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Quasi-Particles at Finite Temperatures

H. Narnhofer, M. Requardt*, and W. Thirring
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Abstract. We study the consequences of the KMS-condition on the properties
of quasi-particles, assuming their existence. We establish

(i) If the correlation functions decay sufficiently, we can create them by
quasi-free field operators.

(ii) The outgoing and incoming quasi-free fields coincide, there is no
scattering.

(iii) There are may age-operators T conjugate to H. For special forms of
the dispersion law ε(fc) of the quasi-particles there is a T commuting with the
number of quasi-particles and its time-monotonicity describes how the quasi-
particles travel to infinity.

1. Introduction

In this paper we shall explore the hypothesis that the elementary excitations of an
infinite quantum system in a KMS-state consist of quasi-particles. The many-body
folklore is full of these objects like phonons, magnons, plasmons, solitons, cooper-
pairs etc. and there is some empirical evidence for their existence [1]. Landau [2]
based his theory of quantum liquids on this assumption but to our knowledge the
consequences of the KMS-structure for their behaviour has not been worked out
as yet. The physical idea is that although the equilibrium state provides a
complicated background of interacting particles like the vacuum in quantum field
theory a local disturbance will spread out to infinity like wave-packets in
elementary quantum mechanics. Mathematically this is reflected by the spectrum
of energy and momentum. For a fixed momentum k the energy spectrum is
assumed to consist of a pure point spectrum ε(k) plus a continuous background. In
contradistinction to relativistic quantum field theory where Poincare invariance

requires ε(k) = ]/m2 -ffc2, we don't have any a priori knowledge about the function
ε(/c), but assume that it behaves reasonably.

* Permanent address: Institut fur Theoretische Physik, Universitat Gδttingen, D-3400 Gottίngen,
Federal Republic of Germany



248 H. Narnhofer, M. Requardt, and W. Thirring

The most immediate manifestation of quasi-particles is their influence on the
correlation function. They will decay in the directions x = vt as t ~ 3/2 like the wave-
packet of a nonrelativistic particle. This follows from the method of stationary
phase [3] which tells us that for x = v£, ί->oo,

- ωί){/(k)<5(ω - ε(/c)) + continuous background}!

~(ε"(kQ)tΓ3l2\f(kQ)\ +something decaying faster. (1.1)

Here k0 is such that k0 v = ε"(fc0).
The next task is to separate out the field operators responsible for the one-

particle tail. The standard procedure is the following. Take a bounded field
operator ,4ej/, for instance a fermionic creation operator smeared with a CQ-
function. Take its space-time translates A(x, t\ integrate with a function g(x, t)
which is of the form (1.1) with the ^-contribution only and consider αιn (/) the limit

out

ί-> ± oo of \d xg(x, t)A(x, t). When applied to the cyclic vector |β> representing the
equilibrium state this operator will create one quasi-particle with a certain
p-distribution determined by / Now a striking difference between a KMS-state
and the ground state |0> appears [4]: ^•m(f1)am(f2)\0y represents two quasi-
particles with momentum distributions corresponding to /x and /2 for ί-» — oo,
they will differ from #0ut(/ι)αout(/2)|0)> where this distribution appears for
ί-> — oo. In contradistinction in the KMS-representation cιQUi(f} = ain(f\ in partic-
ular αin(/1)αin(/2)|O> = αout(/1)αout(/2)|β> and asymptotically the same distribution
reappears. The formal reason is that |β> is cyclic for the commutant {j/}' and thus
^in(/i)l^> = «out(/i)l^> implies αln(/1K|0> = αout(/1H

/|Q> V4'e.< i.e. the action
of aoui and ain on a dense set of vectors are the same. Physically this is not
unexpected and is reminiscent of considerations in kinetic theory. One knows that
the KMS-state is characterized by having unit scattering matrix if one introduces a
local external perturbation. Our result shows that S = 1 holds in the quasi-particle
sector.

By construction the asymptotic fields am have a time dependence like free
out

particles and to complete this picture we demonstrate the following properties :
(i) Their commutator (or anticommutator) is a onumber.

(ii) Their truncated n-point functions taken with |β> vanish for n ̂  3.
(iii) The field algebra factors {$0 }" = j/0® 3%, where j/0 is generated by the am

out

and ^C{<£/0}' and j/0 and & are space-time translation invariant.
Our general consideration says nothing about the remainder .̂ Of course,

there may be other quasi-particles with ω^ε^/c) and iterating the construction we
would obtain {j/}// = tβ/0(χ)j/1(x)J>

1. The problem of asymtotic completeness in
quantum field theory, i.e. whether in this way {j/}" can be exhausted, is a very
deep one and only few results exist [5]. In physical terms it amounts to the
following. In perturbation theory the interaction will either change the dispersion
law of quasi-particle excitation or they may decay into others. They, in turn, may
decay again and the question is whether there are some ultimate excitations the
decay of which is prevented by conservation laws or whether the fragmentation
keeps going on forever [1]. Since our intuition draws from perturbation theory up
to a certain order, we never touch the latter possibility and therefore know nothing
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about it. What we will do is to investigate what remains of our results if the quasi-
particle picture is not exact but only approximate in a certain sense.

The asymptotic fields am correspond to what is called in field theory the

dressed particles, and typically they are strong limits of nonlocal polynomials in
the operators referring to bare particles. This means they will not belong to stf but
at least to j/". If we want to construct the standard creation and annihilation
operators of dressed particles another difference to the ground state appears.
Though a m are supported at ω = ε(k\ the energy of an infinite system at finite

out

temperature is not bounded from below, local perturbations may have positive or
negative energy. Speaking in physical terms a m may create a particle or annihilate

out

a hole. There are operators αf (or ft1") referring only to particles (or holes) but they
are not constructed from {<£/}" alone but also from {stf}'. This means that they
depend on the representation and are different for different temperatures. The
observables am do not distinguish between creation of a particle and absorption

of a hole. In terms of αf and fof the part of the Hamiltonian referring to quasi-
particles assumes the standard form

_ j " /, \ (Λ(1Λn1*(JΛ _/i — j 3 b{K)(a {K)a \K)

The symmetry between particles and holes, α1 <-> fcf, H «-» —H reflects the
symmetry {«$/}' <->• {stf}" characteristic for the KMS-representation.

