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Vacuum Charge and the Eta Function
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Abstract. The vacuum charge of a second quantized spinor field in a static
classical background field on a static spacetime is studied. When g00 = 1 the
vacuum charge is shown to be essentially the eta function of the spinor
Hamiltonian at 5 = 0. This is computed for compact and noncompact spaces
and a boundary dependence is derived in the latter case.

1. Introduction

A phenomenon of current interest in quantum field theory is the possible nonzero
electrical charge of the vacuum state. Jackiw and Rebbi showed that when a
fermion field is second-quantized in the background of a soliton the ground state
can be degenerate with the different vacua having half-integral charge [1]. Later,
Goldstone and Wilczek demonstrated that any vacuum charge could be obtained
if the conjugation symmetry of the fermion in the external field is abandoned [2].
Their method of calculation was to sum the Feynman diagrams for the expectation
value of the current of a free fermion in a slowly-varying background field. We shall
show how the vacuum charge can be computed nonperturbatively in the most
general static case by identifying it with the eta function of spectral geometry.

For an elliptic self-adjoint pseudo-differential operator H acting on cross-
sections of a vector bundle over a compact manifold M without boundary, the eta
function is defined as ηH(s)= Σ AJ/IJ"5"1, where the sum is over the nonzero

eigenvalues of H [3]. Although this series only converges for
Res>dimM/order/ί, it can be analytically continued to the whole s-plane. Its
value ηH{0) is a regularized measure of the spectral asymmetry of H. Remarkably,
ηπ is always holomorphic at s = 0 [3, 4]. This value ηH(0) enters in the integral
formulae for characteristic classes of a manifold with boundary [3].

We shall show that on a compact manifold the vacuum charge essentially is the
eta function. We also show that a natural extension of the eta function to
noncompact manifolds gives the boundary dependence of the vacuum charge
found in [2], but generalized to the case of an arbitrary static Hamiltonian.

2. Vacuum Charge in a Static Spacetime

Notation. Greek letters will denote four-dimensional indices and latin letters will

denote three-dimensional indices. We let \fg and ]/V3) denote the four- and three-
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dimensional volume elements. The Dirac matrices {yμ}*=1 satisfy {yμ, yv} = 2ημvl
= 2(2δμOδvO - δμv)I, and Σaβ = | [ / , / ] . All curvature conventions are those of [6].
Let τ denote a matrix trace.

Suppose that Z is a static spacetime, meaning that there is a timelike Killing
vector field <90 such that the vectors orthogonal to d0 form an involutive
distribution. If the maximal integral submanifolds generated by this distribution
are compact and oriented and if the flow lines of d0 are topologically R, then we
can take Z to be isometrically R x M with M compact and oriented, and with a
metric

ds2 = goo(x)dt®dt- Σ giJ{x)dxi®dxj.

For a spinor with no external fields the equation of motion is

y°Bψ= -iy°yμVμΨ= -i(eo + l/2ΓaβOΣ«β)ψ- Σ iy°yΨjΨ

1
Σ

7 = 1

So + l/2raP0lA ψ - ίy°yjVjΨ = 0,
000

and so Eψ = idoψ = ]/goo( — iyoyjVj — il/2ΓaβOΣaβ)ψ = Hψ gives the Hamiltonian
H, which is formally self-adjoint with respect to the 3-metric volume form.

To find the vacuum charge Q = J < J°(x)}]/g^)d3x at a fixed time, we Wick-
M

rotate from the regularized (negative-definite) Euclidean version of IR x M with
metric

ds2 = —goodt®dt— Σ gij(x)dxι®dx\ connection,

~ f Γaβy if α,

*βy \-Γ«βy if « = 0 or ^ = 0 or y = 0, [ )

Dirac matrices y°= — ίy°, ya = ya and<^= —ίyμVμ. For invertible # define

<Jμ(x)> = (finite part at (f.p. a.) 5 = 0) ieτ{yμBψ2)" 2 " ' ) (x, x), (2)

[7] (provided that the vacuum is nondegenerate). Then Vμ{Jμ(x)} = 0 and

ρ ( p ) j (
M

Proposition. // H is invertible, then

^ ~ S ~ ^ . (4)

Proof. We have β = (f.p.a. s = O)Q(s) with
s

Q(s) = ie J τ{y0B{{y0B)^y°B) 2 )(x,:
M
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1
Because γ£f= . (ίδ0 + ίH),

V9oo
oo AV 1 / 1 _ s

 Λ

Q(s) = ieϊ J ^ - ^ τ ( ( E + iH)(ίE--iH) — (E + i H ) ) ~ * )
M - oo 2π | / ^ 0 0 \ ^ 0 0

, °? dE ? / 2 . πs\ _,_- 1
= - e J J ^ - J - - s m — μ ' - p z ^

M-co2π o V π 2/ |/ f l f o o

9 oo

1 ^ l (
-oo lτι o \ π

00 / 0 TTOX

= -l/2βf s i n -
o \ π z /

Everything here is implicitly analytically continued from Res>dimM. Now,

4=ί 1
J/π o o

π Lo o 2

- - s i n ^ Π ί
\ π 2 / o o

The integral in the second term will not have a pole in s to cancel the sin—- factor,

and so

/ 9 \

- - s i n —
π 2

and

s - l
2 . D

If ^ 0 0 = 1 and H is invertible, then this shows that Q = —1/2 ê /H(0). If H is not
invertible the prescription for a compact Z is to use the Green's operator for B in
(2). Suppose that we approximate Z = R x M by ZR = S1 xM, where S1 has a
radius R. Let H have eigenvalues {/IJ. Then on ZR,

= (f.p.a.S =
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As R-+00 this becomes (f.p.a. 5 = 0 ) - - Σ Λ(λ?) 2 τ ^ u s w e t a ^ e

2 At Φ o

β=-l/2eι/ f l(0)for all H.
The preceding analysis extends easily to the case when H has time-independent

external fields in it to give the same answer (4). It also extends to an arbitrary
number of dimensions.

