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Abstract. We consider the limit 2#—0 for nonrelativistic quantum particles
moving in external Yang-Mills potentials. It is shown that the partition
function and the solutions of the equations of motion converge to their
corresponding classical counterparts.

1. Introduction

The equations governing the motion of a classical particle moving in an external
SU(2) Yang-Mills potential were first obtained by Wong [Wo] by taking the
formal limit #—0 of the quantum mechanical equations of motion. Since then,
various aspects of these equations have been studied and used [BSSW, BCL, BW,
DC, Sch, S], as well as extended [GS, St] to arbitrary groups using the symplectic
structure of coadjoint orbits [Ki, Ko, Sou]. We will review this classical
formulation in Sect. 2 in a form suited for the applications we have in mind.

The principle of minimal coupling leads to a prescription of how to couple a
quantum mechanical particle with internal degrees of freedom, like isospin in the
SU(2) case, to an external Yang-Mills potential. In mathematical language,
minimal coupling amounts to the replacement of the ordinary Laplace operator by
the Laplace-Bochner operator obtained from the connection, whose Christoffel
symbols just form the given Yang-Mills vector potential. This Laplace-Bochner
operator thus describes the interaction with the “magnetic” part of the Yang-
Mills potential and is of interest in quantum field theory, because in its euclidean
formulation it describes the coupling of Higg’s fields to Yang-Mills fields.

In addition the Hamiltonian may contain a scalar (with respect to space-time)
Yang-Mills potential, describing an “electric” interaction. We present this setup in
Sect. 3 together with some concepts from group theory needed in this context.

In the theory of quantum statistical spin systems it is well known that in order
to obtain the corresponding classical theory when A—0, it is necessary to let the
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representation of the internal symmetry [i.e. the isospin, when the gauge group is
SU(2)] tend to infinity like #~*. Rescaling the Yang-Mills fields by # will then give
a gauge-covariant formulation, which does not contain # explicitly. Therefore
gauge covariance will also hold in the limit.

In Sect. 5, we will show that the quantum mechanical Gibbs partition function
tends to the corresponding classical partition function. In particular, as for the
electromagnetic [i.e. U(1)] case [CSS], the “magnetic” dependence drops out in
the limit, so classically there is also no para- or diamagnetism in the non-
commutative case. The “electric” part on the other hand we will control using
classical limit theorems on quantum spin observables in a form first obtained by
Gilmore [G] and then extended by Simon [Sil]. The method of proof also
employs the stochastic, noncommutative integral formulation for Yang-Mills
potentials to write the kernel of the semigroup of the Laplace-Bochner operator in
terms of the Brownian motion. We combine this with the concept of the Brownian
bridge, so our proof is an adaptation of the one given by Simon [Si2] for the A—0
limit in the electromagnetic case.

Hepp’s version [H] of the Ehrenfest formulation [E] of the #—0 limit for the
equations of motion is powerful enough to be extended to the present situation.
This discussion will be given in Sect. 6. The new input again consists in using
coherent states on Lie groups as given by Gilmore and Simon and already referred
to (see also [K1, Pe]). Note that in Hepp’s discussion, the procedure of taking the
7i—0 limit is compatible with the time evolution in the quantum mechanical and
classical case respectively. Technically, this was achieved by using suitable Weyl
transformations. In the present situation, we use suitable gauge transformations in
addition in order to control the behaviour in the internal symmetry space.

Finally, as in Hepp’s discussion we obtain a description of the quantum
corrections to the classical equations of motion by linearizing the non-linear
Heisenberg equations of motion around the classical orbit. In particular this leads
to a description of quantum corrections to the classical motion in the internal
symmetry space. The necessary group theoretical structures are presented in
Sect. 4.

2. The Classical Theory

In this section we give a brief review of the classical theory of a particle moving in
an external Yang-Mills potential as described by the Wong equations [Wo]. Let G
be a compact Lie group with a discrete center (= semisimple), ¢ its (real) Lie
algebra and g* the real dual of g. By duality the adjoint representation Ad(-) of G
on ¢ induces a representation Ad*(:) of G on g*, called the coadjoint repre-
sentation, by Ad*(g)=Ad(g~)*. 2.1

Orbits of Ad*(-) are called coadjoint orbits. By definition they are of the form
I'={leg*|1=Ad*(9)l,, g G} 2.2)

for a fixed [, in ¢*, i.e. I is the orbit through /,. We define the normalized measure
ur on I' as the pullback of the normalized Haar measure 1 on G:

ur(B)=u{ge G| Ad*(g)l,e B} . (23)
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I is a symplectic manifold, the symplectic structure being given as follows (see e.g.
[Ki, Ko, Sou]). The cotangent space T;*(I') at [eI is naturally associated to a
quotient space of (¢*)* =g by

T*(I) = g/{ac #/l[a,b])=0 for all bey}, 2.4)

with [, ] denoting the commutator in g. If {a} {da'}(a, '€ ¢) are any two elements in
this space, then the skew symmetric quadratic form on T*(I),

wl({a}a {a/}):l([a’ a/])j> (25)

is well defined, nondegenerate and closed.