Our results so far tell us that the Landau theory works whenever the Haag-
Ruelle theory works. If this is the case our results have some bearing on the theory
of time monotonic operators and ^-systems developed by the Brussels group
[7, 8]. Since we arrived at an explicit representation for the Hamiltonian it is easy
to see that the so-called age operator T can be easily constructed if the function
ε(k) has certain properties. The existence of a Liapunov function, i.e. operators
which increase monotonically with time, is not prevented by time reversal
invariance, as long as they are not even under time-reversal. A simple example is
furnished by D = (x p) for the free time evolution. There we have D = p2^Q, both
classically and quantum-mechanically. If one wants more specifically an operator
T conjugate to the Hamiltonian [H, T] =i, this puts more stringent restrictions on
the dynamics. Of course, for the Heisenberg form of the commutation relations

there are many pathological representations, -D- would formally be conjugate to
P P

p2/2. However, one wants the groups generated by one operator to shift the other,
i.e. the Weyl relations ei*VωΓe~ί£rτ = eίω(T+τ). The von Neumann theorem tells us
that all (strongly continuous) representations are sums (or integrals) of the

standard x, - — representation on L2(R). Then clearly H cannot be semi-bounded
i dx

(it can be shifted by T) and the spectrum must be continuous from — oo to +00.
Since |Ω> is an eigenvector of H with eigenvalue zero, we must more exactly look
for \T,H] =iP_L, where P± = 1 - |Ω> <Ω|. Since on the range of P± SpH = [- oo, oo]

00

the Hubert space can be written in the spectral decomposition of Jf7 as J dλjΊ?λ.
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In our case the 2tfλ are all infinite dimensional and separable, therefore isomorphic
to L2(R). With some identifications of these spaces 2tf can be written as
L2(R) x L2(R) such that Hψ(λ,μ) = λψ(λ9μ). In this case there is always a conjugate
operator T which acts as eίτωψ(λ,μ) = ψ(λ + ω,μ). In fact, this operator is highly
non-unique, since any T' = T ί(x)£ with Be&(L2(R)) satisfies the same Weyl
relations. To exclude all sorts of pathological constructions we shall require that T
commutes with the number of quasi-particles. In this case the irreducible
representations of the H — Γ-algebra must be contained in the n-particle sectors.
Therefore SpH must be [— oo, oo] already in the one-particle sector or ε(/c) has to
map R3 into R+. If, in addition to ε, we can introduce angular variables Ω such

00

that Jd3/c= j dε^dΩ we can write
o

oo

H= f dε
— 00

where c(ε,Ω) = a^*(ε,Ω) for ε>0, b**(ε,Ω) for ε<0. Thus the canonical
transformation

generates

where

is the number of particles and holes. Then T= 3~/N is the conjugate to H we have
been looking for. Formally

P= j dεdΩc*(ε9Ω)i^-c(8,Ω)
-oo ^£

is the generalization of — D — and the physical significance of its increase with
\P\ \P\

time can be illustrated by the monotonicity of D. It simply says that in the
direction of p,x increases with time. Similarly T increases because quasi-particles
(respectively, holes) diffuse to infinity in the direction of k (respectively, — k) if ε(/c)
has a suitable form. (Umklapp-processes would spoil this picture.) Like the
classical examples investigated in [7] T is not affiliated to stf but depends on the
representation. eiωT exists as bounded operator in the GNS-representation
( = superspace in the Brussels terminology).

2. Construction of the Creation, Annihilation Operators for Quasi-Particles,
respectively, Collective Excitations and Related Topics

Our starting point will be an infinitely extended equilibrium state at inverse
temperature β of interacting particles respectively, spins. For simplicity we assume

N= J dε$dΩc*(ε,Ω)c(ε,Ω)
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the state to be translation invariant and a pure phase, that is a factor state. Since
the representation is held fixed throughout the paper we denote the GNS-vector of
the KMS-state ω by Ω. The quasi-local algebra is denoted by jtf, its commutant by
jtf', the weak closure of jtf by j/". Elements of j/, respectively, stf' are denoted by
A,B,..., respectively, A',B'.... Time and space translations are implemented by a
strongly continuous unitary group t/(ί,x) with selfadjoint generators H, Pwith
HQ = pQ = Ot Shifted elements of si are denoted by A(t,x) etc.

One of our main tools, which allows us to study the problem on a very general
level will be the general structure which is a consequence of the assumed KMS-
property of the state under discussion, in particular that the state Ω is cyclic and
separating. This KMS-property serves as a substitute for the, at first glance, richer
structure of relativistic quantum field theory where similar problems are discussed
in connection with scattering theory.

Having the well-known Landau picture of elementary excitations in mind, we
may ask the question whether there do exist elements in the algebra j/,
respectively, stf" which are more appropriate to describe the physical behaviour of
the system under discussion as compared with the, so-to-speak, undressed
particles we started from. In particular, the Hamiltonian should become simpler,
when expressed by means of these new objects which would represent collective
excitations respectively quasi-particles, thus containing a large number of the
undressed particles. Perhaps somewhat surprisingly, it will turn out that these
problems are very similar to the construction of the scattering states in R.Q.F.Th.

