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Abstract. It is proven that the pressure, density and correlation functions of a
classical charge symmetric Coulomb system are asymptotic as the plasma
parameter ¢ tends to zero to the approximations predicted by the Debye-
Hiickel theory. These approximations consist of the ideal gas term plus a term
of one lower order in &. The sine-Gordon transformation and some new
correlation inequalities for the associated functional integrals are used.

1. Introduction

We study a classical charge symmetric system in three dimensions in the limit that
¢ tends to zero. ¢ is the plasma parameter

e=p/ty, (1.1)
where f is the inverse temperature, and ¢, is the Debye length
¢p=02pz)" 2. (1.2)

z is the chemical activity. Debye and Hiickel [4] gave a non-rigorous study of this
limit. We will prove that certain predictions of their theory are rigorously correct
in this limit.
The Debye-Hiickel theory gives an approximation for the pressure P as a
function of the density ¢
1 1

—P~2——1733. 1.3

kT T 24n' P (13)
(For example, see p. 229 of [11].) We work in the grand canonical ensemble, so the
pressure and density are both functions of z and . We will show that as ¢ tends
to zero the pressure and density are asymptotically given by

1

1 _ 1 _
ﬁP~ZZ+E1?ZD3, G'~Z+16—nfD3. (14)
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Combining these approximations yields (1.3).

We will also find the first two terms in the asymptotic behavior of the
correlation functions. For example, the correlation function for particles at y, and
y, with charges 6, and 6, is given by

9(2)(}’1551 ;y2,62)~22 1—[35152(—A +/1;2)_1(y13 ))2)+ L s (15)
4nt |,

and
Q(Z)(yla 51 3 Va5 52)_ Q(l)(yp 51)0(1)0’29 52)"’ - 2235152(" 4 +f[—) 2)_ l(yl’ yz) .

The Debye-Hiickel theory predicts that correlation functions of this form should
decay exponentially. This is known as Debye screening. Brydges [1] proved that
for sufficiently small ¢ the correlation functions do indeed decay exponentially.
This work was generalized by Brydges and Federbush [2] and by Imbrie [8]. Our
result implies that as ¢ tends to zero the correlation functions converge to
functions with exponential decay, but this does not imply Debye screening for
nonzero é&.

To make the Coulomb system stable we must add a short range potential, e.g.,
hard cores, to the Coulomb potential. No such short range potential appears in the
Debye-Hiickel theory, so we will let the short range potential tend to zero
as ¢ tends to zero.

One of the main tools we use is the sine-Gordon transformation. It says that
the partition function can be expressed as a functional integral

Z={du exp{ZZf :cos[VE¢(x)] :d3x}, (1.6)

. . . . . 1 .
where du is a Gaussian measure whose covariance is essentially ﬁ In units
X=J

with 7,=1, e-0 implies f—0 and z— co with Bz fixed. So

:cos[[/[_irb(x)] i~ — gid)z(X)l-

The Debye-Hiickel approximations all follow from this approximation.

The use of the sine-Gordon transformation introduces functional integrals that
must be controlled. We do this using some new correlation inequalities. These
inequalities give bounds on the moments of the measures that arise from the sine-
Gordon transformation.

A natural approach to the problems studied here would be to use the cluster
expansion of Brydges and Federbush [2]. Our approach has advantages and
disadvantages with respect to the cluster expansion. Our approach is simpler than
the cluster expansion. Moreover, we can allow several types of boundary
conditions while the cluster expansion has only been carried out for Dirichlet
boundary conditions. The disadvantage of our approach is that it requires charge
symmetry. The cluster expansion does not.

This paper is organized as follows. We define the Coulomb system and
observables in Sect. 2. In Sect. 3 we state our results. The sine-Gordon transfor-
mation and Mayer expansion are used in Sect. 4 to express the observables as
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functional integrals. Then we give non-rigorous derivations of the results of Sect. 3
using these functional integrals. In Sect. 5 we state and prove the correlation
inequalities. Finally, the results stated in Sect. 3 are proved in Sect. 6.

2. Definitions
We consider a system which consists of two species of particles with equal
2

. L . e .
chemical activities z. The species have charges t+e. Let f= T where k is the
Boltzmann constant and T is the temperature.

The particles interact via the two-body potential

9
dr|x~—y|

where x,yeR3 are the positions of the particles and y,6e{—1, +1} are their
charges. The potential v, is a short range potential depending on &. As ¢ tends to
0, v, tends to zero. [The precise meaning of this statement is given by hypotheses
(H1) and (H2) in Sect. 6.]

v(x,7;y,0)= +0,(x,7:,6), 2.1)

1
The potential ' ! is the kernel of 7 where 4 has free boundary
x— —

conditions. Physically this means that the box containing the particles is an
insulator. Our results are true for other boundary conditions, e.g., Dirichlet and
periodic. The kernels of operators involving A are simplest with free boundary
conditions, so we use free boundary conditions throughout this paper. We leave it
to the reader to check that our proofs work for other boundary conditions.
Two examples of v, are
I. Hard cores:

) _Joo il x—y<2celp,
0l%73,0)= {O otherwise. (22)
II. Yukawa potential :
exp(—|x—yl/coel 1)
0,73y, 0) = —yd i 2 VT, 23)

4r|x—y|

¢, is a constant. £} is included in the definitions so that ¢, will be dimensionless.
For a volume ACIR? the grand canonical partition function is

Z(A)= 2 Z— Z jd"xeXp[ BU (X150 X3 Vo oemr V)] - (2.4)