Let 4,(x,1) (u=0,...,v,xeR", teR) be g-valued functions on R” x R, which for
simplicity we assume to be in Cg. In the phase space T*IR' x I' *R?* x I' (I" a fixed
coadjoint orbit) with points in it denoted by (x,p,)=(x;,....X,s Pys--sDysl)
consider the time dependent Hamiltonian

Heop b= ¥ (A 0P HA )+ V0, 26

where V(x) is a real valued C* function, whose further properties will be specified
below. With the symplectic structure on T*R®X I, this Hamiltonian gives the
following Hamiltonian equations

mx;=p;+UAx,1)),

2.7
== (o A DDA, )= 10 Aol 0) =0,
@) =04,0x, 01 1)+ 104 5 0) + (L Aol )., @9

(aeg) and we have adopted the Einstein summation convention. Equations (2.7)
and (2.8) are often referred to as the first and second Wong equations, respectively.

Let now g(x,t) be a C* G-valued function on R"xR and consider the
transformation on T*R” x I' given as

(e, p, )= (x, p—Ug(x, )og ™ *(x, 1)), Ad* g(x, 1)]), 2.9
and the gauge transformation
A,—004,  (u=0,...,v), (2.10)
with
194, (x, 1) = Adg(x, ) A4,(x, 1)) + g(x, )8, '(x,1), (0,=0,). (2.11)

As usual we view g(x,1)d,9” '(x,f) as an element of the Lie algebra [since
0,9 '(x,0)e T, ,G, and g(x, 1) induces a map of T, ,G onto T,G=g4]. With
this notational convention we also have

Adg(x,1)d, Adg™'(x,1)=ad(g(x, 10,9~ '(x,1). (2.12)

It is an easy exercise to see that the equations of motion (2.7) are gauge covariant
in the sense that their form is preserved under the simultaneous transformations
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(2.9) and (2.10). Of course this follows also from the invariance of both the
symplectic structure and the Hamiltonian under such transformations.
The Egs. (2.7) in particular lead to the Lorentz equations in the form

mx ;= I(F (X, )%, + I(Fo,(x,0)— 0,V , (2.13)
with
F/lf = a#Af - arAu + [A;p Az] . (214)

Since the coefficients in the first order Egs. (2.7) and (2.8) are smooth, to any initial
condition (&, @, 4), there is T>0 and a smooth solution (&, 7', 4') of these equations
for |¢| < T with initial data (£, 7, A). For the applications we have in mind it will be
convenient to express this local solution in a different form. For this purpose we
replace Egs. (2.7) and (2.8) by the following equations on R** x G3(x,p,g) (el
fixed):

mx;=p;+A(Adg™ A, 1)),

b=~ -+ A(Adg ™ A ) AHAdg ™ 3,45 0)
— J(Adg™18,Aglx, 0) — 0,V (), @7)
1
gog '= - A (%, 0)(p, + A(Adg ™ T4, (x, 1)+ Ay(x, 1) 2.8)

If (&, n',9)e T*R" x G(|t|]<T) is a solution of Egs. (2.7) and (2.8') with initial
conditions (&, m, e), then (&, n', A' = Ad*y'4) is a solution of (2.7) and (2.8) with initial
conditions (&, 7, A). It is possible to formulate a converse statement which, however,
we shall not need.

3. The Quantum Theory

In this section, we give the quantum mechanical formulation for nonrelativistic
particles moving in an external Yang-Mills potential. For simplicity, we will
restrict attention to the case where the A, are time independent, although it is
possible to extend our discussion to the general case.

Let m be an irreducible, unitary representation of G with (complex) Hilbert
space h,. We will also use the symbol 7 to denote the resulting representation of
the Lie-algebra 4 as well as its complexification ¢. By #,=L*(R",d"x,h,)
~I*(R", &’x)®h,, we denote the Hilbert space of all square integrable functions
on R” with values in h,. For given A4, consider the operator

hz
H!,=— —(0,4+m(A(x)*—ihn(A4,(x)+ V(x) (3.1)
s 2m J J
on 4, This will be the operator we will consider in the context of taking the
classical limit of the Gibbs quantum partition function

Zy . w=(dimh,)" " Trace, exp—fBH,,. (3.2)
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To guarantee that Z, , , is finite for all §, we will assume that
fexp—BV(x)d*x < o0 (3.3)

for all f>0. Then the Golden-Thomson-Symanzik inequality [Go, T1, T2, Sy]
and the Kato-Simon inequality [Ka, Si3] for Yang-Mills potentials [HSU] easily
combine to give the classical bound in the form

WZ, . w=(2m)""exp {,Bh stlcp (A )l } [ exp—f8 (§—m + V(x)) d'xd’p. (3.4)

To discuss the A—0 limit for the equations of motion, we start by inserting #
symmetrically into the quantum mechanical p and g observables by defining
(see [H])

HZ?,=— é%(hl’zéj—l-hn(A (R — ihn(A(R2X) + V(RY2X).  (3.5)

Note that H. , and H? ; are related by the unitary scale transformation
(T(hyp)(x)=h"*p(h'2x). (3.6)
Indeed, we have

T(hHL ,T(h)™ ' = H? (3.7)

n,h

For a time independent G-valued function g(-) on IR”, set

(m(g( ) (x) = n(g(x)) p(x) (3.8)

for ye #,. As before, let '4, be given by (2.11). Note the #-independence of this
prescription.

If we write out explicitly the 4, dependence of the Hamiltonians, we have
gauge covariance in the form

n(g(- VH; (A (N~ () =H, ,(V4,(), i=12. (3.9)

In particular, the (equal) spectra of H;,h(Au(~)) are gauge invariant and thus also
the particular function Z, , ;. We note that a similar property pertains to the
resulting scattering matrix [CKS] for a large class of 4, and Vs.