3. The Case of a Compact Space

To sum up, if Z = R x M (M a compact oriented spin manifold of dimension m) has
Lorentzian metric ds2 = goo(x)dt2- Σ gij{x)dxi®dxi and H, the

Hamiltonian for a spinor particle, is a self-adjoint pseudo-differential operator on
L2 cross-sections of E, a vector bundle over M, then the vacuum charge is

where G is the Green's operator for H 2. If g00 is not 1 this expression will generally
have a pole at s = 0. The residue of this pole can be easily calculated. First suppose
that H is invertible. We have

εl)2)2\ 2

Using (H2y« =
Γ(α) o

T(x~1e~TH2dT, and the asymptotic expansion

M \-S
((fί + εί)2)

1 - s

= Res s = oτ/ί ~l/2e--
M 1 -

s - 3

= Res s = oτ J - l / 2 e —

oo « z l
. J T 2

0 i

1

2|/ί

Γ
5 - 1

(5)



Vacuum Charge and the Eta Function 537

This expression can be computed by the formulae of the next section. If H is not
invertible let P be the projection on Ker H. Then for α φ 0, H + ocP is invertible and
QH+ap(s) — Q(s) is holomorphic at s = 0. Applying (5) to H + aP and letting α go to
zero, we have that (5) holds for all H.

For 0OO = 1, Res s = 0Q(s) = 0 and Q = —1/2 eηH(0). The ηH{0) function can easily
be computed by varying H [3]. Suppose that H(ε) is a smooth one-parameter
family of invertible first-order differential operators with the same first-order parts.
Then

ή s - 1 ΪTT s-1

ΊH{H2)~ 2 = -sΎv^-(H2) 2ΊτH{H) sΎv^
dε dε

The heat kernel expansion gives

1 ^ ( 0 ) = lim -
d& IHK } s-o

= lim — sτ J —-

The first seven En's are known [8], so ηH(0) can be computed on manifolds up to
m = 7.

If, on the other hand, the family H(s) passes through a noninvertible operator
at, say, ε = 0, then there is an integer jump in ηH(0). This is because ηH(0) essentially
adds the signs of the eigenvalues of H. If a particular eigenvalue λt passes, for
example, from ^ < 0 to λt>0 as ε goes from ε < 0 to ε>0, then
1H(O+)(°) - nH{o - )(0) - 2 and ηH(0)(0) = 1/2 (ηH{0 + }(0) + ηH{0 - }(0)). The total number of
sign changes along the curve H(ε) is called the spectral flow. If if (ε) is a closed curve
γ the spectral flow is topologically determined [3] and an integral formula for it is
(spectral flow) = —1/2 $ ω, where ω is a closed 1-form on the space of H's defined by

γ i+1

<ω,H}= lim -sΊτHG 2 .

For the cases considered in [1] there is a conjugation symmetry, meaning that
there is a bounded operator C such that {C,H} = 0. Then eigenvalues occur in
pairs of opposite sign and ηH{0) = 0. However this is not necessarily the vacuum
charge because (2) had the stipulation that the vacuum is nondegenerate. If
Ker H φ 0 then the vacuum is degenerate. To interpret this we must use the op-
erator formalism. Restricting attention to the physical states corresponding to
Ker H, the observable algebra is a CAR algebra associated to the finite dimension-
al vector space Keri ϊ . Letting {xpi} be a basis for Ker if, we have operators ei

and e\ satisfying {ei,e]} = δij, {ei,ej} = {eJ,e]}=0. The charge operator is
6 = l/2eΣ(2eJei— 1) and the energy operator is E = 0, [9]. Thus the vacuum is
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2dimKerH times degenerate. The state ρ described by (2) is not a pure state but
instead satisfies ρ(l) = l, ρ(ef) = ρ(e ) = 0, ρ(e\ej)=l/2δij9 giving ρ(Q) = 0. For a
pure state σ, σ(Q) = + 1/2 e, and the pure vacua states are considered to have half-
integral charge. This can be seen from the functional integral method by adding a
degeneracy-removing term α Σ ^ Λ to H, where P f is projection over ψt. If the d/s

ί

are nonzero the new vacuum is nondegenerate and as α->0, Q-> — l/2eΣsignd f .

4. Vacuum Charge on a Noncompact Space

If M is noncompact it is found that there is a contribution to Q from the boundary
behavior of H [21. H can now have continuous spectrum and for the operators of

_ s - 1

interest H(H2) 2 will no longer be trace class. For simplicity we take M to be
topologically Rm, goo = 1, and Heψdo1, meaning

i) The C00 symbol h(x,ξ) of H satisfies \Dβ

xD\h{x,ξ)\^Cκ^β{\ + | ξ | ) 1 " | α | for
some constant CKtΛtβ, where x ranges over the arbitrary compact set K, and

ii) There is a sequence hί,h0,h_ι,... of C00 functions on R 2 m such that if T ^ 1,
\ξ\tl, then hj(X, Tξ) = T%{X, ξ) and

/ N

DxD\(h- Σ K

for all x e K.
Suppose also that H is uniformly elliptic on M, meaning that aγ is uniformly

bounded away from zero when |£| = 1. The analysis of [10] shows that if H is

invertible then Vx e M, (H(H2) 2 ) (x, x) is a meromorphic function of s with
poles only at m + l , m , . . . . Define &?={HGψdo1: H is uniformly elliptic, self-
adjoint and Fredholm from H\E) to H°(E) and

s - 1

i) H is invertible and τ(H(H2) 2 )(x,x) is Riemann-integrable on M for
those s at which it is defined, or

ii) H is not invertible, but if P denotes the projection onto Keriί, H + P
satisfies i).}

Note. If a differential operator H has all nonzero derivatives of its coefficients
vanishing at infinity, a necessary and sufficient condition for it to be Fredholm is
that its symbol σ(x, ξ) is uniformly invertible for large spheres |x|2 + \ξ\2 = R2 [11].

_ s - 1

Lemma. If EG9" is invertible, then ηH(s)= \τ{H(H2) 2 )(x,x)]/gdmx is
meromorphic with poles only at s = m+l,m,

Proof. We use the general fact that if {f}fLi is a sequence of meromorphic
functions with all poles in D, a discrete set without limit points, satisfying

i) V J G D , 3nd^0 such that the pole of each f at d has order ^nd, and
00 00

ii) Σ Ms) exists and is continuous in (C\D, then X Ms) is meromorphic with
i = 1 i = 1

all poles in D.
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To show this, around a point d e D consider Σ (s — d)ndfi(s). Egorov's theorem
ϊ = l

implies that this is holomorphic on a dense open set and Morera's theorem implies
that it is holomorphic.

