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Abstract. We seek critical points of the functional E(u) = j |Vw|2, where Ω is
Ω

the unit disk in (R2 and u: Ω -+ S2 satisfies the boundary condition u = y on dΩ.
We prove that if y is not a constant, then E has a local minimum which is
different from the absolute minimum. We discuss in more details the case where

y(x, y) = (Rx, Ry, ̂ Γ^R7) and R < 1.

Introduction

Let Ω = {(x,y)eU2; x2+y2<ί} and S2 = {(x,y,z)εU2; x2 + y2 + z2 = 1} Let
y : dΩ -+ S2 be given and assume that y is the restriction to dΩ of some function in
Hl(Ω;S2)1. We set

E(u) = J \Vu\2 for ueH\Ω\ ίR3)
Ω

and

£ = {ueH1(Ω;S2);u = γ on

We seek critical points of E on <y. It is obvious that there exists some ue/ such that

Our first result is the following:

Theorem 1. If y is not a constant, there exists a critical point of E on $ which is
different from u.

* Work partially supported by US National Science Foundation grant PHY-8116101-A01

1 We use the standard notation for Sobolev spaces:
H\Ω; (R3) = {ueL2(Ω; (R3); uχ9 uyeL2(Ω; (R3)} and

;lR3); u(x,y}<=S2 a.e. on Ω}
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In order to prove Theorem 1, we introduce

QM = τ:Su'uχΛUy
q'71 Ω

for ueLCG(Ω; R3) with ux,uyeL2(Ω; IR3) and we observe (see Lemma 1) that

Q(uί)-Q(u2)eZ Vul9u2e£.

For every fceZ we define the class gk = {we<ί Q(u) — Q(u) = fc}. Each class $k is
(non-empty) closed and open in g for the topology induced by the norm of
H^Ω R3).

In order to find other critical points of £ on g it is tempting to consider

Inf E for
*k

When trying to prove that Inf E is achieved one encounters a major difficulty due to
*k

the fact that gk is not closed under weak H1 convergence. Nevertheless we shall
prove that at least one of the two infima Inf E or Inf E is achieved. The argument

*1 £-1

involves some ideas used by the authors in [2] related difficulties also occur in [1, 3,
7, 8, 11]. Notice that the assumption "y is not a constant" in Theorem 1 is essential.
Indeed when γ = C is a constant, Lemaire [6] has proved that u = C is the only
critical point of E on g.

For simplicity we consider only maps with values into S2. The same result
holds if S2 is replaced by a Riemannian surface homeomorphic to S2 (see Remark 2).

The paper is organized as follows: In Sect. 1 we present some technical lemmas.
In Sect. 2 we prove Theorem 1. In Sect. 3 we discuss a simple example, namely

y(x,j>) = ( Ry with R<1.

We prove (see Theorem 2) that ΓnfJS is not achieved, except when k = 0 and
£k

k = - 1. We have collected in the Appendix various useful facts and in particular an
important density result due to R. Schoen and K. Uhlenbeck [10].

After our work was completed we learned that J. Jost [5] has obtained
independently a result similar to our Theorem 1.

1. Some Technical Lemmas

We start with

Lemma 1. Assume ulyu2eg. then Q(uί) — Q(u2)EZ.

Proof. We consider w: [R2-»S2 defined as follows:

' w(x, y) = ufa y) if x2 + y2 < 1

if χ2+y2>L
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It is easy to check that weL00^2;^2), wx, wyεL2(R2; IR3) and

— f

On the other hand if ψeCco([R2;Sl2) and φ is constant far out then

—

In fact this integer is the degree of the map φ°π:S2 ->S2, where π:S2-»IR2 is a
stereographic projection (see for example the analytic expression of the degree
given in [9]). It follows by density (see Lemma A.I) that