Visees¥n 4

Each of y,,...,7, is summed over *1, and

[dx= [dx,... [dx,.
A4 A A

The potential energy is

UpXps oo X3 Voo W)= 0 00X 735%57))-

1Si<jgn
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The pressure is

1
P(A)= Tmlog[Z(A)] R 2.5)
where |A]| is the volume of A.
The correlation functions are
[2¢] Zn
(m)(yla" aym5 . 5 ) ZmZ(A) Z ;l_ z

Yisee05¥n

(A xeXPL = BU o (X1 oo X V1o o5 Y3 Vs v s O 203 O) ] s (2.6)
1

where y,, ..., ),, are distinct points in R* and 4,,...,6,,€ {—1, +1}.
Because of the charge symmetry the two species have the same density (average
number of particles per unit volume). It is given by

o(d)=— [dyeP(y; £1). @27
IAI 4

We will denote the infinite volume limits of the pressure, correlation functions

and density by the same letters without a A. For example,
P= lim P(A). (2.8)
A~ R
For simplicity we take the volumes A to be boxes with the ratios of the dimensions
of the boxes bounded as 4—IR3.

Lebowitz and Lieb [10] established the existence of the infinite volume limit of
the pressure and density. For certain choices of the short range interaction v, the
existence of the infinite volume limits of all the observables was proven by
Frohlich and Park [6]. With Dirichlet boundary conditions and an essentially
arbitrary short range interaction v, these limits were shown to exist by Brydges
and Federbush [2]. The existence of some infinite volume limit can always be
established by a compactness argument.

3. Results

In the theorems of this section the short range potential v, can be given by either of
our two examples, (2.2) and (2.3). These theorems are true for other choices of v,.
We state the hypotheses that v, must satisfy in Sect. 6. In all the theorems of this
section the infinite volume limit is taken before the ¢—0 limit.

The first theorem says that the pressure is asymptotic to its Debye-Hiickel
approximation.

1 1
Theorem 3.1. T —P~274+ — o 53 in the sense that

1 1
lim|-—P—2z{/3=——.
lm[kTP 22] = 1an

£—0
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The correlation functions are also asymptotic to their Debye-Hiickel
approximations.

Theorem 3.2. Let y,, ..., ), be distinct points inR* and é,, ...,8,,€ {— 1, +1}. Then
(m) m -2y-1 Bm
Q" Vys s Y3 Opr s )~ 2 1=B Y 8 0(—A+(57) (y,.,yj)+8
1si<jsm )

in the sense that
: /D (m) . m
21_{% W[Q ViZps s Yul 930155 0,) — 2]

- m
== ¥ 05—+ 'y + g

1Si<jsm
Finally, the density is asymptotic to its Debye-Hiickel approximation.

1
Theorem 3.3. o~z+ E/ 5> in the sense that

1
lim (60— 2)/3 = ——.
81—1*1(1)(0. Z) D 16x

4. The Sine-Gordon Transformation and Mayer Expansion

Following Brydges and Federbush [2] we will apply the sine-Gordon transfor-
mation to the long range part of the interaction and use a Mayer expansion for the
short range part. The details of the Mayer expansion are in Appendix A.

We split the Coulomb interaction into long and short range parts. They are

1 —exp(—Ix—yl/utp)
dn|x—y|

UL(X,)’JJ’, 5)=V5 s (41)

exp(—Ix—yl/utp)
dn|x—y|

vy(x,7;y,0)=70 4.2)

So v=v, +vy +v,. We denote the total short range interaction by vy
vg=vy+0,. (4.3)

The function

_ 1—exp(=Ix—yl/ufp)

C(x,y) Al —]

is the kernel of the positive operator

1 1

T

4.4)
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Hence there exists a Gaussian process with covariance C(x, ), i.e., there exists a
probability measure du and a Gaussian random variable ¢(x) for each xeIR?® such
that [dud(x)¢(y)=C(x, y). See pp. 16-17 of [12].

The partition function can now be written as Z = [duZ(¢), where

R R P P

Plseeos Yn A i<j

}, 4.5)

with
vs(i, ) =05(x;, 75 %,7)),  Z=zexp(B/8nusy). (4.6)
Z(¢) is a partition function with a convergent Mayer expansion
2¢)=exp| 3 K,(0)] @7
n=1

See (A.1) and (A.4) for the definition of K (¢).
The correlation functions are given by

QD15 eos Y3 0o s B) = Z(A)” ""jdunexp[zlf B30 )1Z(¢), (4.8)

where
Z@)=e* 3 5T [ewew{-p| T ui
+ Z Alx,7,)— —i— Z v,¢>(x)} (4.9)
51 B i1
with

E= z Us(yi,(si;yjaaj)9

1Si<jsm

. (4.10)
Ax, )= ), vs(%,7:9,0)).
j=1
Z(¢) is also a partition function with a convergent Mayer series.
Z($)=exp| —BE+ Y. K,(9)|. (4.11)
n=1

K ,(¢) is defined by (A.1) and (A.5).

Using the results of the sine-Gordon transformation we can give a non-
rigorous derivation of the Debye-Hiickel approximations for the pressure, density
and correlation functions. We will let u—0 as e—0. Then v, —0, and hence v3—0.
For n22, K,(¢) contains at least one factor of vg and so—0. Thus the important
term in the Mayer series is K, (¢).

We have

K, (¢)=2z { dx:cos[)/B(x)]:. (4.12)
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The normal ordering : : is defined by the requirement that : : be linear and the
equation

2
exp(2¥P): =exp(—— %jdﬂ?’z) exp(a¥),

where «eC and ¥ is any Gaussian random variable (see pp. 9-11 of [13]). In
particular

:2(x):=*(x)— Clx, x).