4. Coherent States and Classical Limits on Lie Groups

In order to perform the classical limit, we will let the representation vary with 7.
This section contains the relevant group theoretical properties needed, some of
which appear to be new. They will be applied in Sect. 5 and 6.

First choose a Cartan subalgebra ¢ of 4. Let [, be a fixed fundamental weight
(see e.g. [Sil] for a brief exposition of this and related concepts we shall use). For
each natural number n, let 7, be the irreducible, unitary representation of G with
maximal weight nio and (normalized) weight vector y,; in the representation space
h,=h, ofdimension d,.y,; maybechosentobethevectory; ®...®y; (n factors)in
the n-fold tensor product of h,, where y;, is the weight vector of maximal weight [,
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Then h, is the subspace obtained by applying X)7,(g) (g€ G) to y,;. With this

n
identification, =, is the restriction of (X)m, to h,. The relation [G, Sil]

Wil eXp7, (@) [,5,) = <Yy expry(a) vy )", a€G (4.1)

will be crucial in our discussion.
Since every element of gz, may be mapped into ¢, the complexification of ¢, by
some Adg, we have

Iz )l =ncliall, aeg, 4.2)

with a fixed norm on g,.
By l,, we will also denote the element of £* with the properties

ly(@y;, =m,(@)y;,, ace,
[(@=0, acc, (4.3)

where * denotes the orthogonal complement with respect to the Killing form.
Equivalently [,(-) is given as [Sil]

lo(@)=<w; | @,y acg,. 4.4)

Note that I, is either zero or purely imaginary on g. We let [, = — il, and define I
to be the coadjoint orbit through I in g4, such that I'= —iI" is the coadjoint orbit
through /. In the beautiful results of classical limits for quantum spin systems
[FL, Li, Sil], the main observation is to use the representations in the com-
bination n~ 'z (-) when letting n tend to infinity. We will also employ this
procedure. Moreover, by our definition of the quantum mechanical Hamiltonians,
we are thus led to the following relation between # and n:

nh=1. 4.5)

As a consequence, in our applications the representations will always show up in
the form Am,(-) with a fixed but arbitrary 7,. Note that in abelian case, #im,(-)
is independent of n, if Relation (4.5) is satisfied and equals =,(:) (up to an
isomorphism).

To describe the n—oco limit, we introduce coherent vectors in the form
emphasized by Gilmore [G] and applied by Simon [Sil]. Let P, (e) be the
projection onto the space spanned by the vector y,;, and for any ge G, consider the
one-dimensional projections

P(9)=m,(g)P,(e)m,(g) " . (4.6)

If we let [= Ad* gfo, then P,(g) depends on ] only, so we may set Pn(f)an(g) and
the following completeness relation holds [Sil]:

d,{P,(hdpz(D=1, . @.7)

The states defined by these projections are called coherent states. The first part of
the following lemma is due to Gilmore [G].
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Lemma 4.1. For any acg, lel’
lim trace, P,(e" () _ PCH (4.8)

Moreover, there is a constant ¢, depending on I' only, such that

ltraceh"Pn(i) (en"(ﬁ) — ei(a)> <cn” Y2 all(| ZII + c)ellall(llill +o) (4.9)

Proof. 1t suffices to prove the bound (4.9), so using estimate (4.2) and Schwarz
inequality, we estimate the left hand side as (I=Ad* glo)

; Pn(i)esn"(g) Ha-la (nn (%) — f(a)) ds

0
< Gl il trace, P, () (nn (g) - i(a)) (nn (g) - i(a))*

< ellalle ity trace, P,(l,)

~(7cn(Adg'1%) ~1, (Adg"a)) (nn(Adg”%) ~1, (Adg‘la)>*. (4.10)

Now for be g,

5= Y ¥, Om, (B, , (@11)
j=1

where in the j* summand =, (b) acts on the j® factor. Inserting this into estimate
(4.10) allows us to rewrite this estimate as

1 1/2 A
((I’l(nn )_1)}]( )’2+’—2‘”T[1(Adg‘1a)|wlo>” ) écn—1/2”a”(”l”+c), (412)

where we have used Relation (4.4). This proves Lemma 4.1.
When we combine this lemma with the completeness Relation (4.6), we obtain
the following lemma, the first part of which is due to Simon [Sil]:

Lemma 4.2. For any a€g, and lel
1 (2 . A
lim T trace,, e () [ @duxl). (4.13)

Moreover, there is a constant c, depending on io only such that

dat tracehne""(?)— f efw’duf(l”)( <cn V2 g ecllall, (4.14)

The preceding lemmas show how =, (ﬂ) approaches i(a) in the coherent state
n

labelled by I The next results, which seem to be new, describe the fluctuations of
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T, (ﬁ) around i(a) in the coherent state labelled by I. For this purpose, we introduce
n

the quantity
@, (a)= —in'"? (nn (g) - A(a)> ’

and the bilinear forms

<a,by,= —trace, P,()(n,(a)—la))(n,(b)— (b))

on g, and labelled by I
We have the following covariance property:

(Adga, Adgb) g4, =<a,b,.

Choose 6 =4(I') such that

(@)~ Ka)| <6 lal
for all leI". Thus

[<a,ay|<6%|a].
Also set
trace, (P,()) =D, .-
Lemma 4.3. For any acg,, lel’
lim (expi®, (@), =exp—}(a.ad;.