To keep matters relatively simple we shall make the following assumptions:
The joint spectrum of (H,P) contains a contribution which is concentrated on a
hypersurface {ω = ε(/c)} with ε(k)Ξ>0 and continuous. The KMS-condition auto-
matically implies the existence of a mirror excitation located on the hypersurface
{ω=— ε(k)}. The parts of the projection valued measure EH(dω) - £p(dk) with
support on these manifolds μ+, μ_ are denoted by P+. In principle one could allow
for further excitation branches of the above type but, for notational simplicity, we
assume the above μ: =μ+ uμ_ to exhaust the singular continuous spectrum of the
resolution of the identity |EH(dω) - £p(dk) the remaining contributions are
assumed to consist of the projection on Ω and an absolutely continuous part.

Remarks, i) The assumption of a sharp excitation branch (ω = ε(fc)} is usually
made in relativistic field theories but it is not clear under which circumstances it
holds. Physically speaking it corresponds to quasi-particles of infinite lifetime.
Perturbation theory suggests that in many cases they will decay into other quasi-
particles and the question is whether this goes on forever or whether finally some
stable ones remain. We shall take both possibilities into account by not assuming
that the stable quasi-particles span the whole Hubert space but there may be also a
continuous background. In cases where there are no stable quasi-particles at all
our results are empty (apart from some remarks at the end of the paper).

ii) An excitation with ω = — ε(fc) can be regarded physically as a hole excitation
or, in other words, the annihilation of an excitation with ω = ε(k) in the state Ω.

in) Since the energy spectrum of a KMS-state extends from — oo to + oo, we
have to expect that in a temperature state, at least in general, the whole R4 is
covered with points of the joint spectrum of (//, P). This implies that the sharp
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excitation branches defined above will be embedded in the continuum of the
spectrum. Furthermore, there will usually be no "mass gap" (apart from the
various BCS-models), that is, we have ε(0) = 0, in other words, the situation is in
some sense similar to R.Q.F.Th. when zero mass particles are present.

It is now our task to construct the creation, respectively, annihilation operators
for the collective excitations, the "one particle" respectively "one hole" excitation
branches of which are μ+, respectively, μ_. By definition of the spectrum and
cyclicity of Ω there exists a quasi-local Aestf so that P+AΩ + Q. Since the spectral
support of A*9 the * denoting the adjoint, is — (spectr. supp^4), more precisely, with
(ω,k) belonging to spectr. supp^ ( —ω, — k) belongs to spectr. supp^*, we have
automatically P_4*ΩφO (for a KMS-state).

Remark. Spectral properties like the ones mentioned above can most easily be seen
by using the notion of Arveson spectrum of operators, respectively, states. As to
this compare e.g. [9]. For example, (ω,k)espectr. supp^4 iff J/(x, t)A(x, t)dxdtή:Q
for aU / with /(ω,k)φO. From this it follows that J/(x, t)A*(x, ήdxdtή=Q provided
that /(-ω, -k)Φθ.

With the help of

A(t,x)Ω = (2πΓ2$e-ωte**E(dω d\ί)AΩ (2.1)

we see that A(t, x)Ω is the Fourier transform (F Tr) of a vector valued measure.
Defining the operator valued distributional F Tr of A(t, x) by means of

J/(ί, x)A(t, x)dxdt = : j/(ω, k)i(ω, k)dkdω (2.2)

with suitable test functions f, it has its support on the Arveson spectrum of A with
respect to the automorphism group generated by (H, P). (In more physical terms it
is the possible energy-momentum transfer generated by A.) Equation (2.1) shows
that A(ω, k)Ω is a vector valued measure which, by assumption, contains now a
(5-type, singular contribution concentrated onμ = μ+uμ_.

As in the Haag-Ruelle scattering theory, starting from such an A we will
construct a limit operator which has its energy-momentum support completely
located on μ+, respectively, μ_. To this end we take an arbitrary but fixed function
he9(Rl) with h(ty = l and define, for test functions /e^CR3), the following
sequence of operators:

Definition.

Aτ, ±(f) - =ί/ί(Γ (ω + ε(k)))/(k)i(ω,k)dωdk. (2.3)

For T-> oo the support of Aτ ± will be more and more concentrated on μ± and one
hopes that in the limit all the contributions in Aτ(f) have been eliminated which
do not belong to the quasi-particle, respectively, solition-like collective excitation
located on μ+.

Lemma. The norm lim Aτ + (f)Ω exists. (2.4)
Γ-»oo

Proof. Several proofs are available. One could, for example, mimick the mean
ergodic theorem (see e.g. [10]). On the other hand, using the abstract functional
analytic version of measure theory (compare e.g. [11, Chap. XIII]), one can argue
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as follows : A(ω, k)Ω is a vector valued measure being continuous in the vector
norm, i.e. ||f0n(ω,k)4(ω,k)β||->0 with n->oo for all sequences {gn},gne@, converg-
ing to zero with respect to the sup norm in an arbitrary but fixed compact set CR4.
This can be easily seen by the identification A(ω, k)Ω dω dk = E(dω - dk)AΩ. On the
other hand, every measure can be split into a pure point (pp) contribution, a
singular continuous (sc) and an absolutely continuous (ac) part which are mutually
orthogonal. Splitting E(dω dk) into Epp(dω dk) + EΛG(dω dk) + E8G(dω dk) we
have:

lim || f Λ(T (ω + ε(k)))f(k)Eac(dω - dk)AΩ\\ 2

Γ-*oo

= lim

^ limf f (AΩ\EΛG(dω dk))AΩ\ sup|/ϊ|2 |JΊ2 = 0, (2.5)
T \Kτ I (ω,fc)

where Kτ denotes the support of hτ f9 the Lebesgue measure of which goes to zero
for T-»oo. Since Eac is continuous in the neighbourhood of μ+ the above limit is
zero. On the other hand :

|| JMT (ω + ε(k)))/(k)£8C(dω - dk)AΩ - Jfc(T (ω + ε(k)))/(k)£8C(dω dk)AΩ\\ 2

= (AΩ\$\(hτ - hτ,)\2 \J]2Esc(dω dk)AΩ) = 0 (2.6)

for all T, T since, by definition, Esc has its support on μ± and hτ — hτ, is identically
zero on μ± due to ft(0) = l. This proves the lemma.