4.13)
:cos[ ]/B(ﬁ(x)] i=exp [g C(x, x)|cos[ ]/Eqﬁ(x)] .

In units with 7,=1, f=¢ and so f—0. Hence K (¢) should be approximately

K1(¢)222£dx 1—§Z¢2(x):}. (4.14)
Thus
1 1
ﬁP(A):22+ [71—[10g {j du exp{—%/;zjji dx:P3(x) ]} (4.15)

The Gaussian integral in (4.15) can be calculated. We will show in the proof of
Theorem 3.1 in Sect. 6 that

L

L 1
lim lim _1y-2 c 2000 — -3
40 4ogs [A] log{fduexp[ 15 /j‘dx.qb (x).}} 12”&’0 )

. 1
So we have the Debye-Hiickel approximation k—lf P~2z+ mi b

For the correlation functions we note that as vg—0, K,(¢)~K ($). So using
4.14)

001w Y3 Os oo ,) 2 Z(A) 2" [t T] explil)/BS 93]

-exp{2z£dx 1- §:¢2(x): }
=i"[dp lfl1 exp[[i}/B;6(»)1. (4.16)

where dji is a Gaussian measure whose covariance in the infinite volume limit is
(C™1+¢5%) 7 !(x,y). Some computation shows that as u—0 (4.16) is approximately

Plf T 86— Atl5) )t ],

1si<jsm 8nt,

This is the Debye-Hiickel approximation for the correlation function o™. The
Debye-Hiickel approximation for the density follows from the case of m=1.
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5. Correlation Inequalities

The sine-Gordon transformation introduces measures of the form %d))d,u, where
Z(¢) is given by (4.5). We will define a class of measures which includes the above
measures. Then we will prove some correlation inequalities that allow us to bound
the moments of these measures. Our techniques are reminiscent of those of
Frohlich and Park [6]. These bounds will be used in the next section in our proofs
of the theorems of Sect. 3.

Our correlation inequalities hold for any Gaussian process. To state them in
their full generality we will make use of the idea of a Gaussian process indexed by a
Hilbert space (see pp. 15-20 of [13]). The reader who is not familiar with such
Gaussian processes should see Remark 1 below. Let 5 be a separable real Hilbert
space with inner product (,). Then the Gaussian process indexed by # consists of
a measure space €2, a probability measure du and a linear map ¢ : # — L*(du), such
that for each ge #; ¢(¢) is a Gaussian random variable and [dud(e)¢d(e’) = (g, ¢') for
0,0'e A

In our applications of our correlation inequalities the Gaussian process will
always be the Gaussian process of Sect. 4. This Gaussian process is equivalent to
the Gaussian process indexed by the Hilbert space # consisting of all distri-
butions # on IR* whose Fourier transform # is a function with

- 1 1
”/”2=jd3k[/(k)|2 2 W <o

Let 6, be the delta function centered at x. Then ¢(d,) is equivalent to the random
variable that was denoted ¢(x) in Sect. 4.

Definition 5.1. Let # be a real Hilbert space. Let (Q,du, ¢) be the Gaussian
process indexed by # We will say that a measure { ) defined on Q is a sine-
Gordon measure if it can be written in the form

CF(@)) = [duF(¢)fdv(o)expLid(0)], (5.1)

where dv(g) is a finite positive measure on #. Furthermore the dv measurable
subsets of S are such that ¢(-) is a jointly measurable function on Q x #, and
dv(p) is normalized so that

ay=1. (5.2)
Z(¢)

Remarks. 1. In our applications the measure < > will be of the form 7 du, where

Z(¢) is defined by (4.5). This is a sine-Gordon measure. The measure dv(g) can be
thought of as a measure on the configuration space

D ®x {1, +1}y.
n=0
Given 9=(X;,7;5 5% Yk

#0= 3 1905).
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And if ¢'=(y,,0,;...; Vs O)> then

(0.0)= -21 Zl 7:0;C00x;, ¥;)-
i=1j=
The reader who is unfamiliar with Gaussian processes indexed by a Hilbert space
can follow our proofs by interpreting ¢(g) and (g, ¢') in this fashion.

2. In general sine-Gordon measures are complex measures. In the example of
the preceding remark the sine-Gordon measure is positive. This follows from Eq.
(4.7) for Z(¢) and the fact that the K,(¢) are real. They are real because of the
charge symmetry of the system. We will make frequent use of the positivity of this
sine-Gordon measure. This is why our techniques only work for charge symmetric
systems.

3. The assumption that ¢(-) is jointly measurable on Q x J# insures that the
integrals in (5.1) are defined. Given a Hilbert space # there exists a version of the
Gaussian process indexed by # which is jointly measurable when the measurable
subsets of # are taken to be the Borel sets. (For a similar theorem see pp. 60-62 of
Doob [5].) So if dv(g) is a Borel measure on # then the joint measurability
assumption of the definition is satisfied simply by choosing the right version of the
Gaussian process. This is the case for all the sine-Gordon measures we use in
Sect. 6.