~ J φ φx Λ φyeZ VφeL00^2^2) with φx,φyeL2(U2,U*\ (1)
^ |jξ2

and thus we obtain the conclusion of Lemma 1.
Our next lemma plays a crucial role in the proof of Theorem 1. We assume

now that y is not a constant and we fix some^e<f such that E(u} = Inf E.
g

Lemma 2. There is some ί;e<f such that

\Q(v)-Q(u)\ = l (2)

and

E(v) < E(u) + 8π. (3)

Proof. By Morrey's regularity theory we know that weC°°(Ω;IR3). Since y is not
a constant it follows that Vg(x0, JO) ̂  0 for some point (x0,y0)eΩ. Rotating
coordinates in the (x, y) plane we may always assume that

[Indeed, if we set

xf = (cos θ)x + (sin %, y' = (- sin θ)x + (cos %,

we find

ux,'Uy, = - (\ux\
2 - l^l^sin 0cos θ + ίy^(cos2 θ - sin2 0)].

In addition we have

u ux = U'Uy=Q on Ω,

since \u\2 = 1 on Q.
Therefore we may choose an orthonormal basis (i,j,k) in IR3 such that (in the

basis (i,j,k))

) ίo\ .< , β (»**.*-\*). .̂.,.)-g, »Λ,Λ)-^

with a ̂  0, b ̂  0 and a -f b =/= 0. (Notice that the basis (i,j,k) could possibly have
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a different orientation than the canonical basis of [R3 which was used to define (λ)
Let ε > 0 be small enough. We define a function uε: Ω -> [R3 in the following way:

Let r = [x — x0)
2 + (y - y0)

2] 1/2 and θ such that x - x0 = r cos 0, y - y0 = r sin θ.
We set(1)

a) Ifr>2ε,

b) If r < ε, we set (in the basis (i,j,k))

where A = cε2 and c is a constant to be fixed later,
c) If ε ̂  r ̂  2ε we set (in the basis (ij, k))

where Aί9 A2, Bί9B2 depend only on θ, ε are determined in such a way as to make uε

continuous on £2; more precisely

- Bt = U\XQ + 2ε cos θ, yQ + 2ε sin Θ) i = 1,2

2λε
ΓCOS#

2λε

Clearly we have, as ε -> 0,

tJ2/

We claim that

= J
[r>2ε]

(4)

J |Vwf = 4πε2[α2 + b2 - 2c2 + (α2 + b2 + 8c2 - 4ac - 46c)log 2] + o(ε2), (5}
[ε<r<2ε]

and

J |Vwf = 8π - 8πε2c2 + o(ε2).
[r<ε]

(6)

We postpone for a moment the verification of (5) and (6). Combining (4), (5),
and (6) we find

J |Vt/|2 = j \Vu\2 + 8π - 4πε2[4c2 - (8c2 + α2 + ί>2 - 4αc -
β Ω

We choose c in such a way that

4c2 - (8c2 + a2 + b2 - 4ac - 4bc) log 2 > 0

o(ε2).

1 A related construction appears in [12]
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for example c = Max {a/2, b/2}). Therefore υ = uε satisfies (3) provided ε is small
enough.

Verification of (5). We have

A1=2(a-c)cos 0 + 0(1),

BI = 2ε(2c — a) cos θ + 0(ε),

A2=2(b-c) sin 0 + 0(1),

B2 = 2ε(2c - b) sin 0 + 0(ε),

and similar expressions for the 0 derivatives. Thus we obtain (5) since

ί iv«f= f Σ
[ε<r<2ε] [ ε < r < 2 ε ] i = l

Verification of (6). We have |Vwε |2 = Sλ2/(λ2 + r2)2 and therefore

rdr
ί

[r < ε] 0 1Λ

which leads to (6).
We turn now to property (2). We claim that

l, (7)
and

if i - J Λ k = - l . (7')

We shall verify only (7) (the proof of (7') is identical). We write

= -ί« «;Λ« = -L +JL +

= 1 + 11 + III.