In the next step we have to show the existence of this limit on a dense set of
vectors in order to get a true operator.

Theorem, i) There exist densely defined operators a±(f) with Aτ ±(f)-~+a±(f)
strongly on a dense domain of definition on which a± are closable.

ii) On this dense domain we have the following time evolution of a ± ( f ) :

(2.7)

i.e. a quasi-free evolution.

Remark. One cannot expect strong convergence on &C since the limit operators α±

may be unbounded ! (As to this point see the remarks at the end of this section.)

Proof. With ffes/' we have:

lim Aτ ±B'Q= \imB'AT ±Ω = B'P±AΩ. (2.8)
Γ^oo T

So we can define a±BΏ: =B'P+AΩ which yields densely defined operators. By
exploiting the symmetry between j/,j/' we can choose another domain of
definition, which is, on physical grounds, perhaps more suitable. Assuming B to
have a compact (α>, k)-support we have (as to the map J : j/ «-» <$/' compare e.g.
[12]):

(2.9)

with B: =eβH/2Be~βHI2 also having compact (ω, k)-suρport. In other words, a+ are
also defined on the dense set j/Ω, stf the elements with compact (ω, k)-support.
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The closability of a± follows from the fact that α* are densely defined. This
becomes evident by the following straightforward calculation

D+ = {ψ\3ψ' such that (ψ\aφ) = (ψ'\φ)} 9

with A ' l f f e s / ' we have

(AΏ\a+BΏ)= lim(AΏ\Aτ +BΏ)= Km (A* + AΏ\BfΩ) = (AfP_AΩ\BΏ), (2.10)
r ' ~ T +

i.e. we have φ = AΏ, ψ' = A'P+AΩ.
ii) Can be proved in the following way. With Be^ eίHtBe~ίHt is also in a. So

we have :

t t ^ (2.11)

On the other hand :

C7 f4Γ f ±(/)l/_ t = (2πΓ2fto (2.12)

which converges on j/ towards

lim(2πΓ2$Γ (ωTε(fc))^ (2.13)

Corollary. With F,C'eja/' we have:

a±B'C'Ω = B'a±CfΩ, (2.14)

which implies for a± bounded that a±£<$/".

Remark. For α± unbounded one would conjecture that they are affiliated with stf"
provided that their domains of definition are sufficiently nice.

It is perhaps appropriate to make some remarks about the possible un-
boundedness of α±. This has to be expected when the α±'s display a bosonic
character, which is, on the other hand, a quite common feature for collective
excitations (e.g. Cooper pairs, magnons, phonons etc.).

The first point to mention is that the separability of Ω does not imply that one
can deduce from a±Ω = P±AΩ the equality of the operators α±, P+A, since P± is
not an element of si" [(#,P) are not affiliated with si" in contrast to e.g.
R.Q.F.Th.]. The possible unboundedness of a± has its roots in the non-reflexivity
of JSf^, JSf r That is, while the approximating sequence ίτ(ω,k) /(fe) is uniformly
bounded in T, this is not the case for the F Tr's with respect to the jS^-norm. (A
typical case is a divergence of \\hτ*f\\g^~T*12.) This implies that for T->oo the
norms of the operators Aτ may diverge.

In the last section of this chapter we want to make some remarks which are
concerned with the similarities, respectively, typical differences of the above
construction as compared with scattering theory, respectively, the ground state
formalism.

The lim ATΩ will exist also in R.Q.F.Th. or in the ground state formalism.
Γ-» oo

But it is a peculiar property of a system being in a temperature state that one gets
from this already well defined operator a± without performing the limit time
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ί-> ± oo. In e.g. the ground state formalism one had to proceed as in the Haag-
Ruelle theory, that is, with :

f ( x 9 t ) solution of —idtf=ε( — iV)f,

B(χ, t) : = J<Γ ίαVkM(ω, i)h(t (ω - ε

We have to perform the limit :

lim $f(x,t)B(x,t)dx = lim ^-i(

ί-*± oo ί-*± oo

(2.16)

provided it exists on a dense domain of definition. For a KMS-state (2.16) would
yield the same result as our construction above which implies automatically :

Corollary. For a KMS-state we have

4f] defined in (2.7), that is S = l . (2.17)

Proof. We show explicitly 0in = 0out on a dense domain of definition. Take (2.16)
and perform the limits £-» + oo with both sides being applied to the dense set
{AΏ}. Due to the concentration of ht along μ± the time dependence drops out
completely both for £-» + oo leaving us with ain(f) = J/(k)/ϊ(k, ± ε(k))dk = a(f)

= «out(/)

Remark. Note that <Ω|α± φO so that the usual LSZ reduction formula for S does
not apply at finite temperature.

Another special feature of KMS-states which is related to the observations
made above is the following

Corollary. With Ω a KMS-sίαίe, A, B^rf, B2es/we have that (B^\A(x, t)B2Ω) is
the F Tr of a measure.

Proof.

, t)Ω), (2.18)

which is easily seen to be a measure by inserting the spectral resolution of (H, P).

3. The Structure of the n -Point Functions

In Sect. 2 we have shown the existence of the limit operators a±(f) on a certain
dense domain, e.g. <%/Ω. If the α's are Fermi operators, i.e. a± bounded, repeated
application of the α±'s to Ω is well defined. This is not obvious for the Bose case
where the α's are unbounded. Furthermore, while Part ii) of (2.7) strongly suggests
that the "multiparticle" states are built from excitations which asymptotically
move freely this is not yet proved. What is still missing is an analysis of the
structure of the n-point functions. In particular, for unbounded operators it is by
no means obvious that with Aτ 9±~^a± in some sense Aγ°...°An

τΩ will converge
toward a1°...°anΩ.
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There are two strategies to approach these problems. The one attempts to
analyse the general structure of the n-point functions, in particular, their spectral
properties with respect to the n-ϊold energy-momentum spectrum {co^,
...,ωMkJ. By controlling the "singular" contributions one hopes to get results
for expressions like (Ω\Aγi±Aγ>±...An

Tί±Ω) in the limit Γ-+QO. This approach is
in a certain sense more of a geometrical type and will be studied in this chapter.
Another line of reasoning exploits more the algebraic properties of multiple
commutators and the specific situation in a KMS-state and will be developed in
the next section. The two approaches are not completely equivalent and may
complement each other in emphasizing different aspects of the theory.