Theorem 5.2. Let { ) be a sine-Gordon measure, o€ # and acR. Then

{cosh[ag(0)]) < jducosh[ag(o)], (53)
and [9]
(—=1):¢*"(@):> 20. (5.4)
If <> is also positive, then
(p*(0)) =d [[dud*(@)]1"=d,lel*", (5.5
and
(=19 :> =d [[dud*()]"=4d, llel*", (5.6)
where
2n)!e"
4, =20 57

Proof. To prove the first inequality (5.3) we begin with the calculation

fducosh[ag(e)] expLip(e')] =exp [%— (0.0 —3(0, e’)} cos[afg,0)].  (5.8)
This implies
Jacosh (@] expia@)] Sexp |5 (0. 0)- 3. )|

={Jducosh[ag(e)]} {Jduexpig(@)]}.  (5.9)

Integrating this inequality with respect to dv(g’) we obtain (5.3), since (1) =1.
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To prove the second inequality (5.4) it suffices to show
(=1)"fdp:¢*"(0): expLid(e)] Z0.
This integral equals
(e.¢)*"exp[—3(¢’, 01120,

which proves (5.4).
Now we assume that ¢ ) is positive. Then

(xZn . @ 2m m
Gt PTGy (4@
={cosh[ap(0)]>
< [ducosh[ag(o)]
2
=exp [% (o5 Q)} .

The third inequality (5.5) follows by taking

1 -1/2
o= [2—,1(9, e)] .

To prove the last inequality (5.6), note that by (5.4) each term in

© a2m

Ceosfap@] D= Y ——(=1)"¢:6*™(@)>

m=0 (2m)!
is nonnegative. So
aZn

@)l (= 1)"C:92"():> =< :cos[ag(e)] )

“2
~exp| 0.0 osldt@)

<exp

aZ
-2—(Q9 Q)} )

T. Kennedy

(5.10)

(5.11)

(5.12)

(5.13)

where the last inequality uses the positivity of { >. Now choose « as before. []

Remarks. 1. Frohlich and Park [6] proved inequality (5.4) for n=1 for a certain

class of sine-Gordon measures.

2. Inequality (5.4) can be used to prove a lower bound on the partition

function and hence on the pressure for a special choice of v, (see [9]).

6. Proofs

In this section we prove the theorems stated in Sect. 3. We begin by giving the
hypotheses that v, must satisfy for these theorems. Both of the examples of v, in

Sect. 2 satisfy these hypotheses.



Debye-Hiickel Theory 279

We assume that v, =v? + 0], where 1] is repulsive, ie.,
v (1)) 20, (6.1)

and v satisfies the stability bound

Y Do)+ o6 ]z — 2

1gi<jsn {D

(6.2)

for u>e. B(e) is a positive function of e.

We assume that ¢ is independent of the charges of the particles, and v is
unchanged if the charges of both particles are changed, ie., vl(x,7y;y,0)
=v2(x, —y; ¥, —90). Introduce the norms

logll, = sup 2 fdxlvg(x, 75y, 0.
»o y

lozll, = sup Y fax{1—exp[—Bvi(x,y;y,0)1}, (6.3)
¥, b4
logll, = sup [Zf dx|v2(x, 73 Y, 5)12]” 2,
0 |y
Note that
logll, =2u¢3, 6.4)
_(#p\"
oyl = ( v ) . 65)

Hypotheses (H1) and (H2) below say how fast v, must —0 as ¢—0. (H3) says
that we have a uniform stability bound as ¢—0. (H4) and (HS) are weak hypotheses
of a technical nature. ¢, is included in the hypotheses in various places so that the
inequalities will be dimensionless.

Hypotheses on v,:
(H1) There exist c;,0,>0 such that

S A -
(H2) There exist c,,6,>0 such that

25200 Sc,et T
(H3) There exists B such that

¢B(e)<B.
(H4) There exists ¢ such that
L5V, S ey

(HS) For x=*y

zi_{%vg(x,y;y,é)=0.
In Appendix B we verify that the two examples of v, given in Sect. 2 satisfy (H1)

through (HS5). Using the bounds of Appendix A we see that (H1) through (H3)
imply that the Mayer series of Sect. 4 converge for sufficiently small ¢ and u.
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Dimensional considerations suggest that the theory should be invariant under
the scaling B—B/¢, z—z£3, v,—v%, with v/(x,y;y,8)=Cv,(¢x,7;£Y,0)

1
A—’2A,

Yi=Vilt,

%P—» %P{“, (6.6)

o—ol3,

Q(m) - Q(m)/Bm .
Here %A = {%x : xeA}. This invariance is easily checked by a change of variables

in the integrals which define the observables.

In our proofs we will “work in units with £, =1.” This simply amounts to
carrying out the above scaling with £ =¢, since #,,—7 /¢ under the above scaling.
Hypotheses (H1) through (HS) were stated in a dimensionless way. Thus they will
continue to hold after the scaling (6.6). In the future we will write v/ simply
as v,

Notation. Following the notation of field theory we will let ¢ denote a point in the

measure space on which the Gaussian process is defined. F(¢) will be a function on

this measure space, and sup [F(¢)|, the supremum of |F| over the measure space.
¢

We will use O(¢f) and o(¢”) to denote quantities that are O(¢?) and o(e?)
uniformly in A. o(A) will denote a quantity that -0 as A->R3. ¢, ¢, and § will
denote positive constants. The ¢, ¢’ or J in one equation is not necessarily the ¢, ¢/
or ¢ in another equation. However, c,, c,, ¢,, and ¢, do not change from equation
to equation.

We will often suppress the argument in integrations with respect to Lebesgue
measure on R3. For example

fdx :cos[ /B dp(x)]:=] :cos[l/[_fqﬁ]:,
Jdxp(x)(= 4p)(x)= fw(— Dyp.
Proof of Theorem 3.1 (The Pressure). In units with £;,=1 the theorem becomes

_ L (6.7)

!
lim|—P—-2z o

&0 [kT
Recall that P is the infinite volume pressure. We will work with the finite volume
pressure P(A) throughout the proof. At the end we will take the infinite volume
limit. Our estimates will be uniform in A and so continue to hold in the infinite
volume limit.