First partition M into cubes; it is enough to show on each cube C that
s - l

\τ{H(H2) 2 )(x,x)]/gdmx is meromorphic with Ml poles in D. For this it
C s - l

suffices to show that for any loop ΓcC\D, \τ(H(H2) 2 )(x,x)]/gdmx is the
c v

uniform limit on Γ of meromorphic functions with all poles in D. Fix p ε N + . For
n(s)

any s e Γ, 3 a partition C = \J (Ej)s such that
s - l

2 )(x,x)]/gdmx

n(S) _ ^Zλ
- Σ Reτ(tf(iί2) 2 )

. 7 = 1

1
0 + 2

for any choices of Xj e (JSjX. By the uniform continuity of the integrand o n ί x C ,
the same inequality holds in a neighborhood Vs of 5 on Γ. Let {KJf= i be a finite

number of such neighborhoods which cover Γ. Let C— (J Fk be the partition of C
k=l

which is the mutual refinement of {{(Ej)s.}
nfil}f= 1? and let {yk}

r

k= 1 be a choice of
points in {Fk}

r

k=1. Then for se VSi,
s - l

C

<

- Σ Reτ(iί(ίί2)

Rejτ(iί(iί 2 )" 2 )(x,x)]/gdmx
c

n(Sί)

7 = 1

xj) μ((Ej)s) 2^ + 2 ' (7)

Thus (7) holds for all seΓ. Doing the same with the imaginary part and refining the
two partitions, there is a meromorphic function Fp(s) with poles only in D such
that Vs e Γ,

s - l
~~2 )(x,x)]/gdmx-Fp(s)

1
1PA

Define Fo = 0. Then

and

s - l
2 ^ = Σ (Fp+1-FP)(s),

p = 0

Σ\Fp+1-Fp\(s)<\F1(s)\+
0

forΣ
p=ί



540 J. Lott

00

By hypothesis, Σ (Fp+ι—Fp)(s) is continuous in (C\D, which proves the
p = 0

lemma. D

For noninvertible He<$f, define ηH(s)
Unlike the compact case, ηH(s) is generally infinite at s = 0. As in (6) of the

previous section, the residue at s = 0 is the integral of a local expression. Because
the residue is zero when M is compact, it must be the integral of a divergence in the
noncompact case, as we now show.

Proposition. On the (positive-definite) Riemannian manifold M, suppose H e^ is
— iy°yjVe. + N, where {ej}J=ί is a local orthonormal framing of M and N is a self-
adjoint multiplication operator on E. Let Pj denote — iy°yj. Then

i) // m is even, Ress = oηH(s) = 0.
ii) J / m = l , Ress=oηH(s) = 0.

iii) // m = 3, Ress=oηH(s)= J - -^(divL)γgdmx with
M oπ

Lj = 1/4 τ(NPkN [Pfc, Pj]) + 2/3 ef(N). (8)

Proof, (i) Because H is a differential operator, Em+1((H + εI)2) is zero for m even,
(ii) In terms of the P's, Ve\p = e ψ-\βΓahj[P\Ph]\p. We work in Riemann

normal coordinates for {ej}™=1. Then

= - KVej + 1/4lPj9 PjJ ίVej, KJ + {N + εί, Pj} V6j + PfjN + (ΛΓ + si)2 .

Define Dej = Ve. -1/2{N + εl, Pj}, and

E - 1/4 [P,, P k ] [ ΓβJ, Γe J -1/2 {e7.iV, Pj} + 1/4 {JV + εJ, P, } {iV + ε/, Pj}

Then (iί + ε/) 2 = — DejDβj + E. This is the right form to apply the tabulated
formulae for Em+ί9 [8]. (Our formulae differ slightly from Gilkey's because of

different conventions.) These give ]/4πE2((H + εI)2) (x)= — — £, and so

°jΛN,Pj}}-2N.

Then

J/ίπτ elf) (JC) = τ( - 2ΛΓP/,- - 2iV) = 0.

(iii) Following the notation of [8], the connection w is given by Wj= — 1/8
ΓabjlPa,Pb1 -1/2{N + εl,Pj} with curvature

wjk = ejwfc - e.wj + [w;, w J = - 1/8 i? a b j k[Pα, P 6 ] -1/2 {ejJV, P J
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Because

]/(4πfE4((H + εI)2) (x)=l/30V2R+l/Ί2R2-l/mRjkRjk + l/\S0RijknRijkn

• l/2E2 + l/l2wijwij- l/6V2E,

EJtiH + εl)2) (x) = - 1/6R ̂  + 1/2 <E, ^ j + 1/12 \wij9 ^ v
ΠP I ΠP \ I ΠP

ε = 0 u b (. u b ) (. α f c

We have

1/4[Pj, Pkl [ F v KJ = - VVR^lPj, P J [Pβ, P&] = 1/4Λ.

We need

dw. .
= 1/2[Ph {N, PjU + 1/2[{AT, PJ, P J . (9)

dε

Then

/,. ., d

ε = 0

= - l/6Rτ(2NPjPj + 2N) + τ((l/4R + 1/2[P, ,e^ JV] + 1/4{JV, Pj} {JV,Pj}+N2)

•(l/2{Pk,{N,Pk}} + 2N)

+1/6 τ((-1/8ΛβWy[Pβ, P J -1/2{e;iV, Py} +1/2{e7-JV, PJ

+ 1/4{JV,PJ, {JV,Pj})(1/2P;, {JV,P, } + 1/2[{JV,P(},PJ)),

- l/6P2τ(iVPJPj + 2JV)= - lβRτ(N) (10)

- 1/48Rabίjτ([Pa, P J (1/2[P,, {JV, P, }] -1/2[P,, {JV, PJ])) (11)

+ τ(l/2[PJ.,ejN] (PkNPk-N)+l/6(- l/2{etN,Pj} + l/2{ejN,Pt})