Moreover

[Kexpi®, (@)Y, ,—exp—3<a,ay|=22n" "33 |af))® Ml

for all n=4(5 |all)>.
Proof. By Relation (4.1)

Kexp i¢n, z(a)>>n, 1 =(Lexp i¢1, (n~ 1/2a)>> 1, D

so we introduce the quantity
G(s)=trace, P,(j)e* '@ ~l@,

Now
1 1
Gls)=1— —=<a,ay,+G(s)
2s
with

S ollal
IGio= X (k!)‘l(s‘léllall)"éé(M)seT

k=3

4.15)

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)
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from which the first part of the lemma easily follows. From now on, we will assume

s=Max(1,26]|al]). 4.27)
But then
p)
IG(s)| <1 ( lla“) (4.28)
s)|=1. (4.29)
In particular
|G(s)|** < e?llall* (4.30)

To prove (4.22), it is obviously sufficient to show

3
'i G(s)*” §22(5”+”)e‘52”“”2. (4.31)
ds s
But
2 65y = (2 InGs) + =69) G0
I s s s o) s
Using (4.26) and the estimate (4.29), we easily obtain
s dGY(s) 1
I < 3
Go) ds =4 al) 7 (4.32)
Furthermore, the estimate
(1+2)"'—1|=2]z] for |z=% (4.33)
gives
5 2
[G(s)" ' — ugz(—":—“) : (4.34)
Hence
_ 1 1
s*G(s)™ ! (— a<a a>1) =—{aay+ G*(s) (4.35)
with
(3 3
62(s) =2 “S‘;“) . (4.36)
The estimate
In(1—x+y)+x|=2(xI*+2[y)) for |x|<g, <3 (4.37)

leads to

InG(s)= 2_—S§<a, ay,+G3(s) (4.38)
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with
(6]lal)?

s

[2sG3(s)| < 16 (4.39)

Collecting terms yields (4.31), concluding the proof of the lemma.

Remark. We note the close similarity of the first part of Lemma 4.3 and its proof
to the content and one of the proofs respectively of the central limit theorem in
probability theory (see e.g. [Si2]).

We want to give some further insight into the properties of @, , for n large.
First {, »,, as given by (4.1) is positive semidefinite on g, so let g,=g/ker{, >, We
claim that ¢, may be identified with T7;I, the tangent space to I" at I. To see this,
consider the surjective map 1, : g— T,I" given as

ya)=l-ada. (4.40)

We have to show that
ker{, >, =kery,. (4.41)
By (4.17) it suffices to restrict attention to the case [=1[,. Now if a is in ker, , then

(@) 7y (b) [p(t)) = wi, | 1y (B) [z, » (4.42)
for all ¢ with

[w(t)) =exptn,(a) lw;,

as follows by differentiating the left hand side of (4.42) with respect to ¢. But
Relation (4.42) is only possible if [p(t)) is a multiple expzz of [y; > [Sil], so in
particular n,(a)lw;, > =z|w;,>. By the definition of [y(a), this gives aeker{, ),
showing keri, Cker<, ), .

As for the converse, assume now aeker<, », . By the Schwarz inequality, this
means that

(@) i, =Tola) vy, -

In particular, this yields

Syl [y (@), 7, (B)] fpy, > =0

for all beg, showing ker(, >, Skery, , proving our claim.

By construction (-, - ), induces a positive definite scalar product on g, which
we continue to denote by the same symbol. Also let ¢ be the real dual of g, g/ s,
of course, linearly isomorphic to T;*I, the cotangent space to I" at I. Let {, ), also
denote the scalar product on g obtained by a duality transformation from {, »,
on g, Let dt (tegf) denote the Lebesgue measure on g and consider the
probability measure

do(t)=N"1texp—3{1,1)dt, (4.43)

N being the appropriate normalization factor. Now let ae 4. Then by our previous
discussion [, =lcada is an element of g, =~ T,I. Furthermore, let {a}ezy} be the
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image of aeg under the homomorphism given by (2.4). With this notation
established, consider the selfadjoint operators @,(a) on L*(¢}, do,), indexed by a€ »
and defined as

(@™Of) (1) =e" ™S (t+3{a}) (4.44)

for fel*(gf,dg). Since {a}(l,)=—1U[a,a’]), we have the Heisenberg com-
mutation relations

(i@ giia) — T o %l([a’ “ , (4.45)

or in infinitesimal form
[®/(a),Pa)]=—il[a,a]). (4.46)

Of course, we also have
Da+d)y=Dfa)+D(a), D(ta)=tPfa). 4.47)

Because of these relations, we view these operators as quantizing the symplectic
structure discussed in Sect. 1. Let furthermore - ), denote the expectation of an
operator in L*(g}*, dg;) with respect to the state given by the wavefunction, which is
identically equal to one on gf.

Then by (4.44) BN
(@Y, = N1~ 2 g, (4.48)
To evaluate this integral, let [F ey be such that t(l)=<z,1F>, and therefore
AF ¥y, =,1>,. Then, by standard calculations on Gaussian integrals, we

a’’a

obtain _1 4 _1
(e = 2 Aditdn = man (4.49)
Therefore, the first part of Lemma 4.3 takes the more suggestive form
nlgg Lexpi®, (a)), ,=<LKexpi®(a)D,. (4.50)
The relationship between @, ; and @, goes even further. Note that
L
[2,,/(a), 2, (a)]=—1I, (E [a,a ]) , (4.51)

which formally tends to (4.46) as n— co. In fact, by extending @,(a) to ac g, in the
obvious way, we have