We will let u—0 as e—0. Then vg will =0. For n=2, K,(¢) contains at least one
factor of vg and so will =0. We would like to let p—0 fast so that K,(¢)—0 fast.

1
However, C(x, x)= ﬁ So C(x, x)— oo as u—0. Thus our bounds on moments of
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sine-Gordon measures from Theorem 5.2 will be useful only if u does not —0 too
fast. We let

/t=81/4+6" , (68)

with 0<4,<1/4.
We split the proof into two steps. In the first step we estimate the difference

between —I—P(A) and ——P(A) with vg=0. Setting vg=0 is the same as setting

K, (¢)=0 for nz2. In the second step we estimate the error made by replacing

:cos[VE¢(x)]: by 1— lzi :p%(x): in K,(@).

Step 1 (The Short Range Interaction). Define an interpolating function on [0, 1]
by

1) = [duexp [K1<¢>+ ) s"K,.<¢)}. (69)

Then I(1) is Z(A) while I(0) is Z(A) with vg set equal to 0. We estimate log[I(1)]
—1log[I(0)] by bounding the logarithmic derivative of I(s).
Define a measure by

CF@, =1 [duF@)exp | K, @)+ T 9K, (0)]
Then
0 _ /%
) <n; ns" 'K (¢)> (6.10)

Since K, (¢) is real, { ), is a positive measure. We claim it is a sine-Gordon
measure. Write

exp|K,(8)+ 3, 'K ,(¢)] =exp[(1—K, (@] exp

5 0]

The second factor on the right hand side is Z(¢) with Z replaced by sZ. So by (4.5) it
is of the form {dv(g) exp[i¢(g)]. The first factor on the right hand side is Z(¢) with
vs=0and  replaced by (1 —s)Z. So it is also of the form [dv'(¢") exp[i¢(¢')]. Hence
their product is [dv(g) [dV'(¢')exp[id(¢ +¢')], which proves the claim.

For n=3 we simply bound K, (¢) as in Appendix A. Using hypotheses (H1),
(H2), (H3) and our choice of u Egs. (A.7) and (A.8) become

K (@) <ce” " A, (6.11)
with
r=c[2e'2% 2% ¢ gl *hy ol O],

Hence

¥, ' K )= 0. 6.12)
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When n=2 there is only one # and

1 u(1,2)
=vy(1,2)+0°(1,2)— - ————.
() =0y(1,2)+01(1,2) = 5
The previous argument shows that the second and third terms contribute O(¢°)| A
to |K,(¢)|. The vy term requires a new argument.
Define

pz?
2

fds Y, [d*xvy(1,2)exp{—tPs[vy(1,2)+v2(1,2)]} U(o) cos (¢ [/[—M)) ,
e (6.13)

with =79, ¢(x,)+7,¢(x,). Then the term to be bounded is g(1,¢). By the
hypotheses on v,, U(0) is independent of y, and y,. But

Y vy(1,2)=0.

V1,72

g(ta ¢) =

So (0, $)=0.
Hence

Y
g(1’¢)_ E’;dtg—i(t’(ﬁ)

bz fds Y. [ d®xvy(1,2)exp{—tPs[vy(1,2)

2 Y1,72 4

1
=[dt
0

+02(1, 213 U(0) {BsLvy(1, 2) + v2(1, 2)] cos(t )/ B P)
+|/B®sin(t])/BP)} . (6.14)
Our goal is to bound {K,(¢)>,. So we need to bound {g(1,$)>,. Use
[<cos(t]/BP)<1. (6.15)
Since |sin(x)| =|x|, Theorem 5.2 and the choice of u (6.8) imply
IKY/B@sin(t)/ B B(P?,
Scedl40, (6.16)

where 6, <1/4.
Next we bound the integrations over x using hypotheses (H3) and (H4), Egs.
(6.4) and (6.5), and the Cauchy Schwartz inequality. The final result is

KK, (9)>,l=0@E) 1Al (6.17)
Equations (6.10), (6.12), and (6.17) imply

[17[|log[1<1)1—log [I0)]| = 0(&).

So

1

7 PU)= log{Jduexp[K, (41T} =06 (6.18)
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Step 2 (The Long Range Interaction). Define a second interpolating function on

[0,1] by
Z(t)=exp(2z|Al) [ duexp {22t—2£[:cos(tl/ﬁ¢):— 1]}.
Then
Z(1)= fduexp[K,(#)],
and

“113 Z(t)=exp(2z|Al)[duexp <— 1/2 [ :¢? :),

by a dominated convergence argument
Let

CF(@)),=N(t)™ ' {duF(¢)exp [ZZt" 2 £ :cos(t]/B ) }

where N(z) is defined so that { ), is a probability measure. Then
Z'(t) d., _, >
Z\J -1
70 < o2t j [:cos(t])/B¢):—1]

Expanding :cos(tVE¢): in a power series this

2n—3n
I e

Using Theorem 5.2 and the choice of u (6.8) this is

<2z|4 Z (2n—2)p" 2n"n<ﬁ)n

=0(e%)|4].

Hence
L log[Z(1)]—log [lim Z(t)” =0(&’).
4] =0
Combining (6.18), (6.20), (6.21), and (6.24) we have

—P(A) 2z— mlog[[d,uexp(— 1/2/]1 P2 )}1 =0(&).

