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Abstract. Odd dimensional Yang-Mills theories with an extra 'topological
mass" term, defined by the Chern-Simons secondary characteristic, are
discussed. It is shown in detail how the topological mass affects the equal time
charge commutation relations and how the modified commutation relations are
related to non-abelian chiral anomalies in even dimensions. We also study the
SU(3) chiral model (Wess-Zumino model) in four dimensions and we show how a
gauge invariant interaction with an external SU(3) vector potential can be
defined with the help of the Chern-Simons characteristic in five dimensions.

1. Introduction

In a Yang-Mills theory in 2 + 1 space-time dimensions one can add a "topological
mass" term αif (

c

3) to the Yang-Mills Lagrangian 5£ym such that the field equations
remain gauge invariant and describe a gauge field with mass α, [1], The extra
term JS?£3) is known also as the Chern-Simons secondary characteristic and a
general formula, valid in all odd dimensions, can be found in [2]. The Lagrangian
<£ = S£ym H- αJS?^ is not gauge invariant and it defines a phase factor Λ(U9A) by

S(U~1AU + U'1 dU) =Λ(U,A) S(A)9 where S(A) = expJiif(A)d3x is the action as
a function of the vector potential A. As shown in [3], the phase factor A modifies
the local charge commutation relations (provided one has non-trivial boundary
conditions for the gauge fields at space infinity) in such a way that the new
commutators define an one dimensional central extension of the Lie algebra of
infinitesimal gauge transformations (one has "Schwinger terms"), isomorphic to a
Kac-Moody algebra. The central extension is determined by the boundary values
at ||3c || -• oo of the gauge fields; if we require zero boundary conditions then the
extension is trivial.

In the present paper I shall extend the results to In + 1 dimensions and the
relation between the modified current algebra in In + 1 dimensions and non-abelian
chiral anomalies in In dimensional field theories is investigated. The origin of
chiral anomalies is not discussed in this paper; for a physical background a reader
not familiar with anomalies is suggested to look at [5] or [6].



362 j . Mickelsson

An important difference in d = In + 1 > 3 compared to the case d = 3 is that
we have to define an infinite dimensional abelian extension of the gauge algebra
in order to close the Lie algebra. Let &(&#) be the space of functions / = f(A)
which are space integrals of polynomial functions of the components A" and their
derivatives (with smooth coefficients). Let X and Y be infinitesimal time independ-
ent gauge transformations and f,geJF(s/). The extension of the gauge algebra by
the abelian Lie algebra ^{sd) is

[(X, / ) , (7,g)-] = ([X, 7], δxg - δγf + a&2«XX, 7; A)), (1.1)

where δxg means the Lie derivative of the function g(A) with respect to the gauge
transformation X and θ(2n) is a certain second order cocycle (for the role of
cohomology in gauge theories see [7]); in the case n= 1 θi2n) does not depend
on A. In general, θ(2n) is antisymmetric and bilinear in the variables X, 7 and it
is a polynomial function of A, satisfying the closed cocycle condition

δxθ
(2n)(Y,Z; A) + δγθ

i2n\Z,X; A) + δzθ^2n\X, 7; A)

+ &2n\X, [7, Z]; A) + 6>(2M)(Y, [Z,X]; A) + <9(2κ)(Z, [X, 7] ; A)

= ° (1.2)
Actually, 0(2n)(X, Y A) is a coboundary of a cocycle λ£n\X;A),

0<2">(X, 7; A) = M ^ ί Γ M ) - δγλf\X; A) - Xf"\[_X, T\; A), (1.3)

which in turn is essentially the space integral at time x0 = 0 over the non-abelian
anomaly in 2n dimensions. At this point the reader might wonder what is wrong,
since usually one assumes that the anomaly satisfies the Wess-Zumino consistency
condition which says that the coboundary of λ(

6

2n) should be zero, [4,5]. In fact
θi2n) is zero if the boundary values of all fields considered are zero at || x" || -• oo.
Now λ{

b

2n) differs by a boundary integral from λ{2n) which is the integral of the non-
abelian anomaly ω ( 2 n ) and for which the consistency condition holds. The boundary
integral has been subtracted in order to make the total abelian (central) charges
equal to zero. The reason why the non-abelian anomaly appears in the commutation
relation can be traced to the fact ω(2n) can be defined by δx^

{2

s

n+ί) =
dωi2n)(X;Al as shown in [5].