Lemma 4.4. For any a,,...,a,€¢,

k k
i ({1 0, = ( f] o) .
n— o k=1 n,l k=1 1

In fact, there is 6, =0,(I') such that

k ) k ) _1 6? k e 2
<< l_[ el‘pn,l(alc)>> —_ << ]_—[ elq7l(ax)>>' g 14" 8 e (w§1 ” H) . (4.53)
k=1 n,l k=1 1

k 8
provided n= (61 Y ||aK]|> .
k=1
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Proof. We want to rewrite the expressions involved such that Lemma 4.3 may be
applied. Now the right hand side of Relation (4.52) equals

k .
i® ,c L ,
X=<<e' L >e29<5§k'“““’“9 Y (4.54)

To rewrite the left hand side in a comparable form, we will use the Baker-
Campbell-Hausdorff formula as follows: Given the group G, thereis 0<gy < 1,00 > 1
and a map b:g xg,—~g, with the following properties: For all a,a' with
lall +lla'll <&,

expaexpd =exp(a+d +1i[a,d]+b(a,a)) (4.55)
with
Ib(a, @) <o |lal [la'[ (lal + [a']). (4.56)
By modifying « if necessary, we may also assume that
I3[a,a]| salall |a| (4.57)
for all a,d'€4,. Next, define a* and b* (1 <k <k) inductively as a* =a,, b' =0 and
expn” Y2a"=expn~ 2a* " lexpn~V?q,, (4.58)
b =b*" 1 + nllzb(n— 1/2(ax— 1 -l-bK* 1)’ n- 1/2aK)
n” 1/2 n- 1
+ b Yal+— Y [lapa,la], 4.59)
2 4 e<g@'=k—1
such that we have the alternative relation
n— 1/2
b=a"— 3 a,— 5 Y, [a,a,l. (4.60)
sk e<e¢' sk

Note that this definition makes sense for all large n and fixed a,, ..., a,. We want to
estimate g* and b¥, so we proceed by induction:
la*l < la™ ' +lla ) +n~2alla* ! lla,]
+n~ o2 @ la (e~ + llalD,
B[ S~ M +n” e (la ™ i+ 1657 la
(a1 +llael + 157 1)
+n” 2|65 g, +n"10¢2( > IIaQH>2 lal . (4.61)

esk—1
Now let n be so large that
4n~ V20 Y Jla,llSep<1. (4.62)
esk

Then an easy induction argument shows that

lall < lla, i +2 % llagll, (4.63)

[
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and

B[ =n=>* . la,ll. (4.64)
e=kK

Now we write

Y= << ﬁ eXpi¢n,l(ax)>>
k=1 n,l

=<<expid5n,,(a")>>n’,exp[in”zl(b")-l—il( Y [ag,ag,])]. (4.65)
2 \e<osk
Let
,_l<ak aky, l
Z=e¢ 27" exp in1/21(bk)+—l< Y [ag,ag,])}. (4.66)
2 e<eo' =k

Then by Lemma 4.3, (4.62), and (4.64)

k 2
IZ—Y|§6n‘“8exp[(6' )y uagn)
e=1

, (4.67)

if we choose o so large that a>|I|| and (8')>=46%+a|l|| for all [el. Again,
Relations (4.62) and (4.64) give

k
leinl/zl(bk)_llé4n—1/4 Z ”aenén— 1/8‘ (468)
e=1

Also by (4.60), (4.62), (4.63), and (4.64)

k k k k 2
d,dy,— < Y ap 2, ag> §3< > ||agll><n‘”2a( > |Iag||) +llb"ll) sn~ '8,
e=1 e=1 1 e=1 e=1

(4.69)
Therefore, we obtain
k 2
X —Z|<8n Y8exp Ké/ > “%”) } (4.70)
=1
Combining (4.67) and (4.70) proves the lemma once we choose
o
0, =Max (5’,——). (4.71)
&g
In an analogous fashion, we obtain uniform bounds in the following form
Lemma 4.5. There is 6,=0,(I') such that for any a,,...,a,€ g,
k k 2
<<n expi@n,,(ak)>> _S_exp6§( Y |\ax||) , 4.72)
k=1 n,l k=1

provided

ngég(i IIaKH)Z. 4.73)
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Proof. We slightly modify the arguments of the proof of Lemma 4.4. Replace
condition (4.62) by the condition
k
4n~ 2y la,ll<e,<1. (4.74)

e=1

Then (4.63) still holds, proving the lemma with 6% >Max (52 ) The next

&o
two lemmas allow us to prove convergence rates and bounds of the moments
in a form we will need in Sect. 6.

Lemma 4.6. There is C,=C,(I') such that for all Aoy Qs -y G4EZ,

<< H ?, (a.)expi®, (a,) H ?, (a )>

k=ki+1

<<[1q> (@)expivfar) 1] @a, )>>|

k=ki+1

<n” Y5, ( I1 ua,cu) KeeCtllool?, (4.75)
k=1

provided n=(C,(1 +||a,[)*)>

Proof. The proof follows from an application of Cauchy’s theorem. Indeed,
consider

Sz 2)—S(zy, -0 2)

ky k
= << [1 expi®, (z.a,)expi®, (a,) ][] expi<15,,,,(z,ca,\.)>>
n,l

k=1 K=k +1

ki k
- < [[ expi®(z.a)expi®fa,) [] expid(z.a, >> (4.76)
1

k=1 K=ky+1

Then, the left hand side of (4.75) is the absolute value of

k d
11 ( 7 )(S”—S)(zl, s Zp) , 4.77)
k=1 Zye 2e=0
and hence bounded by
L |
(H 7)} s?p I(S"—S)(zy, s 2. (4.78)
k=1 T/ 12| =¥

Since we may assume q, +0, we take r, = (k| q,[)”'. Hence, estimate (4.75) follows
from Lemma 4.4. q.e.d.