We have

I = Q(u)+Q(ε2\ (8)
and

|//|^^- j |W|2=0(ε2) by (5) (9)
8π [ε<r<2ε]

In order to evaluate /// we note that in the region [r < ε] we have

o τ 4

U* U*χΛU*y=-(λ2 + r2}3+k U*χΛU*y,

and thus by (5),

ε ;4r Λγ

UI= -4jn, L +0(ε2)= - 1 +0(ε2). (10)
i(A 2 + r2)3

Combining (8), (9), and (10) we obtain (7).
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Remark. 1. The conclusion of Lemma 2 asserts that there is some v eS such that

β(*0 ~ βfe) = ± 1, and E(v) < E(u) + 8π.
In general one can not find two v's v1,v2e£> such that

£(ι;.)<£0ί) + 8π, i=l ,2. (11)

When (11) happens to be true one can prove that both Ihf E and Inf E are achieved
£+1 ^-1

(see the proof of Theorem 1). [However there are simple examples where only one of
these two infima is achieved (see Sect. 3).] Notice that (11) holds in the following
cases:

a) There is some point (x^y^eΩ such that

V M f O at (χ09y0)9

u-uxΛUy = 0 at (xQ,y0).

b) There are two points (x0,y0)εΩ, (x^y^eΩ such that

WUxΛMy>Q at (x0,j;0),

M w x Λ W y < 0 at (x^y^.

[This is a direct consequence of the argument we have used in the proof of
Lemma 2.]

2. Proof of Theorem 1.

Let ve$ be given by Lemma 2. We shall establish that if t e^ (respectively ve$_1)
then Inf £ (respectively Ihf £) is achieved. We consider just the case where VG^I (the

^1 <ί- 1

other case is similar). Let (un) be a minimizing sequence, i.e. utleS'1 and E(un) = Inf £
s\

-f o(l) (as n -> oo ). We may extract a subsequence still denoted by un such that un -+ ΰ
weakly in H\Ω; (R3). Clearly we<^ and E(ΰ) ^ Inf£. It remains to prove that ΰeδ^

<fl

Suppose by contradiction that uφδ±. It follows that

|β(^)-β(w)|^l. (12)

Assume for example that

β(t/")^ρ(w) + l. (13)

Set

F(v) = £(t;) - 8πβ(ι;) = j |Vr|2 - 2 J tφ* Λ ϋy). (14)
Ω Ω

Using the same argument as in [2] (see the proof of Lemma 1) one obtains

£(w)^liminf£(w"). (15)

Combining (13), (14) and (15) we find

- 8πβ(w) ̂  lim inf (E(un) - 8πβ(w) - 8π}.
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Hence

£(fi)glnf£-8π. (16)

On the other hand, by Lemma 2, there is some veSl such that

E(υ) < E(u) + 8π,

a contradiction with (16).

Remark. 2. The conclusion of Theorem 1 still holds if we replace S2 by a
Riemannian surface M homeomorphic to S2. Using a conformal diffeomorphism

between M and S2, this amounts to establish Theorem 1 for E'(u) = § g(u)\Vu\2

Ω

instead of £, where geCί(S2

 9(09 oo)) and w:ί2-»S2. We replace Q by

Ω

where £ = ]" gdσ and u:Ω-+S2. Instead of Lemma 1 and 2 we have now, with
s2

nearly the same proofs :

Lemma 1'. Assume uί9u2€&9 then Q'(MI) - Q'(M2)eZ.

Lei w'e<ί be swc/i ίfcαt E'(w') = Inf£'.
£

Lemma 2'. There is some veS such that \Q'(v) - Qr(u'}\ = 1 and E'(υ] < E'(u') + 2ε.
Then we proceed as in the proof of Theorem 1.

3. A Simple Example

We consider now the case where γ(x, y) = (Rx, Ry, ^/l — .R2) for (x,y)edΩ
with 0 < # < 1 . In that case we shall give a complete description of the solution of the
problems Inf E and Inf E. For this purpose, we set

with (x, ̂ )6i2 and r2 =

Theorem 2. VFe have
(A) ue£ and E(u) = InfE;

moreover u is the unique element which minimizes E on $.