• (1/2[P;, {JV, P,.}] - 1/2[P7 , {JV,PJ])) (12)

+ τ ((1/4 {JV, Pj} {JV, Pj} + N2) (PkNPk - N)

+ 1/24[{JV,PJ, {JV, Pj}] (l/2[Pf, {JV,P,}] - 1/2[P7, {JV, PJ])) (13)

+ 2/3τ(F2JV). (14)

The term (11) is

- l/96Ke6UT(JV({Pj, [[Pβ, P J , PJ} - {P;, [[Pβ, P J PJ))).
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Let C denote P1P2P3. Then [ C , P J = 0 , C 2 = /, and [_Pa9Ph~\ = -2sabcCPc.
Thus

{Pj, UP a, Ptl PJ} = {Pj, ~2εabcίCPc, PJ}
= ^εabc^cίd \Pp PdS = ~ ^^a

and

(11) = l/6Λβiϋτ(Λ0 {δ1δ)-δ«jδ>0=\βRτ{N).

Thus (10) plus (11) is zero. The term (12) is

τ{ί/2(ejN) ί(PkNPk -N), P J + l/24(e^V) {P£s [P;, {N, P, }] - [P ;, {ΛΓ, P,}]})

= τ(l/2(β/Λ0 KΛ^P* - Λ0, P J + l/24(e/0 ( - 3iVP, + NPίPjPi

+ PiNPiPj + PiNPjPi - PiPjNPi - PjPiNPi + 3PjN - P ; P/ ; J /V))

= l/2τ((ejN)[_(PkNPk-N),Pj])

= l/4τ((e,.JV) (PkNlPk, Pj] - \P}, P J NPk))

= l/4ejτ(NPkNlPk,Pj-]).

The term (13) is

l/4τ((JV2 + Pj JV^^ + NPJNPJ + PJNPJN) (PkNPk - N)

+1/6 (NPiNPj + NPiPjN + P{N
2P} + PiNPjN

i, Pj] N + IPiNPj - IPjNPt + N [P;, PJ))

+ ( - 18 JV3 + 28N2PjNPj + 4N2PjPkNPjPk - 2N2PjPkNPkPj

+ 8NPjPkNPjNPk - 4NPjPkNPkNPj))

= l/24τ(-24JV3 + l6N2PjNPj + 4N2PjPkNPjPk + 4N2PjPkNPkPj

+ 8NPjPkNPjNPk + 8NPjPkNPkNPj) = 0.

The term (14) is itself. Adding these,

/——-^- α

Because this was derived in normal coordinates and is a divergence, it must be VjLj
with

Lj=l/4τ(NPkNlPk9PjJ) + 2βejτ(N). D

In order to find the constant term oίηH(s) at 5 = 0 we use the method of varying
H, but with attention to the boundary terms.

Proposition. Let H(ε) be a smooth one-parameter family of ίnvertίble elements of £f.
Let P be a bounded operator on ]}{M) whose operator kernel has compact
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distributional support on M x M. Then

^TTPH(H) = sΊτP^iH) +(coS^]] μ

dε dε π \ 2 / o

' Tr ί[H2, P] (μ2(H2 + μ2) " 1 ^ (H2 + μ2) ~ 2 - H(H2+μ2y ' ^H(H2+μ2)" 2

μ . (15)

Proof. We use the facts that if A e φJofe with Refc>dimM then P^4 is trace class,
and if C is trace class and DeB(3tf) then ΎrCD = ΊvDC. Formally,

dε ds\π 2 / 0

π 2 / o

Now

dε "\π 2 ) o*~ dε

JL I 0

TrPtf(tf) 2 + 5 T r P - ^ ( H 2 ) 2 i s - c o s ^ times
dε dε π 2

00 / ^ff

= Jμ- sTr - ^ -
o V dε

2 ) "- ^ //(ίί2 + μ2) "» [P, H(//2 + μ2)

/ ATI

μ 2 ~ ( i ί 2 + μ2)
dε
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- ^ H(H2 + μ2) - \[_H2 + μ\ P] H - [H, P] ( # 2

\ - i

μ2)~1 is replaced in the above by J e~T(H2 + μ2)dT and Res>dimM, then
o

all of the above manipulations are valid. Because both sides of (15) are analytic in s,
(15) holds for all s. D

Hereafter suppose H is a first-order differential operator. If we take P = MχR,
multiplication by the characteristic function for a bounded domain R, then
[H2, P] and [if, P] are distributions with support on dR. Thus the second term of
(15) is actually a surface integral. Letting R expand to fill M, in principle the
membership of H in Sf can be determined by (15).

We can use (15) to compute -r-J°(z) in terms of H. Take the flat metric on Rm.
Cto

Let H be Mj(x)dj + N(x), let 0(x, y) be the operator kernel for an operator 0 and
define

(3,0) (z, z) = dx0(*> y)\x=y = z, (dy0) (z, z) = (dy0) (x, y)\x=y = z.

Then Tr[H,P~]0= -TrP[fΓ, 0] = - f τ([#, 0] (z,z))dz. Now

- I ί / t (x)0(x,y)(M%)^ + N(y))g(y)dydx

= 1J /t(x) (M^(x)^O(x, >>) + JV(x)O(x, y)

+ djy(0(x, y)MKy)) - 0(x, y)N(y))g(y)dydx.
Thus

[H, 0] (z, z) = M'(z) (djx0) (z, z) + ΛΓ(z) 0(z, z) + 5Λ0(z, z) M\z)

+ 0(z, z) (δ;M^) (z) - 0(z, z)^V(z),

and

Tr IH, P] 0 = - 1 τ (M^z) (δj;c0) (z, z) + MJ(z) (dJy0) (z, z) + (djMj) (z) 0(z, z))dz
R

= -\djττ(M\z)O{z,z))dz.
R

Similarly,

Tr[# 2 , P ] 0 = - T r P [ H 2 , 0 ] = -TrP[H, {//, 0}]

Taking Λ

) = μ 2 ( H 2 + μ 2 y 1 ^ I - ( H 2 + μ 2 y 2 H ( H + μ r ^
αε αε
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and

dε

we have

dε v J

- djz(M\z) {H, O J (z, z) + M'(z) O2(z, z))\ dμ.