Since the O(¢%) is uniform in 4 we can let A—~IR3, One can show

hm mlog[fd,uexp( 1/2j:¢2:)]

1

1 1 1
3 _ PR ——
2(271)3 22734 {kl B2 o8 <1 R 2)}

(6.19)

(6.20)

(6.21)

(6.22)

(6.23)

(6.24)

(6.25)
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(See pp. 175177 of [7] for a similar calculation.) A dominated convergence
argument shows that as u—0 the above

—} ;
2(2m)3

which completes the proof. [

[k

1 1 1
e —10g<1 + ﬁ)} =1’ (6.26)

Proof of Theorem 3.2 (The Correlation Functions). The key idea is to do a
complex translation ¢—>¢+i]/[?1p in the functional integral expression for g™,

where i]/Ew is the stationary point of this integral. We will take m=2. The proof
of the general case is essentially identical.

Throughout the proof we will work with finite volume correlation functions.
We estimate the difference

B

1 _
;2—[@(/12)~—22]+ﬁ5152(—d+1) l(ylaYZ)" E

Our estimate is a sum of two terms. One goes to zero faster than § uniformly in A.
The other term goes to zero as A—IR3. So taking the infinite volume limit of our
estimate proves the theorem.

We let

p=gl2*o, (6.27)

with 0<d,<1/6. As always we work in units with Z;,=1. The proof is broken up
into seven steps.

Step 1 (Complex Translation). Let C be the covariance operator of du (4.4). Let
K=(C™*+1)" % Let

p=K(6,6, +6,5,,), (6.28)

where ¢, is the delta function centered at y.
With

1
mh = 5 a4,

1 1 (6.29)
—(1_dy2\—1/2 _ .
K=(1-47) —A+m®:  —A+m?
So K has kernel
K(x, y)=(1 — d4u?)~ 172 exp(—m_[x—y)—exp(—m.[x—)) (630)

4n|x —y|
and

p(x)=0,K(x,y;)+3,K(x,y,). (6.31)
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We will need two bounds on y(x). Since K(x, y) is a positive definite function
IK(x, y)| < sup K(w, w)

S, — M

(14,21
(1—4p*) i

IIA

1
2mu
for sufficiently small u. As u—0, m_—1, so (6.30) implies

exp(—Ix—yl/2)

<
IKGe IS 0

for sufficiently small u. Thus

[w(x)| = i, (6.32)
T

exp(—Ix—y,1/2)  exp(=Ix—y,|/2)
[w(x) = P — P

(6.33)

for sufficiently small p.

We perform the complex translation ¢(x)—>¢(x)+i1/[§w(x) in the functional
integral for ¢?’ [see (4.8) and (4.11)]. The result is

@f>(y1,y2;61,52>=Z<Arlzzfduexp{-ﬂE+i1/E[51¢<y1>+62¢(y2)1
—BIS,w(y,) +6,p(,)] + ;1 R (p+i)/Bp)—i)/BfopC 'y

+E e ). (634

(See p. 171 of [7] for a discussion of translations in Gaussian measures.)
Using the definition of y (6.28)

QP 2301,0,)=Z(A)” 2% exp(A+ S)[duexp[R(¢) +il($) + K(¢)], (6.35)

where
A=— g[(slw(yl)mzw(yz)] + gtc(yl,y1)+ Cl2 ¥l

S= “ﬂE+2Zf[Cosh(ﬁw)- 1- %jwz] - g [ v,
A=R3\A,

R@)=Re| 3 Ro(d+i)/Bv)| — 3 K (@) =2z [cosh(By)—1], (6.36)
n=1 n=1 A

166)=1m| 3. R 6+i)/Fw)| + 1/ lov,

K(¢)= i K,($).
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Note that Z(4)= [duexp[K(¢)]. The definitions are arranged so that z*exp(A)
converges to the approximation while S, R(¢), and I(¢) converge to zero.

Step 2 (Computing A). Using (6.31),

A== B3,6,K 0,72+ B 1001y~ K0y 1)+ €Oy~ KO 1),

As u—0, m,_ — o0, and m_—1. So

CXP(“’yl—yzl)

47le1—y2[ =(—A+1)_1(y1,y2)~

K(y,,,)~

1
A little work shows C(y, y)— K(y, y)— i Thus

A=—PB3,5,(—A+1)" 'y, y))+ ;5; +0(e). (6.37)

Step 3 (Bounding S). We want to show that § is o(¢)+ o(A4). From (4.10),

E=Us(y1,51 ;}’2,52)=0y(y1,51 ;yZ,52)+Ug(y1,51 ;y;péz)‘

The first term —0 as u—0. The second term —0 as ¢—0 by hypothesis (H5).
The bounds (6.32) and (6.33) can be used to show

2z fcosh )1 — B y2| s cap |

A
Sclzﬁ5/2§w5/2
4

=0(e*?).
Finally,
b fp?—>0 as A-R3. (6.38)
2 4
Thus
S=o(e)+o0(A). (6.39)
Step 4 ( Bounding Kn(¢+i[/ﬁtp)-—Kn(d)) ). In this step we show that
Y IR, (@ +i)/Bw) =K, (®)=0(). (6.40)
n=2
We apply Lemma A.1 of Appendix A with
i
V(X p)=— ﬁW(x), (6.41)

010, ) =7p(x) + A(x, ), (6.42)
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where
AX, 7)) =0g(X,73Y1,0,) +0g(X,735,,0,). (6.43)
Hypotheses (H1), (H2), (H3), the choice of 1 and Eq. (A.9) imply
¥=o(e), (6.44)
and
Y. fdxlexp[ — BA(x,y)] — l|=o0(e?). (6.45)

?