The results are valid in a pure gauge field theory as well as in a theory of
gauge fields coupled to external or dynamical sources; the difference appears only
at the next step, namely in the definition of the physical states Ψ (in the former
case one has to require p(x)Ψ = 0 and in the latter p(x)Ψ = ρQXi(x)Ψ for the
charge operator p(x) corresponding to an infinitesimal gauge transformation X).

In the last section we study the four dimensional Wess-Zumino model for a
SU(3) valued field 17. We shall see that U can be coupled with an external SU(3)
vector potential A in a gauge invariant manner by considering the space-time as
a boundary of a five dimensional manifold, extending the fields to five dimensions
(the fifth dimension is in fact a homotopy parameter) and the defining the interaction
through &iJ?(U~1AU +U~1dU); in the special case ,4 = 0 one gets the usual
(anomalous) self-interaction for U.
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2. Yang-Mills Theory with Topological Mass in
In + 1 Dimensions

Let M be a In + 1 dimensional compact space-time and cj the Lie algebra of a
Lie group G. In a gauge field theory one usually assumes G to be compact and
semi-simple (or at least reductive), but that does not play any role in the following.
Let QM be the Lie algebra of the group of gauge transformations: elements of cjM

are smooth mappings X: M -> g, the commutator [X, Γ] is defined pointwise. We
fix a matrix representation p of g. In the case G=U(ή) the standard choice is the
defining representation. Local coordinates of M will be denoted by x 0, x1,..., x2n.

Consider the Lagrangian density

& = &ym + *&%n+1)

9 (2.1)

where jSfym = (l/4)trp(Fί_/)p(Fίj), in the coordinate representation (Einstein sum-
mation convention; indices are raised and lowered with respect to a fixed (pseudo-)
metric on M). If A is a smooth g-valued vector potential,

Fij = diAj-djAi + lAi9AJ29 (2.2)

or simply F = dA + [A, A]. The second term in (2.1) is a constant α times the
Chern-Simons secondary characteristic [2], [5],

= (n +1) J ί w t r 4 Λ {dA + L4 Λ A)ndt, (2.3)

where tr AB... F is a shortened notation for tr p(.4)p(#)... p(F) and the rcth power
is defined with respect to the outer product Λ . Assuming that the form <>4,B> =
tτp(A)p(B) is non-degenerate, the field equation derived from (2.1) is

d*Fa + [A, * F ] a + α tr T f lF" = 0, (2.4)

where {T1, T2

9...9T
N} is a basis for g. Written in coordinates, for example in

the case n = 29

dΨ'j + IA\ Ftj]
a + aεmm tr Γ ^ F ' 1 " = 0, (2.5)

where ε o l 2 3 4 = + 1 and ε is totally antisymmetric. The trace in (2.4) gives the ntlϊ

Chern class if Ta = 1 which is also equal to the U(l) anomaly in In dimensions.
The field equation (2.4) is gauge invariant but the density if(

CgM+1) is not. If
A\-^>U~1AU +U~1 dU is a, gauge transformation, then, for example in the case

= tτ(A Λ dA + \A A A A A),

-1)3. (2.6)

Let X be an infinitesimal gauge transformation, XsqM. If / is any Frechet
differentiable function of the smooth vector potential A9 we denote by δxf the
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Frechet derivative

tdX + ί[

From [5] (for another representation, see also [12]) we have the following general

formula:

