For a polynomial w in g-valued forms with value in the
universal enveloping algebra of g we do not assume a priori that o is symmetrized
in its components. If @ is a sum of terms of the form ¢; A g, A =+ A @, let
so be the sum of (1/!) Z + Py A A Py With the signs chosen such that

if {¢;}-, were all R- valued then sw = .

Theorem. s4 = (})s(t(e(a,(A*, A7)+ a(A7,AT)))) is given by the following
algorithm: Construct the secondary characteristic class

1 .
(2 )kk' j(A

ATF* +(1—=T)F~ —T(1 —T)(A* — A7) A (A" — A7))dT.

Sk(A+’A_) =

Under an infinitesimal ~gauge transformation write (d/df)|z-oS(A™ +
BD,4+X,A"Y)=dTr(XB,) for a local expression B(A*,A”). Put B(A*,A™)=

Y. BAA™,A”). Then s4 =the A" part of B(A*, A7)A(g).
k=0

Notes. 1. In general t(ca, (A", A7)) # t(ea,(A~, A™)).

2. The symmetrization s ensures Bose symmetry. An explicit calculation in
n =6 shows that it is necessary.

3. Let Uel'(AdP) be a gauge transformation. We can write Witten’s
remarkable low energy anomalous Lagrangian L [5] as dL=S,,(UA*U™! +
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UdU~! A7). (This L differs from that of [5], which uses a different subtraction
scheme and is not independent of the choice of trivialization over M = R*).

As in [3], the metric must enter in a polynomial in the Pontryagin forms. Let
V and V' be vector bundles over M and M’ with connections A*, A'*. Take
{yu®1, &y ®yy} as generators of the n+n dimensional Clifford
algebra. By separation of variables,

T(8n+n’(an+n’(A+ @AH—, A~ @AI—)))z ;T(sn(an+k(A+’A_)))T(sn’(an’—k(A’+’ A,_)))

The proof of Lemma 1 shows
(e (a(A*, A7) + (e fa(A™,A%)=0  fori<n.

Because Lt(epiw(@pin(AT @A, A" DA )+ a, (A" DA, ATDAT)))
is completely skew on M x M’, it equals it(e,(a, (A", A7) +a,(A™,A4A"))) x
%’C(sn(an’(A, +7 A/ _) + an’(A/ _7 AI+))) Write AM = ZZTn—j(A +9 A _a n)Pj(pM9 n)

J -~ .
with P;eA(M). We have T(A*,A7,n) = As. and P,(py,n)=A4,(g). Taking a
connection over M = §* x N pulled back from

(SSi®SN)® V_‘)Ssi® V
l l

M=SxN - St

with N an arbitrary n—i dimensional spin manifold and applying the above, we
obtain T,_ (A", A7,n)=T,_(A*,A”,n—j)and P(py, n) = A{g). We can hereafter
assume that M is isometrically S”™.

For large s, let A denote the space of H® connections on P and ® denote
the group of H**! gauge transformations (base-preserving automorphisms of P)
{¢:peI'(AdP), ¢(c0)=1I} which are fixed at some ooeM. Then & x G —
WA X A— (U x W/(G x ) is a principal fiber bundle and 4 defines a vertical
Iform @ on WAxA by w(Vy,Vy)=aw((d/df)ls=olA™ + BD4+X), (d/dP)ls=0
(A™+pD4-Y)) = [Tr(X — Y)A(A*, A7)

M

Lemma 2. Upon restriction to a fiber, ve H'(® x ®,R).

Proof. In general let O(x, ) be a smooth 2-parameter family of elliptic operators
on cross-sections of a vector bundle over M with positive-definite symbol. Let w;
be the 1-form Tr(d0/da)do + (d0/dB)dB)e ™ T°. Then

dC dC -vVo dc WV —T)0
d(l)T I‘( d(x ‘Bdﬁ) N je < dﬁ)

dp
do —VOdO YV —-T)0 do —VOdO (V—-T)O
Lf(da ap’ g’ @t
-dV do A df = 0.

