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Abstract. The problem to determine the elastic scattering amplitude from the
differential cross-section by the unitarity equation is reexamined. We prove
that the solution is unique and can be determined by a convergent iteration if
the parameter λ = sinμ of Newton and Martin is bounded by A < 22 — 0-86. The
method is based on a fixed point theorem for holomorphic mappings in a
complex Banach space.

1. Introduction

The problem to determine the scattering amplitude when the differential cross-
section is given by the integral equation of unitarity has been investigated for over
20 years [1-6] (a comprehensive list of references can be found in [7]). The
unitarity equation for the elastic scattering amplitude of equal (pseudo-)scalar
particles

F(x) = \F(x)\eiφix) = G(x)eίφ{x) (1)

imposes a nonlinear constraint on the phase function φ(x),

G(n1 n2) sinφ(n1 n 2 )= — J dΩnG(nί - n)G(n2 - ή)coslφ(n1 n) — φ(n2 n)],
in ( 2 )

where x = nx n2 = cos Θ e [ — 1, +1] is the cosine of the scattering angle and n the
unit vector in the direction of the momentum. The modulus G(x) = \F(x)\ is given
by the differential cross-section. The characteristic quantity of this equation is the
functional

λ = sup — — -ί dΩJF( n i n)| |F(n2 n)|. (3)
n1,n24π|F(n1 n2 |

In the following we assume that \F(x)\ is a continuous function without zeros.
Hence the supremum (3) is a finite number. The mere existence of a continuous
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solution φ(x) of (2) has been derived under the rather restrictive condition
λ = sinμ < 1. It has been realized by Newton [3] and by Martin [4] that in this case
the Schauder fixed point theorem can be applied. These proofs have been
completed in [5,6]. The uniqueness of the solution [up to the obvious degeneracy
φ(x) and π — φ(x) or F(x) and — F*(x), respectively] has been derived by Martin
[4] for λ<λ1c^0J9. This solution can be obtained by the Banach contraction
mapping principle [5,6] in a subspace of continuous functions of an L2-space.
With the uniform norm topology of the Banach space C[— 1,1] of continuous
functions, the contraction mapping principle has been successfully applied only if
/l</io~0.62(see [4,5]).

For cross-sections with λ > 1 the situation is more complicated. The cross-
section has to satisfy additional constraints if unitary amplitudes exist. A simple
constraint follows already from the optical theorem:

4π|F(l)|

So far nobody has given sufficient and necessary criteria for the existence of a
solution. Concerning the uniqueness there are cross-sections with a non-trivial
two-fold ambiguity of the amplitude [2] and nobody has been able to find more
than two-fold ambiguities, see e.g. [8]. But a proof that no other degeneracy
can occur is lacking.

In this paper the case λ < 1 is reexamined. We demonstrate that the solution is
unique and can be obtained by an iteration under the weaker condition
/1</12~O.86. The presented proof is based on a fixed point theorem for
holomorphic mappings in a complex Banach space [9]. This method is interesting
by itself and might be efficient also for other problems of physics where so far only
the fixed point theorems of real Banach spaces have been used.

2. The Unitarity Equation

The elastic unitarity equation (2) can be written as

sinφ(x) = J dydzH(x,y, z)cos\_φ(y)-φ{zj] , (4)

with the kernel

\G(y)G(z)
.[l_ χ 2_ y 2_ z 2 + 2 χ } ; z ] -i/2 i f _ ;

2πG(x)
H(x,y,z) = i

if x = ± l .
2G(x)

For fixed x e (— 1,1) the support of H is the ellipse

{y-zf (y + z ) 2 ^

2 ( 1 - x ) 2 ( l + x ) = '

which degenerates to the straight lines y= ±z, — l^y, z 5 Ξ l , i f x = + l .
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For the following calculations it is more convenient to use the function

u(x) = sinφ(x) (6)

instead of the phase function φ(x). The unitarity equation (4) can then be written as

u(x)=T[_u-](x), (7)

with the nonlinear mapping

Γ[H] (X) = J dy dz H(x, y, z)φ{u{y), u(z)), (8)

where

γl-u2γl-v2, (9)

and the positive square root is chosen for —l^u, v^l.
In [3-6] the fixed point equation (7) has been investigated in a Banach space of

real functions u(x) [or φ(x)]. But it is advantageous to extend this space to a
Banach space over the complex field.