To analyse the π-point functions one can work in coordinate space or in
energy-momentum space. The behaviour, in particular the decay, of hτ, the F Tr of
hτ, introduced in (2.3), however is to a certain degree dependent on the form of the
dispersion law ω = ε(k) and is not easy to control in the limit T->oo. Therefore we
prefer to perform the calculations in Fourier space where we shall exploit only the
property of hτ, which is independent of the precise form of ε(k), namely that they
concentrate along the manifolds μ± for T-+QO.

In R.Q.F.Th., where one has similar problems in scattering theory, one can
make use of certain a priori cluster properties of the rc-point functions in
coordinate space. This a priori structure is lacking in nonrelativistic many-body
theory. In particular, one knows that below the critical point, which is just the
regime where the picture of long-living quasi-particles, respectively, collective
excitations is appropriate, typical correlation functions display poor clustering
[13]. So it is not a sound assumption to assume from the start good cluster
properties in coordinate space.

The possible alternative is to make a physically reasonable assumption about
the structure of the n-point functions with respect to the energy-momentum
variables. Since all the elements of #4 are already bounded, well defined operators
(Ω\A1(xί, t^. .A^x^ tn)Ω) are continuous functions. So it seems to be a reasonable
assumption that the F Tr's are (in general complex) measures with respect to the
variables defined below which may contain, however, various singular contri-
butions being located on certain lower dimensional submanifolds.

We denote the FTr of (ί2MH*ι,O 4%*πΛ)β) bY W(Pι» •••>/>«) with
p. : = (ω , k ). Exploiting translation in variance W is actually of the form :

The (5-function restricts the set of variables to a (4n — 4)-dimensional submanifold.
There are, however, contributions in Wn which are restricted to subsets of even
lower dimension, namely for some of the variables p£l + . . . + pik being projected on
the "vacuum" Ω. This implies that further ^-functions, e.g. δ(pt + ...+pik)9 will
occur. That is, we will make the following physically reasonable assumption.

Λ

Assumption. We assume W(p19p1+p2, ...9p1

Jr ...+pn_1) to be a (complex) mea-
sure in the variables qt : = px + . . . + pt.

&

Consequences. Since the support properties of W as a measure are determined by
the assumption about the energy-momentum spectrum of (H, P) (Sect. 2), we have

the following fine structure of VΫ\
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«
i) The measure W contains the following singular, respectively, singular

continuous contributions with respect to each of the above variables
α) Some of the (p! + ...+p fc) are projected on Ω which

results in an additional δ(pί + ... +pk) in W.
β) Some of the (p1 + ...+p fc) may vary only over subsets (3.2)

with nonvoid interior of the submanifolds μ + ,μ_.
ii) The rest of the spectrum is absolutely continuous.

Remarks, i) Only subsets having interior points will contribute in i, β) since subsets
of μ, having another dimension than μ itself are of measure zero by the assumption
made about the spectrum of (#, P) ! That is, if for a certain "multiparticle" vector in
2tf the support with respect to some (ph + ... +pίfc) will be restricted to a domain
with a dimension smaller than dim(μ) the vector has automatically zero norm
(apart from ptί + ... +pίfc projected on Ω).

ii) Evidently one will get additional restrictions for permutations of the
variables, but we will need the splitting into various contributions only with respect
to the above variables.

It is our aim to show that in the limit T-»oo the n-point functions
(Q\Aj- ... An

τΩ) converge toward the rc-point functions of a quasi-free system, i.e.

Σ Π (Ωk r%β)
(Ω\A1

T ... A"TΩ)^P ί!'"'2) (3.3)
Γ Σ < S p Π (ΩK αi2Ω)

P {i 1,1*2)

for Bosons, respectively, Fermions, where we have for simplicity renormalized the
^4's to (Ω\AΩ) = Q. To this end we show that the truncated rc-point functions
vanish in the limit T-> oo for n ̂  3. The definition of the truncation is a little bit
different for fermion operators as compared with Bose operators to preserve the
anticommutation relations. As to this compare [14, Sect. 5.2.3]. We shall, however,
only need the property that the process of truncation eliminates the "vacuum"
from the set of intermediate states.

Theorem (3.4). // the n-point functions Wn are measures having a structure as in the
above Assumption, then the truncated correlation functions (Ω\Aγ ... Άn

τΩ)c, with
rc^3, vanish in the limit T->oo.

Proof. Since we shall only use the fact that Ω has been completely eliminated as an
intermediary state our arguments apply equally well to Bosons, respectively,
Fermions. The only difference are certain combinatorial factors in the repre-
sentation of the Wn by means of the W£. So we restrict ourselves in the following to
Bosons.

Our starting point is the observation that the process of truncation has just
eliminated the contributions in Wn which are located on submanifolds with a "too
low" dimension, in other words W^ does only contain singular contributions which
are located on submanifolds of the type i, β) of our Assumption (3.2) and a purely
continuous part. We have :

= ̂δ(Pl + ...+pn)dPl...dpn, (3.5)
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where we have absorbed for simplicity the test functions /^fcj, - . . . - , fn(kn) in

Λ l f Γ,...Λ,r
Our qualitative idea can now be described as follows : hit τ(p) contracts along

μ+9 respectively, μ_ for T->oo. With the energy-momentum support oϊAitT being
concentrated in φ.9 Θ. an open set on μ = μ+uμ_ in the limit T-> oo, the support of
e.g. A2 TΆ1 τ will be contained in (91 + (92 (for an exact proof for this physically
plausible result compare Remark 3.10 in Kastler [9]). That is, with &19 &2 located
on μ, "almost all points" of Φi+Θ2 will lie in the continuum of the energy-
momentum spectrum, i.e. away from μ !