We apply this to O=DP3+ ,- with 4%, A~ lying on a fiber of A x A. Let
(9(p), h(pP)) be a smooth 1-parameter family in & x ® with g¢(0)=h(0)=
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and let (A7(B), A~(B)=(g'(B)A*g(B)+ g~ '(B)dg(p), h™'(B)A h(B)+h™':
(B)dh(B)). Then
d m}e_wz
B=0

d
“’T<”‘ seo ap
L)

] 1+s 1—¢ —rp2
w( 7 g+ 3 h>lDe

(g—h))szbze-“ﬂi
g=0

(A+(ﬁ),A'(ﬁ))> Jlr{l/)

o

d
‘2T~f<@

and so

(g— h))slpze_wsz
=0

r(s+1 Q r _MZTj;r(dﬁ

s—1,—m2 d
=T rn(dﬁ

1 -
"D FerDlTe TTr(dﬁ

defines an element of H(® x ®, R) for m # 0. Taking s —0 and m— 0 gives that

(g— h)>8e'”’2dT

=0

(g— h))ae_wsz

(g —h))ee™TP%4T

hm(l/F(s))st 11r< B)

d
TrlKer D2 <dﬁ )

also gives an element of H'(® x ®,R). The second term of the 1-form is clearly
closed. Symmetrizing in A* and A~ gives that w is closed. O

(g —h)e
p=0

Because D%+ ,- is a relatively compact perturbation of the self-adjoint
operator P%+ 4+, its spectrum is not C and so it has discrete spectrum {4}
with |A;|— oo. If P is the projection onto Ker P?, define A =P+ P. Let A*(p),
A™() be a family as above with (d/dp)|;—oA™(B)=Vx, (@/dP)l;=0A~(B)=Vy
Then with a fixed branching of C,

.y
ZA ldﬂ

MFO
et 1+s 1—¢ 1+¢ 1—c¢
Tr(1—P)A {D $< +——2 Y)—( 5 Y + 5 X>l7)}

=Tr(l —P)(X — Y)ed *

A
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and

d
lim Y A757'—| A4=-TrP(X—Y)k
s—»oa,»;o C O dBe TrP( )

s—1 -Tp2
+11—I»I(§F(s 'fT Tr(X — Y)ee TP%dT.

We can do the same with (P?)", having conjugate spectrum and, say, projection
Q onto its kernel. Because Index()) — 4;1) = 0, the multiplicities of 4; for P and
7; for (P?)' are the same.

Let A*(a, f) be two smooth families: D? — U with dD? mapping to a fiber of
A. As D%+ - varies over dD* only a finite number of 4; will wind around the
origin. For these 4; the conjugate 1; will wind in the opposite direction, giving
lim | (A;7°71dA +I‘s 1d};)=0. Thus

s=0¢D2

0= [ (= TrPX — V)= TrQ(X = V)e+20(A", A7)V, V).

Now TrP(XX—Y)e+TrQX — Y)e=Trlg,p, . (X —Y) = Trlge g1 - (X — Y) +
Ttlgers,- (X = ¥) = Trlg, gt (X —Y).  Let Z,=Kerd,—Kergl+[m] be
the index bundle for @ over D?, with [m] a trivial bundle pulled back from
A/®. Let P,, denote projection from I'(S®V) to the fiber of Z over deD?,
and define a connection ¢ on Z by ¢(d/ds)(&) = P,(dE/ds) for EeT'(Z).

Lemma 3. fc1(¢)(ZA+)—ILC1(¢)(ZA-)=(1/in)a£2w(A+,A_)-
D2

Proof.

1
[e®)Zar) =5 [ Trd(Zs)

1
= %652 (Trlgerp,+ X = Trlgergt, + X)-
Doing this also for Z ,- gives
ﬁfzcl(¢)(ZA+)—szcl(fﬁ)(ZA—)
= ML (Tf|KeraA+X — Tf|KeraL+X - Tr|Ker¢,A_ Y + Tr|Ke,¢3_ Y).