ω(2n\X;A)= -(n+\)\ivXFn

tdt
o

+ n(n + 1) j t(t - l B t r {A A [X, A~\ + [X, ,4] Λ A) A F^1 dt,
o

(2.8)

where Ft:=tdA + t2A A A. The three lowest In forms ω(2n) are, [5],

ωi2\X;A) = trXdA,

ωm(X; A): = tΐXd(A ΛdA

ω
(6\X; A) = tr Xd(A ΛdAΛdA+ %A3 ΛdA + \dA A A3

+ iA2
 A dA A A + \A A dA A A2 + ̂ A5). (2.9)

The form ω(2n) is the non-abelian chiral anomaly in In dimensions, [5]. Since

δx f JSfg"+ υ = J dω(2n\X; A) = J ω(2n\X\ A), (2.10)
M M dM

we have

J 1 ) = 0 (2.11)

in the case of vanishing boundary conditions for the gauge potential at space-time
infinity. In this case the action

= expif J£? (2.12)

is invariant with respect to "small" gauge transformations (= homotopically trivial
transformations); as shown in [8] it is not invariant with respect to "large"
(homotopically non-trivial) gauge transformations except when the parameter α
is quantized according to α = integer x constant.

In the following we examine what happens when we have non-trivial boundary
conditions. We assume

i) M = S x [a, 6], where [α, fo] is a time interval (it may be infinite) and S is the
space,

ii) the choice of the gauge Ao = 0,
iii) d0A = 0 on the space boundary dS; by ii) this is equivalent to FOk = 0 on dS.
Let us set

λi2n\X; A) = J ωi2n\X; A). (2.13)
S(XQ = constant)
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From (2.10) we get for a time independent XegM:

δx J ̂ S " + 1)= J ωi2n\X; A) + J ωi2n\X; A)
M [a, b~] x δS S(x0 = b)

- J ω(2n)(X;A) = ̂ 2"\X;A(x0 = b))-λ(2"KX;A(x0 = a)). (2.14)
S(x0 = a)

The first integral on the right vanishes because of ii) and iii). In particular,

> = 0 (2.15)

if A(x0 = a) = A(x0 = b). In the general case one can recover gauge invariance of
the action (2.12) by modifying the action of the Lie algebra gM in the space of
Frechet differentiable functions of vector potentials A satisfying i)—iii). The new
projective representation is

8xf: = δxf - i(^2n\X; A(x0 = b)) - λ™(X; A(x0 = a)))f (2.16)

In the next section we shall see how the projective factor λ(2n) arises in the
Hamiltonian formalism and how it affects the equal time commutation relations.

3. Equal Time Commutation Relations

Let si be the linear space of smooth vector potentials A defined in a compact
space S with a smooth boundary dS, in the temporal gauge Ao = 0. Physically,
one might think dS as the spatial infinity ||3c || -> oo; typically, dS = S2n~1, the 2n—l
dimensional sphere. Let ̂ (si) be the linear space of functions f(Λ) = \ω(A\ where

ω is an arbitrary differential form of degree In which is a polynomial in the
components A" and their derivatives, with smooth coefficients. Let us denote

T-^f(A):=jtf(A + tT)\,=o, (3.1)

where Tesi, fe$F(sί\ Let g5 be the Lie algebra consisting of infinitesimal time
independent gauge transformations. By (2.7),

δxf = (dX + lA,XV~f (3.2)

for any Xegs.
The canonical equal time commutation relations

[Π(x), 770;)] = 0 = LA(x), A(y)l (3.3)

can be represented by the smeared operators

A(u)f)(A):=<A,u}f(A),

^ (3.4)
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where / G # " ( J / ) and uestf is a test function,

(A,u): = ftr A:Uj.
s J

(3.5)

Thus

\_Π{u\A{v)'] = ί(u,v}, (3.6)

Let now Π be the canonical momenta conjugate to the components of A with
respect to the Lagrangian

(3.8)

where ,5f = seym + α^f(

CsM+1) as before and A: = d0A. The canonical definition

gives

where

Π(u) = E(u) + φ + 1) J J dt'f x itr (Λu + w,4)(<L4 + tA A A)) " ' 1 (3.9)