Equation (3.5) reads now

iVripJ.A-i.rten-A.ri-^
(3.6)

Λ

The above limit T-> oo is evidently zero on the absolutely continuous part of Wc.
In order that the above limit be Φθ, (pί + . . . +pn^ J must generate a set with non-
void interior on μ for the p.'s varying over 0 f Cμ! We will show that this is not
possible for n ̂  3. [The set has to be "open" since only singular contributions of
the type ii, β) can occur.] p1 + . . .+p M _ 1 €μ means in particular:

ε(k)=±ε(k1)±ε(k2)±...±ε(kM_1), k=k1 + . . .+k l l _ 1 , (3.7)

where the ± comes from ^eμ+, respectively, μ_. With p{eμ we have 3n — 3
independent variables, that is, the singular support of the measure in (3.6) has to be
a submanifold of 3n — 3 dimensions in order that the integral be Φ 0 for T-> oo. But
we have one additional hn( — (pλ -f ... + pn_ x)) which serves as a further constraint
via (3.7), thus restricting the variables to a submanifold of dimension ^3n — 4. This
entails that the singular support does not contribute in the limit T-»oo for n^3.
For n = 2, on the other hand, the constraint becomes trivial since we have only one
independent variable and p1eμ+ implies — pl9 the variable occurring in h2, to be

The physical reasons for the above result lies in the fact that energy momentum
conservation forbids most of the decays, respectively, mutual annihilation of
quasi-particles, respectively, -holes so that the phase space is quite restricted.
Typical examples are ε(fc) = fc2, respectively, ε(k) = \k\. The conditions
(k1 4- k2)

2 = fc2 + k\, respectively, \k± + k2\ = |/cx | + \k2\ imply kx k2 = 0 which yields
a 6—1 dimensional subspace, respectively, kj |k 2 so that the accessible phase
space of dimension 6 — 2.

4. Algebraic Considerations

In Sect. 3 we have shown that the product structure of the state is a consequence of
the structure of the joint spectrum of energy and momentum. It seems worthwhile
to change the assumptions in the following way: we only assume that in the joint
spectrum of energy and momentum we have the concentration on a hypersurface
such that stlim^4Γ ±(/) exists on a dense set of j/|Ω>, and instead of making
further assumptions on the joint spectrum we assume that Ω is an analytic vector
for α+(/). Under these hypotheses we can show with essentially algebraic methods
that a+(f) are creation, respectively, annihilation operators.
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First we demonstrate that the commutator (respectively, the anticommutator)
tends to a c-number. Since we do not obtain an estimate on the c-number, the
following lemma is not sufficient to show that a+(f) are creation and annihilation
operators, but supports our expectation.

Lemma. Assume that our ε(k) = k2. Assume further that for A, B fixed

DAJΪ(x,ί): = ||[>4(x,ί),B]±lΓ/2 (4.1)

is integrable in x for fixed t and its Fourier transform has at most a δ-type
singularity at β(/c) = ω. Then

limUΓ[£Γ,CΓ]+]=0, (4.2)
T->oo

A, B, C all either even or odd,

Er,CT]±]=0. (4.3)

Remark. The assumption on the decrease properties of the commutator seems to
be rather sound. E.g. for lattice systems with some restrictions on the interaction
they are shown in [14, Sect. 6.2.9].

Proof. We concentrate on (4.1); the proof for (4.3) is essentially the same. Since

lBlA9C]-] + lClB9A]-] or

it follows that

KAx\:By9Cz]±-]\^D(y-z)(D(x-z) + D(x-y)) (4.4)

with D(x — y) = max(D^B(x — y\ DAC(x — y\ DBC(x — yj). Therefore (where dx means
integration with respect to space and time)

\\$hτ(x)hτ(y)hτ(z) [_A(x)B(y), C(z)

£2flM*)l IM)OI \hτ(z)\D(x-y)D(y-z)dxdydZ

=JdMyM*ι)IMMM(-*ι -k2)D(k,}D(k2). (4.5)

We have to calculate \hτ\ which can be done explicitly due to our special form of

hτ(x, t) = c\dωdk exp [ - (ω - k2)2T2 + iωT+ ikx - /c2]

1 Γ (2 ]
=cf ^exp - -^ - ik2t + ikx - k2\ dk

t2 1 [ χ2

4(1

Thus

(l + iί)"v/2 (4-6)
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Its Fourier transform reads

-(v + 2)/4

e~»g(T,ωtk),

where g(T, ω, k) is uniformly bounded and for k fixed integrable in ω. We realize as
was mentioned before that the J^-norm of the function is not uniformly bounded
in T, corresponding to the fact that in the Bose case a+(f) are not bounded
operators.

We realize that
- ( v + 2 ) / 4 / i \ - ( v + 2)/4

is integrable for v<6. Therefore the integration over the bounded part of D(/c, ω) as
well as over the (5-type singularity is bounded for fixed T. Its T-dependence can be
estimated using the variable transformation k = q-T. The integral behaves as

It should be noted that the essential estimate that yields the desired result is of the
form

IM**^Vί2/ΓV*2/(1+αί2). (4.7)

The Gauss form for t is due to our assumption on hτ. The important fact that
apart from exp( — t2/T2) the function essentially depends on x/t corresponds to the
physical statement that information is transported essentially linearly in t. The
result can be generalized to those ε(k) for which the saddle point method can be
applied [3].

The estimate (4.3) tells us that \_AT, Bτ~]± converges to an element of the center
which we have assumed to be trivial, i.e.

lim(UΓ,βΓ]-λτl) = 0,
Γ->oo

but we are missing estimates on λτ.
Therefore we will use a modified version of the above lemma to show that the

truncated n-point functions, n>2, vanish, and obtain in this way the particle
structure.