3. The Holomorphic Unitarity Mapping

The class of all complex valued continuous functions x e [— 1, l]->u(x) e C with
the norm

M l = sup |M(X)| (10)

constitute the complex Banach space C[—1,1]. The ball {w|||w||^(5} will be
denoted by Sfδ. If w e £f^ then |M(X)| ̂  1 for all x and Eq. (9) φ(u(y), u(z)) is uniquely
defined by analytic continuation with the square root in the half plane
Re |/ l-w 2 (x)^0.

As kernel H{x, y, z) we may choose any positive measure on the square — 1 ̂  y,
z ^ 1 which depends continuously on the parameter x e [ - l , l ] such that

hw(x) = J H(x, y, z)ψ(y9 z)dy dz e C[ - 1,1]

for any continuous function

The characteristic quantity of the mapping (8) is the norm λ of

[h{x) = lH(x,y9z)dydz^9

\\\h{x)\\=λ ( j

which in the special case (5) coincides with (2). If || u \\ ^ 1, then \φ(u(y), u(z))\ ̂  3 and
(8) T[u\ maps 5^ into ^3λ. Moreover T\_u\ has a bounded complex linear Frechet
derivative for any u with \\u\\ < 1,

T\u\h = J dy dz(H(x, y, z) + H(x, z, y))u{y) ( 1 - }/ , 2) [ ) h(z),
'\-u2{z

\-u\y))

Λ e C [ - l , l ] . (12)

It is therefore a holomorphic [10] or analytic [11] mapping of £fδ, δ < 1, into £f3λ.
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4. The Fixed Point Theorem of Earle and Hamilton

Let 36 be a Banach space with the bounded connected subsets Jί' CJί C0β. We say
that Jί' lies strictly inside Jί if there exists an ε>0 such that | |/'—/|| >ε for all
f'eJt' and/ei

Theorem 1. Let Jί be a bounded connected open subset of 0$.
lfT:Jί-+Jίisa holomorphic mapping and T(Jί) lies strictly inside Jί, then T

has a unique fixed point in Jί which can be obtained by iteration.

This theorem has been proved by Earle and Hamilton [9]. The norm
convergence of the iteration is stated in Sect. 4 of [9]. For holomorphic mappings
this theorem is more general than the contraction mapping principle.

5. Application to the Unitarity Mapping

Let ®cC be a bounded connected domain of the complex plane. Then A©
denotes the set {z = λξ\ξ e ©}C(C for real λ>0, and

J((<&) = {f\fe C[-1,1] with f(χ) e © for x e [- 1,1]}

defines a bounded connected domain of the Banach space C[—1,1]. If © is
closed/open then Jί((S) is closed/open. If © is convex, then Jί(($) is convex. To
apply the fixed point theorem to the unitarity mapping (8) we first derive

Theorem 2. Let ®bea bounded connected open region of<£ and $C(C be a compact
convex domain which satisfies the conditions

(a) 0 e g and
(b) φ(u,ήeg if u,ve(δ.
Then T[u] maps Jί(0ΰ) into Jί(λ^), where λ is the norm (11) of the mapping

(8)T.

Proof For any u(x) e «/#(©), we know that

φ(μ(y)9u(z))e% for ye [-1,1], z e [ - l , l ] .

The kernel H(x, y, z) is positive and the domain g is convex and closed. Hence the
statement (b) implies that for fixed x e [— 1,1] the integral

ύ(x) = j H(x, y, z) φ(u(y% u(z))dy dz, (13)

is a complex number within the set h(x) g, where h(x) is defined in (11). Since
Oeg and 0^h(x)^λ, we have fc(x)gcλg for x e [ - l , +1], hence ύ(x)eλ% for

The original problem to find all real fixed point solutions of T(u) can be
reduced to the problem to construct a bounded connected open set ©C(C and a
convex compact domain $CC which satisfy the conditions (a) and (b) of
Theorem 2, and additionally

(c) for some ρ>0, the domain ρg lies strictly inside ©,
(d) the region © is invariant under complex conjugation: © = ©*.