Bounds (6.32) and (6.33) imply
Y [dxlexp[ — Byy(x)]—11=0(). (6.46)

From (6.32), (6.45), and (6.46),
. Jaxlexp[— v (x,7)]—1|=0). (6.47)

Y

Lemma A.1 now implies

IK (¢ +i)/Bp)— K ($) < c20()[o(e)]"*
=coe)]" 1,

which implies (6.40).

Step 5 (Bounding R(¢)). We split R(¢) into two parts, R(¢)=R,(4)+ R,(9),
with

Ry($)=2z] [:cos(}/B¢): — 1] [cosh(Bw)—11,
Ry(¢)=Re[K (p+i]/Byw)]—2z £ :cos(}/B): cosh(By) (6.48)

+ Re{ i (R (p+i)/By)— Kn(¢)]} .

Using (6.32) and (6.33),
2z [ [cosh(By)—1|=0(e), (6.49)

$0
S‘;P IR (@)l =0(e). (6.50)

Using (6.45),
Re[R, (¢ +i)/By)]—2z | zcos( ]/Eqb) :cosh(By)
=z}, fdx :cos()/B¢): exp[—Byw(x)]{exp[ — BA(x,7)] - 1}

=z0(g?)

=0(g).
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Along with (6.40) this implies
sup IR, (@)l =0le). (6.51)

Step 6 (Bounding I(¢)). Let I(¢)=1,(¢)+ I,($)+ I,(¢) +1,(¢), with
1(#)=2z [/Bo— :sin(}/B):Isinh(By),
L(@)=2z] V/Bo[By—sinh(By)],
L@=VB | ¢v, (6.52)
L@)=21 | :sin(|/Bye): exp(—Byw) fexp[ — BA(x, )]~ 1}

+Im ;i R (p+i)/Bw)|.

The argument that proved (6.51) shows
sup [,(@)l =0le). (6.53)

Step 7. Define a probability measure by {F(¢))=Z(A)"'{duF(¢)exp[K(})].
Then (6.35) becomes

QD15 y5304,0,)=2*exp(A +S)<exp[R(¢) +il(#)]>. (6.54)
Equations (6.37) and (6.39) imply that the proof will be completed by showing
(exp[R(¢p)+il(p)]> —1=o0(e)+o(A). (6.55)

Since ¢ > is even in ¢ and I(¢) is odd in ¢,

<exp[R(¢) +il(¢)]> =<exp[R(¢)]{cos[I(¢)] -1} +{exp[R($)] - 1).
Using (6.50) and (6.51), proving (6.55) reduces to showing

exp[R(#)]> —1=0(e), (6.56)
and
Cleos[I(@)]— 1> = ofe) +o(4). (6.57)
Let
J©)=<exp[tR($)]>,
and
CF(@)>,= () 'CF(¢)exp[tR ()]
So

1
Cexp[Ry (P —1= (I) JOKR(9)),dt. (6.58)
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By (6.50)
suplf(t)=0(1).

0=t=<

So (6.56) will follow from
sup [KR,(#)>]=ofe). (6.59)

{ >, is a positive sine-Gordon measure. So Theorem 5.2 implies

I<:cos[[/Bop(x)]:— 1)) = i (ZB,:)!

0 ﬁnen ( 1 )n
<Y —(—]. )
= ,;1 2" \4np (6.60)

By our choice of u (6.27) this is O(!/?~%4) with §, < 1/6. Combining this with (6.49)
proves (6.59).
To prove (6.57) we use

lcos [1(@)] — 1| =Icos[1(¢)] —cos [, ()]l +|cos[1,(¢)] - 1]
SIL@) +15(0) + 1) +31,(4)*, (6:61)

which follows from |cos (ot +0) — cos ()] < |, |cos(8) — 1| <162 So (6.57) will follow
from

(1)< *"(x) ),

L@y =0(e)+0o(A) for i=2,3,4, (6.62)
(I4(9)*) =ole). (6.63)

{ > is a positive sine-Gordon measure so Theorem 5.2 and the Cauchy-

Schwartz inequality imply
e \1/2
<|—
VB = (o)

=0(1). (6.64)
Inequalities (6.32) and (6.33) imply

2z /§1 lsinh(By) — By|=ole). (6.65)

These two bounds imply (6.62) for i=2.
Using (6.64),

5> =0(1) J lpl=o(4), (6.66)

which proves (6.62) for i=3. The case of i=4 follows from (6.53).
To prove (6.63)

Aesin[)/Bo(x)]:— [/ BP0}
= ({[exp(B/8np)— 1] sin[ |/ Bp(x)] +sin[ [/ B(x)]— |/ Bd(x)} 2

= ({texeprsmo—11y/ioor+ 2w ). 667
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using [sin(0)| <(6), [sin(0) — 6] <1|6]>. By Theorem 5.2 the above is
ﬂ 3
0 ((;) ) =0(e¥27 3%), (6.68)

with &, <1/6. (6.32) and (6.33) imply

2Z£ |sinh(By)|=0(1).

Combining this with (6.68) proves (6.63). [

Proof of Theorem 3.3 (The Density). The proof is almost immediate from the
proof of the previous theorem for m=1. We actually wrote out the proof for m=2,
but we will refer to it as if it were the proof for m=1.