The expectations of monomials of order k in the @, with respect to - ), show
the typical k¥? behaviour of operators satisfying Heisenberg group commutation
relations or of Gaussian random variables. In order to obtain the convergence
factor n™*/® in (4.75), we had to pay a price, namely a k* behaviour only. However,
the next lemma shows that we may obtain bounds on expectations of monomials of
the @, , of the desired form which are uniform in n.
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Lemma 4.7. There is C,=C,(I') such that uniformly for all n, all a,, ...,a€ 4, and
Go€g

k1 k
<< 1—[ @n’ l(ak) exp igpn,l(ao) n @n, l(ax)>>
k=1 n,l

K=k +1

S(Co(L+[lag | ?)y2eCalleel ﬁ lal . (4.79)
k=1

Proof. As in the proof of Lemma 4.6, we bound the left hand side of (4.79) by

k
(]—[ r;1> sup [S"(z,...,z,)l.
k=1

|zse| =rre

Now choose r,, =(W la.])~!. By Lemma 4.5, the bound (4.79) now follows for all
n2382()/k+la,|)? On the other hand, since expi®, (a,) is unitary for a,€ g and

12, (a) <C'lla, | n*/>(C" =C'(I"), for all n=62(]/k+ ||a,)? the left hand side of
(4.79) is bounded by

k
[T (Clla, i) =(C'63(1 + [l ao|)*k)"2. (4.80)
k=1

This proves Lemma 4.7.

We conclude this section with a trivial remark which, however, will be useful
for our discussion of the quantum fluctuations around classical orbits, to be given
in Sect. 6. We note that @(a) and ®,,.,(Adga) satisfy the same commutation
relations and have the same expectations. In fact, it is not difficult to construct a
unitary equivalence given by a unitary operator Ad~ g

Ad~yg ZLZ(yl*,dQl)—)Lz(gZd*gl, dQpgeg) s (4.81)
such that
Ad~ gd(a)(Ad~g) 1= D p4r,(Adga). (4.82)

5. Classical Limits for Partition Functions

We define the classical partition function to be

2

(4 -V v v p

Z§ 1 =(2n) [ d'xd’pdur(l)exp—p <2~ +V(x)+ I(Ao(x)). (5.1
R2V XTI m

We recall that by our assumptions the Yang-Mills potentials are C3. Also we

assume the condition (3.3) on the scalar potential ¥V to be satisfied. Therefore these

assumptions imply that Zj,{ r 1s finite. The aim of this section is to prove

Theorem 5.1. With the above assumptions, the scaled quantum statistical partition
function converges to the classical partition function
lim #'Z, . =Zj . (5.2)

h—>0
nh=1
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Proof. By performing the p-integration in the defining relation (5.1), it easily
suffices to show

lim  ¢%d; ! Trace, e “0=02m)™ [  dxdpr(l)exp—B(V(x)+UA4y(x))
n=(lomty - 112 R
hz (53)
where t=-— and
m

H(t)= %i 3, +m(4) (ZA(,) +§V. (5.4)

We now give a representation of the kernel of exp — tH(t) in terms of the Brownian
motion. Let w be a Brownian path from x to y in time z. To simplify the
presentation, we now assume that G (and its complexification G,) is a matrix
group. Let g,(w)e G, be the solution of Ito’s stochastic differential equation [Po]

go(@)=1+ f{ Y. dw(s)A (o(s)) +ds[ g (0,4 ((s)) + A (((s))*]

- £Ao(w(5))}} gw); O0=t'st. (5.5)

Then the kernel of exp—tH(t) may be represented by

t

JaP, @) exp| & [ Vi) a, ), (5.6)

where dP', (o) is the conditional Wiener measure. In order to estimate n,(g,(w)) for
the interesting case x =y, we rewrite g,(w) with the help of the Brownian bridge o)
(see e.g. [Si2]).

g,=1+ tft{w Z dou(s)A,(x + |/ tod(s))
0 ji=1
+tdsy Z [0,4,0c+ )/tas) + A, (x+ |/ t(s))*]

—igds'Ao(x+ toc(s))} G- (5.7)

If we iterate this once and use the abbreviations
=|/Bm A (x+ |/tols)),
o, = PAx+ )/ ta(s)), (5.8)
v, =BV (x+ |/ tas),

and the relation t=n"?pm" !, we obtain

+0(n~ 2)} , (5.9

gt=exp{[} <§v: do. (s)a] S) %dsao,s
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where O(n~?) denotes an element in ¢, of norm O(n™~ 2) uniformly in a. By (4.2) this
gives

7,(g,) =exp {[i ;11- '; dom,(a; o) — %dsnn(ao, s)} +0 (%)} , (5.10)

1 1 . .
where O(;) now denotes an endomorphism of 4, of norm 0(;) uniformly in .

Let E,(-) be the expectation with respect to the Brownian bridge. Thus

_x—vP

j-dP;’y=(2nt)"”/2e 2 E (). (5.11)
In the appendix we will give a proof of the following lemma

Lemma 5.2. For any ¢>0 there is n(e) such that for all n=n(e)

1 v o1
di [d’x trace, {Ea (exp [ - (in,l (% ao,s) + vs) ds+ Y, [, (% a;, S) da(s)

n 0 j=10

|

- x) — 1, nnl o(x
e (n’”’)} <e. (5.12)

Therefore, to prove Theorem 5.1, it suffices to show

1 —ifn, L ofx
lim - [d'xe™""® trace, e oo 90) (e s (s 13)

-
h— 00 n

But this follows easily from Lemma 4.2 and the Lebesgue bounded convergence
theorem.