Because H is Fredholm, its continuous spectrum is bounded away from zero
and its kernel is finite dimensional. If y = {H(ε): ε e [0,1]} is a smooth curve in ^
then the continuous spectra are uniformly bounded away from zero and, as in the
compact case, ηH(0) has integer jumps when H(ε) passes transversely through
noninvertible elements. The spectral flow, defined as the intersection number of

(J (ε, spectrum (Hε)) with the line λ = — ε for ε a small enough positive number,
εe[0,l]

is homotopically invariant if y is closed. Thus there is a homomorphism π^Sf^-^Έ
for each connected component Sf1 of £f.

Let S(H)(x) denote the surface term of (15). If H has a radial limit, then one
might expect that for large domains ,R only the limit of H contributes to S(H) (x).
This is plausible because the Fredholm property of H means that the spinor is
effectively massive at large distances and its propagator should fall off
exponentially in distant regions. Such a property makes it easier to compute the
boundary term. Let Hx be the constant coefficient operator obtained from H by
freezing its coefficients at x. The following proposition shows that in the large R
limit we can approximate S(H) (x) by S(HX) (x).

Proposition. Let (r, θ) be polar coordinates for x on R m with θeSm~1. Suppose H(ε)
is a curve of invertible elements of 9 with a constant first order part in ε and x. Let
H(ε) = Mjdj + Nε(x). Suppose also that

i) — NE(x) is bounded,
dε

ii) sup|D^iV| is bounded for all β,
iii) Nε(r,θ) approaches a limit Nε(co,θ) uniformly in θ. Then for s>m — 4,

S(H) (r, Θ)^S(HX) (r, θ) uniformly in θ. If Mj is not constant in x, but —M[(x) is
dε

bounded and sup \Dβ

xM
j\ is bounded for all β, then the same result holds for s > m — 3.

Proof We have

S(H) (x) = - - c o s ^ J μ-sXjτ(M\{H, O±(H)} (x, x

It is convenient to rewrite this as an integral over the curve Γ = \ Γ). This gives

S(H) (x) = -*- j λ~~Ίrxiτ(Mj({H, O^H)} (x, x) + O2(H) (x, x)))dλ
2π r
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with

1 dε dε

and

Then
_ s - 1

S(H) (x) - S(HX) (x) = — I λ ~Ύ~xjτ(MJ{{H - Hx, O^H)} (x, x)

+ {HX9 0,{H) - O^HJ} (x, x) + (02(H) - 02{Hx)) (x, x)))dλ.

By definition of Hx9^-iλ'^r{H-HX9O1(H)}(x9x)dλ = 0. We need
2π r

dε

O2(H)-O2(Hx)=^H(H2-λy2-~Hx(H2

x-λy2

(H2-λy2-(H2

x-λy2=-(H2-λy2(Hi(H-Hx

+ H(H - HX)H2

X + (H- Hx)Hl - 2λH(H - Hx)

-2λ(H-Hx)Hx)(H2-λy2.
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Again by definition of Hx9 the termψ-(H-H x ) (H2

X -λ)~2 oϊ02(H) - 02(Hx) will
dε

not contribute.
This expresses S(H)(x) — S(Hx)(x) as a sum of terms of the form

1 \
/ _£Z1 \

τ[\λ 2 Px(x,y,λ)(H-Hx)(y)P2(y,x,λ)dλ with the properties that each PγV )
and P 2 contains a factor of (H2

X - λ)"1, (H2 - λ) ~ι, (H2

X - λ)" 2 or (H2 - λ)" 2, and
there is a factor of (i ϊ 2 — λ) ~1 or (H 2 — λ) ~ 2 on one side of each term. We wish to

show that basically \λ 2 P2(y,x,λ)P1(x,y,λ)dλ is at most singular as
\x — y\3+s~2m and has exponential decay in \x — y\ for |x| large enough.

For simplicity we just analyze the term H(H2 — λ)~1—Γ-(H — Hx)
dε

(Hl — λ)~2Hx\ the same analysis will apply to the other terms. By the Fredholm
property 3d > 0 such that |x| > d => 3δ > 0 such that \σ(Hx) (ξ)\ > δ for all ξ e Rw. By
a theorem of Hόrmander [13], 3ρ>0 such that

σ(Hx)(ξ) is nonsingular for all ξ e C m with | Imξ|^4ρ. (16)

Because H has a radial limit we can pick a ρ such that (16) holds whenever |x| > d.
Take lceRm with O^|/c|^ρ. Let Mk be the operator (MJ)(z) = ek'zf(z). Then

2_λ)-i**L,H_H ){H
2-λy2H =H(H2-λyίdII-i

dε x x x dε

Mk{M.kHxMk)(M.k{H2

x-λ)-2Mk)M.k.

By the nonsingularity ofσ(Hx) (ξ) for |Im^| < 4ρ, we can make the circle in Γ small
enough so that σ(H^ — λ) (ξ) is nonsingular for |Im ξ\ < 2ρ and λ e Γ. In the above
equations (H^ — λ)~2 represents the fundamental solution for the operator
(Hi — λ)2 which is a tempered distribution. We can extend the Fourier transform
representation of this fundamental solution into the region | Imξ|^ρ of C m and
obtain a tempered fundamental solution of M_k(Hl — λ)~2Mk. Because this
tempered fundamental solution is unique,

5-1 / JTJ \

T(x)=U~ 2 [H(H2-λr1 — (H-

-λ)-\x,y) —

• (Mk(M.kHxMk) ((M.kHxMk)
2 - 2)"2M_,) (y, x)dλ

1 JTT

λy1)(x,y)~(y)ek'(y-χ\H-Hx

.(V(V2-λy2)(y,x)dλ, (17)

with V = M-kHxMk = Mjdj + kjMj + N(x). Again, (F2-2)~2(3/,x) denotes the
tempered fundamental solution of (V2 — λ)2; it is only the Fredholm property of
Hv which allows such a substitution in terms of V.
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We now show that

ίλ~S~V(V2-λr2(y9x)(H(H2-λy1)(x9y)dλ (18)
r

— oo

is at most singular as \x-y\3+s~2m. Let the symbol of H2 be Σ hq = h2jkξ
jξk

q = 2

-\-hlj(x)ξJ + h0(x). The algorithm to form a parametrix for H — λ is to solve

(h2jkξJξk-λ)b.2 = l,

(h2JkξJ?-λ)b-3 + h1{x)ξJb-2+ Σ D°ξ(h2jkξiξk)(-idxYb_2/a\=0,
| | l

Σ
|α | = l

α,q,r
« + r - | α | = - p

The same algorithm gives a parametrix for V2 — λ and the parametrix for (V2 — λ)2

comes from composing that of V2 — λ with itself. The most singular term in

( 2 π ) 2 m r

'(h2Jkξ1ξk-λy1dξdηdλ.