(B) ΰeS>_1 and £(«)= Inf£;

moreover ΰ is the unique element which minimizes E on ^_j .
(C) Inf £ fa noί achieved if kφ{0, - 1}.
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Proof. Part A. Let ύe$ be such that

E(ύ) ^ E(v)

First we claim that

(17)

:βfe) (18)

Assume by contradiction that \Q(ύ} — Q(u)\ ^ 1 (see Lemma 1). We introduce
w: [R2-*S2 defined as follows:

' w(x y) = w(x, 3;) for r < 1

) = u(ϊ.y_\ for r>l

so that

and thus

2,S2) and wx, Wj,eL2(R2; K3). By the proof of Lemma 1 we have

— f wΛ~ J x y

1.

Therefore we obtain

Obviously we have

[Vw|2 ^ 8π.

ί
and a direct computation shows that

E(u) = 4π(l~

Combining (19), (20) and (21) we obtain

E(ύ) ^ 4π(l + yi - R2) > E(u)

—a contradiction with (17). Hence we have proved (18).
Next we consider the function w: R2 -+S2 defined as follows:

' w(x, 3;) = M(X, j) for r < 1

w(x,j;) = ΐ/( ~2,~2 } for r>l.

We have

J \Vw\2'=E(u)'+

and a direct computation shows that

E(u) = 4π(l

(19)

(20)

(21)

(22)

(23)
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Combining (21), (22), and (23) we see that

{ [Vvv(2 ^ 8π. (24)
m2

Moreover, we have (using (18)),

1 „

(the last equality follows from a direct computation). Thus, J |Vw|2 ^ 8π and in
R2

fact (by (24)), J |Vvv|2 = 8π. The conclusion of Lemma A.2 asserts that vv is analytic
us2

on IR2. Finally we consider vv: 1R2-»,S2 defined as follows:

' w(x, y) = w(X y) for r < 1

= *(?>?) forr>l.

It is readily seen (by direct inspection) that vv is analytic in [R2. On the other hand
we have vv = vv for r > 1, and therefore vv = vv, i.e. u = ύ.

Part B. Let VE£_I; we shall first check that

E(0)£E(υ). (25)

Let w: [R2 -+S2 be defined as follows:

vφc, y) = v(x, y) for r < 1
x y \ *-T,— I for

,r2 r
We have

(26)

and moreover

— J w wx Λ wy = Q(v) - Q(u) = - 1. (27)

Thus

J[Vw| 2^8π. (28)

Combining (26), (28), (21), and (23) we obtain (25).

Finally we assume in addition that

E(v)^E(u) with ι?6^_i. (29)

We deduce from (26), (29), (21), and (23) that

J |Vw|2 = 8π.

Again, by Lemma A.2, w is analytic on 1R2 and we conclude as in Part A that v = ύ.
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Part C. We assume for example that k > 0 (the argument is similar for k g — 2).
Suppose, by contradiction, that there is some ve$k such that

E(t>) = ME. (30)

It is a well known fact that

Inf E ̂  E(u) + 8/cπ. (31)

[The technique is similar to the one used in the proof of Lemma 2, except that it is
much simpler since we don't require a strict inequality. Given ε > 0, one considers,
for example, vε:Ω-+S2 such that

a) If r > 2ε, vε(x, y) = u(x, y).
b) If r < ε we set

/rkcoskθ\
1 o

c) If ε < r < 2ε we proceed as in the proof of Lemma 2.
One checks that ιfeβk arid E(vε) = E(u) + 8/cπ + 0(1).]
Finally we consider the function w: [R2 -+S2 defined as follows:

for r < 1

χ j = ΰ{^~\ for

so that

J- J2 w w, Λ wy = Q(v) - Q(u) = fc + 1. (32)

We deduce from (30) and (31) that

J |Vw|2 = E(v) + E(ΰ) g E(w) + E(fi) + 8/cπ = 8(/c + l)π. (33)

Once more it follows from Lemma A.2 that w is analytic and thus (as in Part A),
v = u—a contradiction since vεδk (k ••

Appendix

We start with a useful density result due to Schoen-Uhlenbeck [10]. For the
convenience of the reader we sketch its proof.