We note that Theorem 5.1 may also be extended to the case which includes an
external metric field. The way is to combine the methods used here with those
applied in [Ho], which control the metric field. An entirely different proof which
covers all such external fields simultaneously will be given in [ST].

6. The Classical Limit for the Equations of Motion

In this section we extend Hepp’s discussion [H] of the Ehrenfest solutions to the
motion in external Yang-Mills potentials. In particular we will determine the
quantum fluctuations around the classical solution. We incidentally remark, that it
is possible to include external metric fields simultaneously, the case of external
metric fields alone having been discussed in [Ho]. To simplify the proofs we
assume in this section that V' (together with the 4,) is Cg, although extensions to
more general V (and 4,) are possible.
Define Weyl operators

U(x)=expi(o-b—a*-b*) (6.1)

with b*, b being the usual creation and annihilation operators for the harmonic
oscillator

bj=(qj+ipj)2_1/2’ (6.2)
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and
o;=(¢+im)27 12 (6.3)
for (¢, m)eR*. Also g, is the multiplication operator by x; and p,= —i0,. We have
Ue)bU(a)*=b—u. (6.4)
Also we set
a,=h"?q, p,=h""p (6.5)

and (see Sect. 3 for the definition of H7)
U,(t)=exp— %H,ft, (6.6)

by which # is introduced in a symmetrical way. Again we fix I" to be the coadjoint
orbit —il, where I is the coadjoint orbit in g, through the fundamental weight
l =il,. We recall from Sect. 2 that (&, 7", y") and (&, #', 2') for |¢t| < T are solutions of
the Wong equations with initial conditions (¢, 7,e) and (¢, m, 4) respectively such
that Ad*y'A =A% We set 1 =iA, A'=iA and of =(&'+in")2” ¥/2. To obtain the ansatz
for the Hamiltonian describing the quantum fluctuations, as in [H]J we will expand
the Hamiltonian around the classical orbit. The quadratic part will give us the
desired operator.
More precisely consider

Hi(t)=U(h™"2oy*n,(y')* Hym,(y)U (™ 120r)
1
= 5 (0" 2p i, (Ady) A, g + &)
+ V(g + ) — ifm, (Ady) ™ Ag(h g +EY). 67

In order to expand this around (&, 7', '), we recall the definitions of the quantities
?, (nh=1)

@, ,(a)=h"*(—ihm,(a)— A(a)) (6.8)

for ae .. Using the Wong equations for (&, 7, y") we obtain
¢’ d )

Hf% = Hcl(ét’ Tct’ /V) + hl/z ( dt pJ dt j qJ

+hd, ((Ady‘)‘ 1)1‘;1,;())’)’ 1) +hH"(6)+ 7B (6.9)

The quadratic term H'(t), which will describe the quantum fluctuations, is given
as

1
3, it 404 AN + @, ,(Ady) 1 A4,E)?

H ;1(0 =
1
+ o (G + A ASEDH 004, E Vg + P, 2 (AdY) 10,A4,(&)g,)

D, (Ady) ™! akAO(ét))qk + %lt(akale(ﬁt))Qle + %6kal (&4, -
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H';(t) has the following structure: It is quadratic in g, p, and @, , (a “harmonic”
oscillator) with coefficients (including Lie algebra elements) which depend on 4,
and V and its derivatives evaluated at (&, 7', 1'). In particular these coefficients are
bounded for |t| < T. Finally B’ is of the form

B'= Z aijk(ta B h)Xi(n)Xj(n)Xk(n) . (6.11)
1=i,j,k22v+dimG
Here {X(n)}; <;<2v+aime 15 the family of operators g;, p;, and @, ;(e,,) enumerated
in an arbitrary way (e, a fixed basis in g). The a;;(t,q,/) are C* functions in
t (It} < T) and g, uniformly bounded in #.
To state the main result, let @,(-) be the operators as defined in Sect. 4. Then
H ,(t) obtained by substituting @, for @, , in Relation (6.10) is of a harmonic
oscillator type and thus is easily seen to have a dense set of analytic vectors in the
Hilbert space %, =L*IR",d"s) ®L*(¢¥,dp,). Therefore this operator defines a
selfadjoint operator also denoted by H ,(t). Let q(t), p(t), and @,(t)(a) be the
unique solutions in the Heisenberg picture in &, to the operator differential
equations

& =it Hy 0] 6.12)

with initial conditions g;, p, and ®,(a) respectively. g,(?), pi(t), and ®,(¢)(a) may
alternatively be given as follows. Consider the unitary operators:

t
W(t,s)=Texp—i|H ,(u)du, (6.13)

where T denotes time ordering. As in [H] the existence of the W(z,s) and their
differentiability properties may easily be established using the Dyson series on a
dense set. Then

£(t)=W(t,00*f W(z,0) (6.14)

is indeed a solution of the Heisenberg equation (6.12) with initial condition f, as
follows directly by differentiation.

We want to make an additional comment on Eq. (6.12). One might be
tempted to introduce the operator H (t) on Z;. obtained by substituting @,.(-) for
?, ,(Ady)~ 1) in (6.10). H\(t) on Z;. and H,(t) on ¥, are of course unitarity
equivalent, as follows from the concluding remarks of Sect. 4. It turns out, however,
to be more convenient to work in the fixed space .%;. In particular the Heisenberg
equations are in a sense equations obtained by taking covariant derivatives of
operators in the bundle {.%,},  of Hilbert spaces over the coadjoint orbit I'.