Dimensionally this is ~\x-y\3+s~2m.
We wish to approximate (18) by substituting the parametrices for the inverse

operators and bound the operator. This can be done by showing that the difference
continuously maps Ha to Ha+β for β large enough; however, the analysis of [10]
gives mappings from H*compact to H^JX. In order to apply [10] it is necessary to
make the trivial change of the operator class from ψdo to S1 > 0.

Lemma. When ReA>0, b-2-peS^2

0~
p, meaning that

Vβ,γ,(l + \ξ\)lyl + 2+p\Dβ

xD
y

ξb^2_p(x,ξ)\ is bounded. (19)

Proof. Because H2 is self-adjoint and nonnegative, h2jkξ
jξk^O. Then 3c>0 such

that \{h2jkξ
jξk-λyy\^c{\ + \ξ\y2. We have

(Dβ

xDlb^2_p)(x,ξ)= Σ Σ (coefficient)
<x,q,r

2 + r - | α | = - p
q<2
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and so
y_2_p)(x,ξ)\<, Σ Σ (coefficient)

oc,q,r
ϊ + r - | α | = - p

a < 2

For p = 0, (19) is clear. Assume that (19) holds for p> -2-p'. Then

sup (l + |£ |Γ 2 - | y - β |

Define

- w -,) by

The analysis of [10] shows that RH = ( i / 2 - λ ) ~ 1 - Σ ®PΨ-2-j)is in S^J+2)for

OSθ^ί with each seminorm sup(l + \ξ\)θiJ+v+w\D«xD
β

ξRH(x,ξ)\ of order
||H i s ώ S p

of order O(μ | ( β - 1 ) ( 1 + / / 2 5 ) . Similarly setting

- Σ &p(c-2^k)
2, we have FRFeSΓ.1

0~
β ( K + 2 )»