Lemma 1. The assumptions (a), (b), and (c) yield the existence of a unique fixed point
solution of T[u] within the region Jίiρ^) C Jί{f$) if the norm (11) of T is bounded by



Determination of the Scattering Amplitude 337

This lemma is a direct consequence of Theorem 1 and Theorem 2.
The statements (a)-(c) imply the further technical constraints:
(c') the value of ρ is restricted to ρ< 1,
(d') the region © encloses the real interval [0, ρ].
These constraints can be derived as follows. Since 0 e ρg C ©, we know from (b)

that φ(0,0)=le($. The convexity of g implies [0, l]Cg, and therefore
[0,ρ]CρSC®. O n the other hand 1^©, since T[u] is no longer holomorphic if
w(x)=l for some x. The value of ρ is therefore restricted to 0 < ρ < l and the
statements (c') and (d') are derived.

The essential consequence of all the assumptions (a)-(d) can be summarized in

Lemma 2. The unique fixed point solution of Lemma 1 is a real function and T[w] has
no other real continuous fixed point solutions if λ ^ ρ < 1.

Proof. If u(x) G Jί{fS) is a fixed point solution, then also the complex conjugate
function u*(x) is a fixed point solution of T[u]. But (d) implies that u* e Jί(($), and
we know that there is only one fixed point solution within Jί((&)9 hence u(x)
= w*(x) is real. On the other hand any real continuous fixed point solution u(x) is
bounded by 0^u(x)^λ (see [4]). Since [0,λ]C© ti λ<Lρ, see (d'), all these fixed
point solutions are elements of Jί((S) and Lemma 2 follows.

To complete the investigation an actual construction of sets © and g has to be
given. Since the function (9),

if

6 = cos0£, i = l , 2 , (14)

is the simple mapping

θuθ2-+θ=±(θ1-θ2) (15)

in the θ-plane (the sign can be chosen such that Re θ ̂  0) it is convenient to present

such domains in the θ-plane. Let § σ 5 0 ̂  σ ^ —, be the triangle

and ξ)σ the triangle

The rhombus ©σ = g σ n § σ , O ^ σ ^ —, is mapped by (15) into the triangle § 0 :

The images of 5 σ and § σ under the conformal mapping θ -• ξ = cos θ are denoted by
g σ and § σ , respectively. These sets obviously satisfy the relations S σ i C δ

ξ>σιDξ)σ2 if 0 ^ σ 1 < σ 2 ^ — . Since — e g 0 the statements (a) and (b) follow for
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(S = i n t 3 σ n § σ (open interior), 0<σ^—, and $ — So- The convexity of g 0 is a

consequence of the convexity of the boundary contour that is given by the
parameter representation

with x(α) = cosαcoshεί — — α I and y(α) = sinαsinhε( α I, O^α^ —.

We have x'(α) rg 0 and

x'(α)/'(α) - x"(α)/(α) = - (1 + ε2) sinh ε ί a J + ε sin 2α h> 0,

for 0 ̂  α ̂  — which proves the convexity.

The statement (d) is satisfied by construction. Moreover it is obvious that
ρ$ C © for small values of ρ. Since g is compact and © is open, and both sets have a
smooth boundary contour of finite length, the inclusion ρgc© implies the strict
inclusion needed for statement (c). The supremum /I2 = sup{/l|/lgc©} depends
continuously on the parameters ε and σ. It increases if σ decreases. Unfortunately
the value of λ2 is not given by the extremal points on the real axis; it has to be
calculated numerically. We have evaluated the limit case σ = 0. The problem is then
to determine

cosocj, -coshεoq
λ2 = sup {λ\λ%0 Cξ>0} = sup

cosα2 coshε( α9

under the subsidiary condition

tanαx tanhεoq =tanα2 tanhεl α2 j for 0 ^ α 1 ? α 2 ^ —.

The numerical result is λ2 = 0.863934 within an accuracy of 1CΓ6 for all ε^O.001.
It is of course possible to choose the domain © and henceforth g in a

different way. We have tried several alternatives, but we did not succeed to
construct sets © and g with a larger value of λ2.
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