Recall

o= lim — fdyePy; £1). (6.69)
|A| 1

In the previous proof we estimated a quantity like

Py, 1) —z— ﬁ

Our bounds on this expression were independent of A and y except for two terms.
They were (6. 38) f y2, and (6.66) {|I,(P)I>.
Using (6.66) it sufflces to show

—_— p_
hm lAl | dy fcdxlw(xl

for p=1,2. (Remember y depends on y.) This follows from (6.33) and our
conditions on how A-R3. [

Appendix A. The Mayer Expansion

All the Mayer series in this paper have the same two body interaction vg=uvy
+v?+v). They differ in the one body interaction v,. Following Brydges and
Federbush [3] these Mayer series are given by

( ﬁ)n 1,.,,

He)="————1[doft,0) ¥ [dxusln)

-exp[ — og(o)] U(o)eXp[—ﬁ_; X (A1)
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where
n—1
vs()= [T {or(i+1,n(@)+ v+ 1,n(9)
1 u(i+ 1,7(i)

B 1+ SuiySntiy+ 1+ - S+ 1,m(2)]”
u(i, j)=exp[ —pvj(i, ] — 1,
vs@= Y sSieqe8o Loy ) 402G T,

12i<jsn

Uo)= [] [1 584185 Ui, )],

12i<jzn

ds;,

© ey

n=1
fdo= ]
i=1

n—1

fn,0)= l—[z Sp@Sny+1-+-Si—1-
i=

291

(A2)

Empty products are taken to be 1. The sum over # is a sum over all functions

n:{1,2,..,n—1}—>{1,2,...,n—1}, such that
n@)=i.
The three Mayer series we use are as follows. K, (¢) is A, (v,) with

—i

vy (= Dy (xi: ')),-) = l/ﬁ yid)(xi) .

K () is #,(v,) with
U1(i) = l—;__ﬂl-

R (¢+i)/By) is #,(v,) with

7:P(x) + Z vs(X; 75 Vi 51) .
j=1

—i m
—=7%:9(x;) +y,9(x;) + Z Us(X3 i3 o 0 j) .

v, ()=
VB =
As shown in [3]
|4 w )| Szexp[Bllv, Il - +eBe)]2]Al" "1,

where

r=zfexp[1+B v, |- +eBE]1|llvyll, +lv;ll, + %IIUZII, ;

(A.3)

(A.4)

(AS5)

(A.6)

(A7)

(A.8)

[ 1, and || [, are defined by (6.3). ||v, || _ is the sup norm of the negative part of the

real part of v,. For each of our three Mayer series
Blivgll- =0(1).

(A.9)
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To see this note that the stability bound (6.2) with n=2 implies

B Y vs(x,7;y,0)2 —2meB(e) 2 —2mB
j=1
by hypothesis (H3). And vy is always such that ||fy]|| ,=0(1). The condition for
convergence of the Mayer series is r<1.

In the proof of Theorem 3.2 we need a bound on the difference of two Mayer
series.

Lemma A.1.
|0, +5,)— A, (v,)| S22 exp[Bllv, | - +eB(e)] Y. fdx
‘lexp[— B, (x, )1 = 1]()"" 1, (A.10)
with
r'=2[exp(Blv,]-)+1]r. (A11)

Proof. The difference between the two J£,’s is equal to the expression for £ (v,)
with the factor

ool -0 0]
included in the integral. We rewrite this factor as
[T texp[ o, -1+ 1)~ 1= ¥ [[{exp[-f01-1), (A1)

S*¢ ieS

where S is summed over all nonempty subsets of {1,2,...,n}.

Each term in this sum contains at least one factor exp[ —fv,(i,)]—1. We
bound any other factors of exp[— f7,(i)]—1 by exp(B |7, ]| )+ 1. Then we bound
the integrations over x in the usual way except that we bound the integration over
x;, last. (Think of i, as the base of the tree graph #.) This last integration gives a
factor of

Y Jdxlexp[—Bv,(x, v)]—1].

Since (A.12) has 2"—1 terms, the lemma follows. []

Appendix B

In this appendix we verify that the two examples of v, given in Sect. 2 satisfy
hypotheses (H1) through (H5) of Sect. 6.

1. Hard Cores (2.2). Let
v=v, v'=0; (B.1)
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(H1), (H2), (H4), and (HS) are immediate. Unfortunately (H3) is not true. We must
replace our system with an equivalent one in which (H3) holds.

We do this using a generalization to the Yukawa potential of Newton’s
theorem for the Coulomb potential. Let |x, —x,|=2c,e/,,. Then the potential
energy due to the Yukawa potential

exp(—Ix—yl/utp)
4r|x—yl

(B.2)

of charges y, and y, at x, and x, is equal to the potential energy due to this
Yukawa potential of two spheres of radius cye/;, with centers at x, and x, and
total charges §, and 9, distributed uniformly on their surfaces, where

X Cof
Y= 0 et Vi
usinh(—o——)

U

Thus we can redefine vy (x,,y,;x,,7,) to be the potential energy due to the
potential (B.2) of two spheres of radius c,&/}, at x, and x, with charges $, and },
uniformly distributed on their surfaces. For the long range part of the interaction
v, we still treat the charges as point charges. So the sine-Gordon transformation is
not affected by our redefinition of vy.

vy is positive definite so the stability bound (6.2) holds with ;} equal to 1/2 of

D
the self energy of these spheres. (H3) follows by computing this self energy.

Since we have changed the definition of v, we must recompute ||vy |, and [lvy|l,.

We leave it to the reader to check that these norms behave essentially as before.

I1. Yukawa Potential (2.3). Let v{=v,, v;=0; (H1) and (HS) are immediate. (H2)
and (H4) take a little calculation.

We can assume that u>c.e, since in the proofs é—0 faster than u. Hence
vy +1? is positive definite. (H3) follows by computing v(i, i) + v2(, i).
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