with seminorms of order
Write

as

U~~(YRV) (y, x) (HRH) (x, y)dλ (20)

~~~ ' ^ (21)

(22)

(23)
V J<J )

We use the fact that if A e Sϊt

a

0 and BeS^b

0 with a + b > m, then the operator with
kernel A(y,x)B{x,y) is in S["/o+b"m) By picking θ = θ'=lβ and J and K large
enough, we can ensure that (20), (21), and (22) converge uniformly in λ and give
operator kernels of operators in SΪ{Q+1\ Because an element K of Sϊ{™+1} maps

m+1 m+1 ' '

H 2 to H 2 , its operator kernel K(x, y) is bounded. Therefore

2 (γ(\
s - l

- J λ ~ 2

Γ

is uniformly bounded in x and y.



550 J. Lott

It has been shown 3c >0 such that

The other terms in (23) will have similar bounds but with less singular exponents.
The terms without singularities will have bounded kernels, and so 3d > 0 such that

s-1
2 Π/ίV2

(V(V2-λ)-2)(y,x)(H(H2-λrι)(x,y)dX Sc\k)(\x~y\3+s~2m+l).
Γ

From (17) this implies

fS~^(H2

x(H2

x-λy2)(y,x)(H(H2-λy1)(x,y)dλ

Ranging over the sphere \k\ = ρ, we can find c= sup d(k)<oo. Thus
\k\=Q

\T(x)\^cU(H-Hx)(y)\e-^-yK\x-yf+s-2m+l)dy for

Let a(rx) be a monotonically decreasing function approaching zero such that
Mrvθj-Nicotθ^airj. Let fx(z) be \N(x + z)-N(x)\e-^(\z\3+s-2m + 1).
Then |Γ(x)|^cJ( sup fw(z)\dz. Because \DXN\ is bounded, 3K>0 such that

sup fw(z)^K\z\e-ρlzl(\z\3 + 2-2m+l), an L1 function if s>m-4. For a fixed z
M = |χ|

consider \x\>\z\. Then for M = |x|, \N(w + z)-N(w)\^\N(oo,θw+z)-N(oo,θw)\
+ α(|x| — |z|) + α(|x|). By the uniform continuity of Λ^oo, 0), sup /w(z)-»0 as |x|

->oo. By dominated convergence, |T(x)|->0 as |x|->oo.
The same estimates go through when Mj is not constant in x provided that

s>m— 3.

Corollary. FFϊί/i ίfe 5αm^ hypotheses, assume that \Fσ(H)\(r,θ) = o(r1~mβnr)
uniformly in θ. If Rr = Bn the ball of radius r around the origin, then

lim J (S(H)(x)-S(Hx)(x))dx = 0. (24)
r^oo dRr

Proof Let (rx, θx) be the polar coordinates for x. Then

|Γ(x)|= ί l\ J

Take β(r) monotonically decreasing to zero with \VN\(x)^β(\x\)\x\1~m/ln\x\ for
|x| > 1. Let M 4 be sup|FiV|. There are constants M1 ? M2, M 3 >0 such that for all
rx>0,
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and for all rx>l9

00

j β ~ ρ ? ( f 3 + s ~ 2 m + l ) r m ~ 1 d f ^ M 2 r ^ p ( 3 + s " 2 m ' m ~ 1 ) e " ρ ^ ^ M 3 .

rx

Taking c so that 1 < c < \x\ — 1,

i _ 1

\β(M-rMM-rxy-^^M3drx

00

J Ad4j\d2^x ' c d

1
β(\x\-l)(\x\-\\ί —m

ln(M-l)

\ +csυP(3+s-2m,m-l)g-ec

The first term is clearly OQx]1'"1). Take c= -(m-l)ln|x| + ln2ln|x|. Then
Q

( M - c ) 1 - w = 0(|x|1-M) and ln(|x|-c) = 0(ln|x|), so

c / f ( M - c ) ( | x | - c ^

Also

Therefore

f T(x) = rw- Io(r 1-M)-^0. D

Unfortunately, in more than one spatial dimension this corollary only holds

when the radial limit of H is actually constant in θ, as otherwise there will be a -

behavior of |FiV|.

5. Index Theorems

In some cases a zero eigenvalue for H is guaranteed topologically. This is
important when H has a conjugation symmetry, as it is then the only source of

vacuum charge. If H can be written as I J I with L Fredholm, then
\L \ 0/

J
\L \ 0/

dim Ker/7 = dim KerL+dim KerL1" = (dim KerL- dim KerL1") (mod 2)

= (IndexL)(mod2).

If M is compact and odd-dimensional, then IndexL=0 and nothing is learned. If
M is Rm and L acts on a vector bundle M xV, then the index is given by the
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pullback of the generator of H2n~ 1(GL(F)) under the symbol map evaluated on a
large sphere S2"'1 = {(x,ξ): \x\2 + \ξ\2 = R}, [14]. A simple example of this
theorem which will be used in the next section is given by H on R1 x C 2 being

— ίσ2-—\-σ1φ(x). Then

Φ(χ)-ίξ
0

and H is Fredholm iff \φ\ is bounded away from zero at ± oo. Take L= — — +φ

ό-it
(x). The index is the degree of the map (x, £)-> / from {(x, ξ): x2 + ξ2 = R}

to S1, which is

The same theorem guarantees zero eigenvalues for fermions in the background of a
nonabelian monopole with a Yukawa coupling to the scalar field [15].

Another index theorem which may be less familiar is that for real skew-adjoint
Fredholm operators [16]. Suppose JfR is a real infinite-dimensional Hubert space
which is a module for the real Clifford algebra Ck-ί by real skew-adjoint
generators, meaning 3J1 ?..., Jk_1sB{^) such that Jf^—Jt and
{Ji9Jj}= — 2(5yJ. Define #(^fR) to be the space of real skew-adjoint Fredholm
operators on Jtf^. If k φ — 1 (mod 4), define

(Wi):{H,Ji} = 0 for l g i ^ f c - l } .

If k = — 1 (mod 4), define

^(^κ) = {Heβ(J^):{H,Ji} = 0 for lgigfc-1 and J1J2..Jk_1,

H is neither essentially positive nor essentially negative}.

(Essential positivity means that an operator is positive on an invariant subspace of
finite codimension.) Now KerH is a Ck _ 1 module and the question is whether it is a
Ck module. A corollary of the index theorem of [16] is that this extendability
property only depends on which connected component of # ^ contains H. If
/cφO, 1,2 or 4 (mod 8) then it is always extendable. Clearly if H can be path-
connected to an element of ^*_i, then it is extendable.

As an example, suppose dimM = 2 and a massless spinor is connected to a
gauge field in a real representation. (If M is compact, then (6) implies that ηH is
locally constant for invertible H's and Q is only produced by spectral flow.) Take
γ° = σ2, y^-iσ3, and y2 = ίσ1. Then H= -i(σ\Vx +ρ(Άί)) + σ\V2 + ρ(A2))). If
H is Fredholm (which is true if M is compact), then j Ή e ^ J f J , KerHI^
= C(g)Kerfί|jr]R. Take Jι = iσ2; then whether dim^Keri1/!^ ^2(mod4) is a
topological property. If M is compact it only depends on the topological class of
the vector bundle over M.
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Although in some cases neither of these theorems is applicable, the families
index theorem may give the existence of a noninvertible H in some class. For
example, if M is compact with dimension + 1 (mod 8), then there is some metric on
M to which the pure Dirac equation has zero eigenvalues [17].

6. Examples

A. 1 + 1 Dimensions

The most general static Hamiltonian for a 2-component spinor on IR is

H = — iσ2 ί - — h ieAx(x) I + σ1φ(x) + σ3ε(x) + ρ(x). We can take Ax = 0. Assuming