We are mimicking the methods of [4] but since we are in a KMS-state, where
the spectrum condition does not hold, the construction of an operator A^ that only
creates an excitation but does not annihilate a hole differs essentially from the
construction in [4] :

Theorem. Let B be an operator of <$#" with strictly positive (negative) compact
support in the energy, i.e.

withΛCR+ or ΛCR~. Then there exists an operator J3t affiliated to &(3ίf) such that

Bl\Ω~) = B\Ωy,
' (4.8)

(BJ)*|Q>=0,
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and
00

stlim Σ (τinB-(τ_i(n+1/2)β*)') B positive

Bΐ=b "=0

oo

stlim £ (-τ_ ί(n+1)5 + (τ.(n+1/2)5*)') B negative ,
n=0

where the limit exists on j/|ί2>, 0m/ where B'εjtf' is defined by

Bf\Ωy=e-
H/2B*\Ωy.

Remark. The index stands for Bosons, though the construction holds for both
Bosons and Fermions.

Proof. With the notation B(ω) introduced in Sect. 2 we have

— B(ω)|fl>=β(ω)|β>,
l-e

We should remember that due to our assumption on B, B*(ω) has support only for
ω<0 (as we discussed in Sect. 2) so that the sum is well defined.

Similar calculations hold for negative B.

Theorem. // there exists a gauge transformation U such that

UA\Ωy = A\Ωy for A even ,

UA\Ωy =-A\Ωy for A odd ,

then we can also construct Fermi-type operators B^f for odd elements B affiliated to
such that

, (Bj.)*|fl>=0, (4.9)

00

B/ = stlim X (- l)"(τίnδ- L/(τ_ ί(π+ 1/2)B*)'), B positive,
n = 0

00

Bf = stlim Σ (-mτ-(n+vB-U(τi(n+ίf2}B*)'), Bnegative,
n=0

Proof. As before we write
00

Bf(ω)\Ωy= £

(βj.)*(ω)|β>= £ (-l)"(eω"β*(ω)-eω(n+1/2)~ω/2β*(ω)|Ω>=0.
n=0
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Evidently we can invert the transformation :

or (4.10)

It should be noted that we have constructed the operators B* in complete analogy
to the way, in which a KMS-state over an algebra with quasi-free time evolution
can be looked at as a Fock state over a larger quasi-free algebra. Nevertheless the
construction holds in general, only the commutation relations of the £f will be
different (as the commutation relations of the fields in a relativistic field theory will
be model dependent).

Next we observe

ί ω([Bf *B2] ± [B3, B\-\ ±) ± ω(B2[βf *, [B3,
ίω ,̂̂  (4.11)

\imωt

4(B1TB2TB3TB4T) = 0 if we can show that

lim[BjΓ[BjΓ,BίΓ]±]=0.

We cannot apply directly our lemma, because we have to be careful with
controlling the effect of τin on the decrease properties of the commutator.

Throughout the following we assume that the Bf are time analytic operators
and are positive (or negative) to order (N, ε), i.e. they satisfy e.g.

B|0>-
n = 0

<β. (4.12)

For arbitrary large N and arbitrary small ε, linear combinations of such operators
are dense in jtf. Due to our assumption on the spectrum the above estimate holds
uniformly in T. We introduce

and obtain with a slight modification of (4.11)

K(B1TB2ΓB3ΓB4T)|g|ω(B2Γ[β7;>wB31

+ WBlτ[[B2Γ,BiTιW]±, B3T(W

(4.13)

Therefore we have to show

Lemma.

2r,Bt

3TJV]±]=o. (4.14)



Quasi-Particles 263

Proof. We can repeat the arguments leading to (4.2). There is just the difference
that we have to show

We do not assume that we have a uniform bound on DA.kCii, but we use analytic
continuation so that we have to estimate

f M*ι> tί - i/c1)/zτ(x2, t2)hτ(x39 ί3 - i/c3)

|fcτ(x, t — in)\ satisfies the same estimate as before, since we are allowed to keep the n
fixed, which proves (4.14).

Since ε in (4.13) can be chosen arbitrarily small, it follows that

lim<(B1T...B4T) = 0. (4.15)

Corresponding estimates give limωt

n(Blτ...BnT) = 0. Therefore ω is a quasi-free
state on α15 ...,απ.

Furthermore

which implies

or
stlim[jB1Γ,J52Γ]=limω([JB1Γ,jB2Γ]), i.e. a C-number.

5. The Structure of the Multi- (Quasi-) Particle States

We have shown in the preceding chapters that s-lim^4Γ exists on jtfΩ and that the
r

n-point functions disintegrate into products of two-point functions for T->oo
respectively that (anti-) commutators of the Aτ's become c-numbers. It is, however,
not yet completely evident how the multi-"particle" states actually look. In
particular, we would like to have

lim A1

τ ... A"τΩ = ai ... anΩ.
Γ-»oo

To this end we shall prove a series of more or less straightforward corollaries,
which, on the other side contain the relevant physics. (We should remark that the
organisation of this chapter is very similar to the corresponding analysis in [4].)

Corollary. The weak

lim of A1

T ... A"TΩ (5.1)
T-» oo

exists.

Proof. With B'ejtf' we have:

(BΏ\Al

τ - . . . - An

τΩ) = (BA%Ω\A* -...- An

τΩ).
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Ω converges strongly. Assuming that A^ ... An

τΩ converges in the weak
sense we can deduce weak convergence of A\ - . . . - An

τΩ. That is, we can prove weak
convergence for all n by induction, exploiting the uniform boundedness of
\\Aj- ... y4yΩ|| in T, which is a consequence of Sect. 3.

Corollary. Denoting w-lim^ ... An

τΩ by ^(A1, ...,An) we have:
i) ψeDp a the closure of a.

ii) άψ(A1

9...9A
H) = ψ(A9A

1

9...9A't). (5.2)

Proof.