Let y:[0,1]>U x A be

(0= (A™(2t), A7(0)) for 0=
At AT-2))  fses
Then (image y) is a deformation of (A*, 47)(0D?) and

fco(A““A )= | o(d*,47)
ob2

Image y

= %agz(TﬂKmaA+ X - TY|Ke,¢jg_X — Trle,A_ Y + Trlgergi - Y), O
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Let ¢; be an orthonormal basis for Indexd,—U. Then ¢;(d/ds)= ¢,
(d/ds)¢;>. Under a gauge transformation we can assume &;—g¢; and ¢;(d/ds)—
¢i{d/ds) + (&, g™ '(dg/ds)é;>. Thus Tr¢ is G-invariant and the -induced
vector fields on Index ¢ ,— U are horizontal for Tr ¢, giving a U(1) connection
on a line bundle over A/G. Now c¢,(Tr¢)eH*(A/G,R)=H'(G,R)~
7y 4+ 1(G)/ [, 4 1(G), 1 1(G)]) ® R, which is R for large N [7]. The families index
theorem gives an alternative form of this cohomology element [8—10]. Consider

A x P— (A x P)/G

n} !
Ax M->UG x M

and put a G-equivariant connection # on ® — AU x P59 x M. Then ci(op)=

(chyA(g)) in H(2/G,R).
We compute the image of ¢;(¢) in H*(®, R). Take

d
n(4, ”’(E (4 + BB), V) =((D%D )~ 'D%B)(p) + A(V).
B=0
Put B=B-D/(D%D,) 'D*B and C=C—D/D%D,) 'D%C. The curvature
of 1 is
Q ((d (A + BB) V) <i (A + BC) W>>
(4,p) d[)) 5=0 H s dﬁ =0 >

= —(DiD "' Y. [B),C(p) + F ((V, W) + B(W) — 1 C(V).
J
Take M =S" so /I(g) =1 and fix the connection #5,=0+ 4,. Because
(M)Tr Q%>+ =0, the image of c,(¢) is given up to a constant factor by the
restriction of the secondary characteristic class
1
i(M)Trg(n — 1) AMTR + (1= TNy — T(1 = T)(n — o) A (1 —n0))"*dT

to a fiber. Acting on the tangent vector Vy, this is

i(M) Trjl"(X(TF +(L=T)Fy— T(1 — T)(A — Ag) A (A — Ag))"?
0

+ "/ZZ_I(A —Ag) A(TF +(1 = T)Fg— T(1 — T)(A — Ag) A (A — Ag))

j=0
AT — TY(X(A — Ag) — (A — Ag)X)) A (TF + (1 — T)Fo — T(1 — T)(A — A,)
A (A= Ag)y"2 I Y)dT ~ [ Tr XB, 5(4, A,).

We now show that H(® x ®,R) is the only obstruction to integrating the
anomaly.

Lemma 4. For (A", A7)eU x A, let ce A(M)® g be a polynomial in (A" — A7),
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F* and F~. Define a vertical 1-form on A x A by (@(Vy, Vy)= [ Tr(X —Y):
M

o(A*,A7). If @ is trivial in HY(® x ®,R) when restricted to a fiber then so =0.