the coefficients have limits at x= ± oo, H is Fredholm iffρ2(oo)<^2(oo) + ε2(oo)

and ρ2(—co)<φ2( — oo) + ε2(— oo). Take ——=σ1φ\x) + σ3έ(x) + ρ(x) and

as
P = MXlatbl. If H is invertible, then

~ ^ / ] T~^e~TH\x,x)dT
s->0

Γ
2

s^o s | / π o |/4πΓ π

and

\im -STTPH(H2)~~ = --]ρdX,
s-*o π α

which is the volume part of the variation of ηH(0).
To give a necessary condition for membership in £f, let γ be a curve from H to

5 , an invertible Hamiltonian with ρ = 0, which passes through noninvertible i f s
transversely. Then

ΎτPH(H2)~~ = --] ρ(x)dx
n a

+ (contributions from zero-modes crossed by γ)
+ (surface terms).

The last two terms will be bounded as [α, b~\ -> [ — oo, oo], so it is necessary that ρ be
Riemann-integrable.

Now assume that HeSf and H is invertible. From (24),

•(\Hx,μ
2(Hx + μ2)-ld^ί-(Hl + μ2)-2-Hx(Hl + μ2yi

, (25)
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with Hx at x = ±00 being — ίσ2-—hσ1φ(± 00) + σ 3 ε ( ± 00), and —— at x = ±00
αx αε

being σ 1 ^ ( ± o o ) + σ 3 ε ( + 00). Let α 2 denote ^(x) 2 + ε(x)2 + μ2. Using

(i/ 2 + μ 2 ) " 1 ( α , b ) = — - β " α | α ~ b | and (i72 + μ2)~2(α,fo)= — 3 C

the first surface term of (25) is

By parity symmetry, the —ίσ2— term of # x will not count and because

τ(( — ίσ2){σ1φ(x) + σ3ε(x), σ1^"(x) + σ3ε(x)}) = 05 this term is zero. The second
surface term of (25) is

- - ]
π o

2x τ ( ( - iσ2) (σ V"(x) + σ3ε(x)) (σ V W + σ 3 ε(*)))

-(^'(x)ε(x)-ε(x)^(x)).

Thus the change in vacuum charge between two Hamiltonians is

/ 2 °° 1 Γ ό(xί]x= + OD \
AQ=-l/2e[ j (Aρ)(x)dx+-A t a n " 1 ^ ^ + 2 (spectral flow ,

\ π-00 π |_ ε(x)Jx=-oo /

(26)

with A tan ~1 —-- taken continuously along the curve from one Hamiltonian to

the other. This implies the 1-dimensional results of [2].
As an example of the effect of spectral flow consider the case when ρ = 0, ε is

constant and |^ | (±oo)φ0. Because

dx

this will be a positive operator if φ is slowly varying in the sense that —
at

φ(x)

— t a n " 1

<|ε| . In the case φ = 0, there is a conjugation symmetry and Q = 0. If φ is
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linearly deformed from 0 to a slowly varying value, there is no spectral flow and
from (26),

^ | t a n - ^ - Ί with Rangetan-'H-^I. (27)
L 2 2 J

Now consider what happens when ε changes sign, such as going from ε > 0 to ε < 0.
From (27),

e[ _ φ(x)~\x= + co _ Γ π π
ΔQ=— t a n " 1 with t a n - 1 c — —,—

π|_ β Jχ=-oo L 2 2

and ε>0 in this formula. From (26),

x=

ΔQ=-\ t a n " 1 ^ ^ I -1/2e(signφ{oo)-signφ(-oo) + 2(spectralflow)),
π \ ε

again with tan 1c\ — ττ,y and ε > 0 . Thus spectral flow = —1/2 (sign ̂ (oo)

— sign^( — oo)). This is caused by the zero-eigenvalue of the previous section when

ε = 0, sign— = — 1. If ̂ (oo)>0 and <^(—oo)<0, the corresponding eigenvalue
φ(-co)

moves from positive to negative as H changes, and if ̂ (oo) < 0, φ( — oo) > 0, it moves
from negative to positive.

The various parts of H have the physical interpretations that φ is the mass, ρ is
the Ao component of a U(l) gauge field, and ε is the pseudoscalar coupling.
Suppose now that ε = 0 and φ is a positive constant. For massless two-dimensional
QED, Schwinger found by explicit solution of the Green's function that the
vacuum polarization completely screens a static external source [5]. We can show
that the same effect occurs for a constant φ > 0. Let the external source be a test
function with Fourier transform K(p). Because

ττ2 _ I 2 ^ . _:

\ dx

if sup|ρ(x)| < l/2φ, then H2 is positive. If ρ(x) = Q, then by conjugation symmetry
ηH(0) = 0. Suppose that ρ is linearly deformed from 0 to the new value and that no
spectral flow occurs in the deformation (it is sufficient that sup \ρ{x)\ <l/2φ). Then

Q= — J ρ(x)dx and <J°)(p)= — Ά0(p)-\-c{p) with c(0) = 0. From Coulomb's law
7Γ - o o 71

p2A0(p) = K(p) + <?> (p) = K(p) + - A0(p) + c(p),
n

so A0(p) = (K(p) + c(p))l(p2 - jή and

(J6)(p)=-(K(p) + c(p)) (p2--)+c(p). Then <J8>(0)= -K(0) and the net
\ _ I V πJ

charge is <J
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B. 3 + 1 Dimensions

As shown in Eq. (8), there can be a pole at s = 0 in ηH(s) for three spatial dimensions.
This comes from the infinities of the Feynman diagrams shown with zero-
momentum current insertions:

-( \s^n^r and

Following BPHZ renormalization with subtractions at zero momentum, if one of
these diagrams is infinite for the class of fields being considered, the linear or
quadratic term in N of the constant term oϊηH(s) is ignored. Q is then -1/2 e times
the constant term of ηH(s). For a Dirac spinor in an external gauge field A,

H=- iyoyj(Vj + ρ(Aj)) - iρ(A0) + my0,

and

8π 2 M'

with

Lj = l/4τ ( ( - iy°yaρ(Aa) - iρ(A0) + my0) ( - ίy°yk)

• ( - iy°ybρ(Ab) - iρ(A0) + my0) [ - iy°yfc

9 - iy°yjj)

+ 2/3 e, τ ( - iy°yjρ(Ak) - iρ(A0) + my0)

= -Z/3iτp(ρ(A0))9

and with τF denoting the matrix trace on the gauge field. Thus for QED only linear
terms are subtracted and for a traceless representation of a gauge field (such as with
monopoles and dyons) there are no infinities. Varying ^4/x), A0(x) and m(x), the

volume part of — ^(O) is
Clo

Proof. We have

lim -s(H2)~~(x,x)= lim , \ Λ N J T~e~TH\x,x)dT
0
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From (9),

E = 1/4R + l/2[Pj, ejfΓ\ + 1/4{N, Pj} {N, PJ + N2,

Pj = - iyy, N = Paρ(Aa) - ίρ(A0) + my0.

Then

lim - s ΎτH(H2) " V = _ _1_ | τ (^PbQ{Ah) - iρ(A0) + mγ°)

iβίPj, ejNl - 1/4{N, P,} {N, Pj}-N2Jj (x)]/gd3x.

The integrand is

4τFU-iQ(Λ0))(- ^ -ρ(Aj)ρ(Aj)-2ρ(Ao)ρ(A0)-PaPbρ(Aa)ρ(Ab)-m2)

+ 2immρ(A0)

= — 4iτF ( — ρ(A0) + 2/3ρ(A0)
3 -f m2ρ(^40) I. D

as \12 /

The secondary characteristic class does not appear because the spinors are Dirac.
Unfortunately, the surface integral for the three-dimensional case appears to

be very difficult to compute.

Acknowledgements. I am grateful to I. Singer and O. Alvarez for many helpful discussions.
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Note added in proof. Similar problems have been studied in the physics literature in [18, 19]. I
thank R. Jackiw for mentioning these.