Lemma A.I. Given weL00^2;^2) with VueL2(U2;R6) there exists a sequence (un)
such that

each un is constant far out,

un^u a.e,

Vun^Vu mL2(R2;[R6).
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Proof. We denote by π: S2 -+ U2 the stereographic projection which maps the south
pole into 0. We set v(p) = u(n(p)} for peS2. It is well known that veH1(S2;S2).
Let vn(p) denote the average of v over B1/n(p) = {qeS2:,\q —p\< ί/n} and thus we
have

and vn-*v in ff1^2;^3). Note that vn does not take its values into S2. However
Poincare's inequality shows that

C f V / 2

J \v(q) — vn(p) I dq <* -jl J \Vv\2 \ ,
£l/n(P) ^ \#l/n(P) /

and therefore

dist(ϋπ(p), S2) -> 0 uniformly in
M-+OO

By a small modification of vn we may as well assume that

11 /-/^Όo/c2 . p2\
f Π 6U (O , H ),

each t;w is constant near the north pole,

vn^vinH1(S2;R3)9

k dist(vn(p\ S2)^>0 uniformly in peS2.

Projecting vn(p) on S2 we may further assume that υn(p)eS2 Vn, VpeS2. The sequence
un(x,y) = vn(π~1(x9y)) satisfies all the required properties.

In our next lemma we extend to Sobolev classes a property which is well known
for smooth maps.

Lemma A.2. We have

J J Φ'Φx^Φy V</>eL°°(M2;S2) with φx,φyeL2(U2;U3} (*)
κ2

and if equality holds in (*), then φ is analytic.

Proof. Inequality (*) is trivial since \φ\ = ί . Suppose now that we have some
φeL^^ S2) with φx,φyεL2(U2; (R3), and such that

J |Vφ|2 = 2 f φ φ,Λφ r (A.1)
K2 K2

We shall prove that φεC^^ S2). This will imply that φ is analytic. Indeed if
equality in (A.I) holds then φ is a harmonic map and thus φ is analytic.

We now prove that φ is C°° for example near 0. We fix p > 0 such that

J \Vφ\2^2π, (A.2)
D

where D = {(x,y)e[R2; x2 +y2 < p2} and we let y = φ\ We claim that

J \Vφ\2 ^ J |V^|2, \/ψeH1(D;S2\ψ = γ on dD (A.3)
D D
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—which in turn implies that φeC°°(D;S2) by Morrey's regularity theory.
In order to establish (A.3) we assume by contradiction that there is some

ψeHl(D;S2) with ψ =γ on dD and

D D

We have

Indeed if we had

(A.4)

(A.5)

(A.5')
D D

2 - 2we could introduce the map $: [R2 -»S2 defined as follows:

= on D

and we would find

= φ on [R2\D,

X Λφy = J φ'φχ

and

ί
K 2 \D

\Vφ\2< l\Vφ\2 (by(A.4)). (A.6)

Applying (*) to $ and combining the resulting inequality with (A.I) and (A.6) we
would obtain a contradiction. Thus we have established (A.5).

Finally we consider the map h: U2 -+S2 defined as follows:

= ψ in D

so that /leL00^2;^2), /ιx,/ιyeL2(R2;[R3) and

ί h-hx Λhy=$ψ'ψxΛ
m2 D

- $ φ-φx Λ φy

D

We deduce from (A.5) that

and thus J |V/z|2 ^ 8π. But
u2

f ft ftxj Λ

D D

(by (A.4)). Hence J \Vφ\2 ^ 4π—a contradiction with (A.2).
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