Proof. Let $; denote the connected component of the identity of the H**!
automorphisms of P (not necessarily base-preserving) which are the identity at co.
Let € be {AecW:heH;, hA+A} and 9H,={(¢;, ¢)eH X D7, =
n¢p,}. There is an action of $; on € x € induced from its action on €.
Arguments such as those in [11] show that for large N, € is open and dense in

A and € x (igl((i x €)/9, ib»((i x €)/9, are fibrations with (€ x €)/

9, and (€ x €)/$, being H* Hilbert manifolds. Because & restricted to € x €
is §, invariant it descends to € x €/9,. On a local trivialization ® —
(€ x €)/9H,) x 6—>(C x €)/H, we can find a smooth f such that (Vy,Vy)
n¥f =d(Vy, Vy). Using a smooth partition of unity (these exist for Hilbert
manifolds) on € x €/, we can extend f to a smooth function f on ® x G/$,
and hence to a smooth [ =n*f on € x € which is §, invariant and satisfies
(Vx, Vi) f = oV, Vy).
Fix 4,e€ and consider the Taylor series

k 1
f= z Ok +R,= z <fk,b(®(A+_A0))®(®(AH—AO))>+Rp

k+I1<p k+I<p

(£ 1)
with f,.e( X) H(A'®g))*. The infinitesimal automorphism of P given by
parallel transporting with respect to A, over a vector field V changes 4 by
6Av = (Au - AOM)VVV” + Vw(DAm(A - AO)v + F(Ao)wv - [(A - AO)(m (A - AO)v])

We can treat the V,V* part of this as an independent variation. Then

m

0=0dy f= Z Sy Z (®(A+—Ao))®VvV“(A:—AO#)

k+l<p > 0<m=k-1

9 0 (A" = 4)® (A — Ag))

LY (U - A)®(RNA — Ay)

0sms<i—1

I-m—1

VVHAL — Ap)®( (D (A~ — Ag)> + SuyR,.

As this is true regardless of V V¥ f,, must be supported on {(my,...,m,,):
i,m; = m; for some j#i} in M**". As f,, is a vector-valued distribution, it must
locally be XT(I15(m;—m)D(m;)) with each D a vector-valued distribution
on M and each T a differential operator, each m; occurring in at least one ¢ in
each term of the sum [12]. That is, Q,, has the form ) [] [ P; with each
ri=1M
P; a local function of A* — Ay, A~ — A, and their derivatives, and possibly of
meM. Again by automorphism invariance there can be no explicit m dependence
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and the spatial indices must be contracted with ¢,, , . Because (Vy,Vy)f has

only one M integration we may remove any term with r # 1 and preserve (Vy, Vy) f.

Each factor of A" — A, or A~ — A, has a spatial index and so we may take

f= [P with P a polynomial of degree <n. Because A, was arbitrary we can
M

assume P is independent of 4,. Using the Bianchi identity and synchronous frames
first for A* and then for A~, we can write P as a polynomial in A*, A~ ,F* and
F~. Because P is H, invariant, P must actually be a poynomial in A — 47, F*
and F~.
As [Tr(X — Y)sa(A™, A7) =V, Vy) [ sP(A*,47)
M M

we can take
SP(A*,A7)=sTr Y cuA" =AY AFFAF)

jt+2k+2l=n

Then
My Vy)jsP(A+,A')= jTrZs(jil (A*—A"Y"AD+X—Dy-Y)
M M Jkl m=0
AAT =AY IAFYYAF )+ kil (A*—47)
m=0

/\(F+)m/\ [F+,X] /\(F+)k—m_1 /\(F_)l+ lil (A+ _A—)j
m=0
/\(F+)k/\(F—)m/\ [F~,Y] /\(F—)l_m_1>=0. 0

Proof of theorem. By Lemma 1, T, is a polynomialin A*, A~ and their derivatives.
By Lemma 2 and Lemma 3, it is proportionate to B,, in H'(® x ,R)=R®R.
By Lemma 4, sT, is proportionate to sB,, = B, ,. The normalization is fixed by
requiring that when A* = A~ one recovers the integrand for the spinor index
theorem. [

Note. After this work was completed I learned of reference [13] which contains
a more complete topological discussion, along with the extension to the gravi-
tational anomaly. For a different treatment of the subject I recommend the paper
of Alvarez-Gaumé and Ginsparg [14].

Acknowledgement. I am grateful to L. Alvarez-Gaumé, R. Bott and D. Quillen for illuminating
discussions.
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