(3.10)

The first step in quantizing the classical charge densities ρ"(x)(ί ^a^N) defined
by

p" = dkF°k0 + [A\Fk0Y + αtr Taε0iιh...i2nF
ι>h... F ' - ' i 2 "

(compare with (2.5)) is to write

X(x), Xeg s ,

in terms of the canonical variables. Note that

(3.11)

(3.12)

(3.13)
Ao = 0

by definition. For given XeQs, define 7egM by 7 = x 0Z. Then

(3.14)

On the other hand, the Yang-Mills part of δγL is zero and the Chern-Simons
term gives

(3.15)α f. ω«»χX;A)\Ao=o = aλ™(X; A)\Aa=0
s
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where

x 0 J θdx0 A dx1 Λ ... Λ dx2n'.= θdx1 Λ ... Λ dx2n. (3.16)

In (3.15) we have used the fact that

dω(2n)(X;A) = trdX A dΩ{A) (3.17)

for some (2n — 1) form Ω, [5], see Eqs. (2.9), and

x0 J XxdΎ A dΩ\Xo = 0 = tΐXdΩ. (3.18)

Combining (3.14) and (3.15) we get

p(X) = -Π(dX + IA,X]) + odi2n\X;A) (3.19)

in the Hamiltonian formalism. Let now X = constant. If X is in the center of g
then the first term in (3.19) is zero but λ(2n)(X; A) φ 0. In order to make the total
abelian charges equal to zero, we replace

λ(2n)^λ(2n) . = χ(2n) _ α J t ΐ Xfi(A) = - (X J tΓ dX A Ω(A), (3.20)
dS

where we have used (3.17). If X is constant, clearly λ{

b

2n) {X; A) = 0. By (3.2), (3.4) and
(3.19) the quantized charge operator β(X) is

β(X)f = - ίδxf + aλ[2n\X; Λ)f9 (3.21)

), and the commutation relations are

p([X, 7]) + α θ ^ X , Y A),

&2n\X, Y; A):=δxλi2n)(Y', A) ~ ^?n\X\ A)- λ£n\\_X, Y]; A\ (3.22)

X, Yeg>s. For example,

0(2)(X, Y A) = 2JtrdX A dY = 2 J trXdΓ,
s as

Θ(4)(X, Y A) = 2 J tr dX A dY A dA = 2 J t r X d Γ Λ dA. (3.23)

In general, for n > 1 0(2n) depends on A In the case n = 1 the cocycle 0 (2) defines
a one dimensional central extension of the Lie algebra g s and (X, t) -> zp(X) + ί
is a true representation of the extension g s + [R, [3]. Let n > 1. Consider the space
g s + J * ( J / ) equipped with the commutator

,/),(7,flf)]: = ([X, Y], 0<2">(X, Y;.) + δxg - δΎf). (3.24)

Since by (3.22) θ(2n) is a coboundary, it satisfies

6>(2w)(X, [ Y9 Z]; X) + θ(2n)(Z, [X, Y]; 4) + Θ(2M)( Y, [Z, X]; >4)

+ (5x0
(2n)( Y, Z; A) + (5yθ

(2n)(Z, X; A) + <5z0
(2n)(X, ^ ^) = 0.

(3.25)

which implies the Jacobi identity for the commutator (3.24), and thus (3.24) really
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defines a Lie algebra. The mapping

(X,f)^ί(β(X) + f) (3.26)

defines a representation of the Lie algebra QS + 3F($i) in the space $F($i\

4. The Chern-Simons Term in the Wess-Zumino Model

In this section we assume that the space-time M is a four dimensional compact
manifold without boundary (e.g. S4). The Wess-Zumino Lagrangian for a smooth
field l/:M->SU(3)is