(a*BΏ\ψ)= ]ΐ

where we used again the "uniform boundedness principle". Thus we get :

= (a*B'Ω\ψ(A1...An)) = (B'Ω\aιp(A...An)).

Now we can recursively define the states a1 - ... -anΩ. In particular, we can show
that Aγ- ... Άn

τΩ approaches the limit ψ in the norm.

Corollary.

Aϊ ... An

τΩ-+ψ(A1...An) (5.3)

in the norm.

Proof. Exploiting the fact that in the limit T-> oo the n-point functions decompose
into sums of products of two-point functions we show that

for suitable observables A\,,...,An

τ. This, together with the weak convergence,
implies convergence in norm.

Remark. A more detailed analysis, in particular questions of ess. selfadjointness,
can be accomplished in a more or less analogous way as has been done in [4].

6. The Algebraic Structure

So far we have constructed the algebra j/0 built by the creation and annihilation
operators a = limAT. It remains to show how «£/0 is embedded into the whole
algebra.

Theorem. // j/0 is a quasi-free algebra of Fermions, then
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Proof. J2/0 has a quasi-free time evolution with ω^o its KMS-state. Such a KMS-
state is unique. Therefore the center ja/^rW = λί. Defining Λ = j/όrW, it follows
that «β/2njf = λl. From [15] we know that there exists an homomorphism π such
that π(j/o®JO = (^ou^)" = J^ It remains to show that π is an isomorphism. j/0

is simple. Therefore two sided non trivial ideals of j/0®^ are of the form I®/ or
j/o® 1, where / is an ideal of Ά. Since τφ/0® 1) and π(l®#) are faithful, none of
these ideals can be the kernel of π, thus the kernel of π is trivial.

Theorem. // j/0 is a quasi-free algebra of Bosons and stf" is a factor, then

Proof. For Bosons the KMS-state need not be unique. Therefore we have to argue
differently to show that 3/^3/3 = λί. ω|^o is again a KMS-state. j/0 is a quasi-
local algebra. Therefore J/^ΠJ/Q is its algebra at infinity, which is a subalgebra of
the algebra at infinity of j/ [16]. By assumption this algebra is trivial and
therefore also &

7. Resonances and Quasi-Particles

So far our result tells us that the concept of quasi-particles does not leave any
freedom for perturbations and small interactions between the quasi-particles.
Frequently one encounters a situation where quasi-particles do not have infinite
lifetime but rather are resonances. Therefore our assumption on the joint spectrum
of energy and momentum is not really satisfied but has to be weakened. E.g. one
can assume that the singularity only appears in the limit fc-*0 such that the
measure has a contribution

(7.1)

where λ(fc)->0 for fc->0.
We want to find some connection between the spectral concentration and

approximation for the time evolution. We do not want to state the strongest
results possible but prefer to give just an idea about how time evolution and
spectral concentration are related at the price of making strong assumptions that
might be hard to check. But we believe that with more elaborate proofs the
assumptions may be weakened.

We assume that for f(k)(=&2 there exist Fermi operators A(f\ \\A(f)\\=\,
such that

||(fd3ω3xe-<^-%σJ^(/)-Λ(/))|0>||ge (7.2)

for t ̂  T (T~λ(a)~ 1 with supp/C {fc, |fc| < α}), where also ε will depend on supp/ It
follows that

. (7.3)

Therefore A(f) corresponds to a resonance.
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We strengthen this estimate and assume

\\Aτ(f)-A(f)\\^ε. (7.4)

Due to the cyclicity of Ω we do not believe that this assumption is severe. The
norm can only increase from high energy contributions which are excluded from
the support of f(k) or resonances in the truncated w-point functions. The estimate
on \_AT, {Bτ, Cτ}~\ remains valid. Therefore we can conclude that

Ur,CΓ} = c + <5, (7.5)

where c is a c-number and ||<5|| ^ε' with ε' depending linearly on ε and also on the
convergence of the double-commutator, which for reasonable ε(/c) will behave as
T~v/2. Due to our assumption (7.4) {A,B} = c + δ with ||5|| £ε' + 2ε. It A has either
positive or negative energy spectrum, then \\A2\\ <ε. These two properties imply
that there exist annihilation and creation operators in stf" such that

(7.6)

This can be seen as follows :
Let x be an eigenvector of A^A (or an arbitrary good approximation) with

eigenvalue α2 ̂  1 + ε. Write y = Ax. Then

A*y = u2x, AJfx=-^Any,

\\A*x\\ ^-e (remember ||A t2 | | <ε).
α

The bound on the anticommutator implies (ε small) 1 — ε ̂  -j ε2 + α2, α2 ̂  1 — ε or

α2<ε2. Therefore we divide ffl in the two subspaces ̂  with ^4^^1/2 and 2tf2

with A^ A < 1/2, which is equivalent to A^A<ε. These spaces are not empty. In
these subspaces we write

A12

A2ίAίi+A22A12 A21A21+A22A22

Since in J#*2 A^A is smaller than ε it follows that

On the other hand AA^ +A^A is also close to one, therefore
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Therefore A21 is either close to a unitary operator or to a shift. Assume there is a
projection Pφ 1 such that

Then Aίl satisfies corresponding inequalities as A on the subspace (1 — \
therefore has eigenvalues smaller than 1/2, which is in contradiction to our
partition. Therefore P = 1 and

Ho o
/o u

and our α =

Furthermore we have the estimates

\\(τ,ldkf(k)A(k)- \f(k)e-^A(k})\\ ^ε~,

and conclude

||τtα-τfoα|| g \\τta-τtA\\ + ||τ^- C|| + ||C-τtoα|| ^2ε" + ε-^. (7.7)

Therefore the spectral concentration of energy and momentum implies that the
resonance can be approximated by a creation or annihilation operator applied to
Ω and the real time evolution by a quasi-free one.
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