F2

L= _-JLJtrδ μ £/3 ' ι Er 1 d 4 x + / (4.1)

where Fπ is a constant (in QCD Fπ~ 190 MeV, U describes, in the low energy
limit, idealized massless kaons and pions, [4, 9]) and β is chosen in such a way
that the field equation derived from (4.1) is

F2 \
^U-ίdμU\ + λεfi™βU-1dμUU-1dvUU-ίdaUU-1dβU = O,

(4.2)

where λ is a constant. We shall assume that the space-time M is such that any
map [/:M->SU(3) is homotopic to a constant; for example M = S4, since
π4SU(3) = 0. For a given U, let ί-»l/f be the homotopy: Ut(x) is smooth in
[0,1] x M and Uo = 1, Uί = U. Now U^1 dUt can be considered as a ^-valued
1-form on [0,1] x M and we can set

f=-λ f trίl/Γ1^)5- (4.3)
[0,l]xM

This is a slight reformulation of the Lagrangian given in [9]. As shown in [9],
the integral over [0,1] x M can be transformed into a boundary integral over M
and the value f(U) does not depend on the chosen homotopy. In particular, if
U(x) can be written in the form U(x) = exp Z(x) for some smooth g-valued mapping
Z, we have the following explicit formula: Choosing

(4.4)

and using the Magnus formula, [10],

l ^ (4.5)

we get

/ = lJtrZΣΠ—j—{2+Σn.) \(-adZTdZ. (4.6)
M (ni)i=i\niΛ-1)\ \ 3 = 1 J

The integration over t has been carried out (compare this result with the formula
given in [11] for the two dimensional case).
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According to the formula (2.3),

&g = tr[A A (dA)2 + f A3 ΛdA + fv45]. (4.7)

In particular, if A = U~ * dUt,

JS?g)(t7Γ1 dUt) = ύtτ(UΓ' dUt)\ (4.8)

and therefore

S(U)=-Wλ J ^(U-'dUt). (4.9)
[0,1] x M

One can now define a gauge invariant interaction of U with an external SU(3)
vector potential A by setting

S(U9A):= - 10λJjSPg)(t7Γ1i4l/t+ t/Γ^t/t) . (4.10)

For any gauge transformation F:M->SU(3), f{U,A) is invariant with respect to

where t -• F, is a homotopy, F o = 1 and Fx = V. By a straightforward (but tedious)
computation

t + U~1AUt) = &[V{A) + d t r [ - dt/f t/,"1 Λ (Λ Λ <L4 + i ^ 3 )

-\(dυtυ;1)2 A A2 + ̂ {dutυ;1 A A)2

~1)3 A Al+^idUtU-1)5. (4.11)

The first term 3?^ (A) = 0, since the restriction of a 5-form to the four dimensional
manifold vanishes. Therefore,

/(£/, A)=- lOλ f t r [ - d[/ U"λ
 A (A A dA + i^l3) + •]

-λ- f tridUtU'1)5. (4.12)
[0,1] x M

This is not gauge invariant! The reason is, that in (4.11) the correct form of the
gauge transformation is A\-^Vt~~1AVt+ V~ι dVt and not A-+V~1AV + V"1 dV;
the first term ^S\A) in (4.11) is not gauge invariant under the former
transformation. However, the non-invariance does not affect the field equation
for 17, since ^s\V~1AVt + F " 1 dVt) does not depend on U. Thus one can safely
use the expression (4.12) for the derivation of the (gauge invariant) field equation
for U. In the case A = 0 (4.12) reduces to the anomalous part of the Wess-Zumino
Lagrangian.

If we put U = expZ and compute /(U,A) to the first order in Z, we get

f(U9A) = - 1(U J t r - dZ A (A A dA + \A3) + •••, (4.13)
M

which is the non-abelian anomaly in four dimensions, Eq. (2.9), modulo the factor
— 1CM and an integration by parts. The usefulness of the formula (4.12) lies in the
fact that it allows a straight-forward computation of the anomalous terms to all
orders in Z in the (left) gauged SU(3) chiral model.
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