We are now in a position to formulate the main result of this section. In what
follows -, [see (4.20)] is considered to be a linear operator, which maps
bounded operators in #, into bounded operators in Z*(IR", d’x). Similarly € -,
maps bounded operators in %, into bounded operators in I*(IR*, d"x).

Theorem 6.1. For any (r,s)eR?", ac 4 and |t| < T<T (T> 0 depending on the initial
conditions only)
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S- ;liing <<U(h— 1/20()* U,,(t)* expir(q —h™ 1/2§t)+ is(p~ h- 1/2nt)

nh=1

-exph~1/2 (7'c,l (g) - Z'(a)) U, ) U(h~ 1/Zoc)>> (6.15)
n, A
=expi(rq(t) +sp(t)+ @,(t) (Ady") " 'a))),,

s-lim <<U(h‘ 20)*¥U,(¢)* expi(rq, + sp,) expm, (%) U, (U~ 2oc)>>

h—>0
nh=1 n, A

=expi(ré +sn' + 1(a)). (6.16)

Proof. Asin [H], (6.16) is an easy consequence of Relation (6.15), so we introduce
W,(t,s)=Uh™ 2oy (y')* U, (t— s)m, (y)U(h~ V2« s)exp le(r)dr, (6.17)

where

) d . _
Hy(r)=H (& 2", A) = (v’d—r(y ) 1>. (6.18)
Then the expression on the left hand side of (6.15) may be written as

KW(t,0)* expid, ,((Ad A~ ra)) expi(rq +sp) W(t, 0)», 4 (6.19)

We will need another set of unitary operators, given in analogy to W [see (6.10)]
as

t
W(t,s)=Texp—i | H"(r)dr (6.20)

on A, . Since for fixed n, |7, (a)l| =n|all by (4.2), the existence of these operators
follows as in [H] using a Dyson series on a suitable dense set and extending. In
particular W,(z,s)ly, > is strongly differentiable in ¢t where |y, > is of the form

P (X)=n""2exp—(x—x0)*/2®y  (weh,) (6.21)

which form a dense set. Also VV,,(t, s) [, is in the domain of any polynomial in the
4 pj and @, ;(a) (aeg). Our first aim is to replace by W, by W, in (6.19) when
considering matrix elements between states of the form ¢, and ¢, with

¢ (X)=n""?exp—(x—x,)?/2. (6.22)

To estimate the resulting error, consider

(Wy(t,0)— Wit 0) > = ji(W(ts (5,0 [, >ds

-

=i [ W(t, ) A°W(s, 0) [y, >ds (6.23)
0

with
A= P2 HY) 4, (5)+ Q,(s)— Hyls)— h™ "HL(s). (6.24)
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Here
1 s\—1 d S > sy—1 S d sy~ 1
Q,(5)=~n, ()" ) - m, () =im, | (AdY) " (P — ()], (6.25)
i ds ds
h—uz s*l d h 1/2 s fl 1/2 d s 626
Q,(s)=U( o) T s U( o) = I qu——é,p, (6.26)
Hence, by (6.8), (6.9), and (6.18), we obtain the estimate

0900~ (e 0) b, Y Sh sup BTG50l (627

We are interested in obtaining a bound of (6.27) which is uniform in #, namely for
the special case v, =y}, , with

v/

Wi, X)) =12 exp—(x—x0)*/2@7, (90,5, » (6.28a)
where y,; is as in Sect. 4 and ge G satisfies
Ad*gl,=1. (6.28b)

Note that Pn(i) is the projection into the one-dimensional space spanned by
(9w, To obtain the desired bound, note first that with the notation employed
in (6.11) H',(¢) may be written as

H\(0)= ) A (0X (X (), (6.29)

where the n-independent, complex valued functions A, () satisfy

sup 4,8 <C (6.30)
ltl=T
LJ

for some C < oo uniformly in n. Now the Dyson series for W(s,0) takes for form

S S1

Wi(s,0) [y > = Y= ... ds,,...ds H'y(s,)...H(s,) Wy, > . (6.31)
m=0 00 0

Therefore (6.11), (6.30), Lemma 4.7 and the analogous harmonic oscillator

estimates for expectations of monomials in the ¢; and p; in the state ¢ give

B0, I < 30 bt

©)" " 1m+4" 2 i, Sl (6.32)
for some new C>0 independent of n. Now the right hand side of (6.32) is
absolutely convergent for all ISIST= T(T>0 independent of n) by Stirlings
formula. Combining this with (6.26) we obtain

lim A% [(4(2,0) = W(t,0) i, > =0 (633)
nh=1
for all [t| < T. As a consequence, to prove (6.15), we may indeed replace W(t,0) by
W(t 0) in (6.19) and look at the resulting matrix elements between any states ¢,

and ¢, (6.22). We recall that norm boundedness and weak convergence on a
dense set implies strong convergence. Hence we have to show that
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Fln, 1) =<y, | Wy(t,00* expi(rq + sp+ B, , (Ady") ™ L) Wy(t, 0) [y, >

— | KWL, 0)* expi(rg +sp + @, (AdY) @) W(L, 00, 16> - (6.34)
Satisfies

Lim|F(n,t)|=0 (6.35)
for all |f| = T To see this, we expand both terms by writing down the Dyson series
for W(t 0) and W(t,0) respectively. Again by Lemma 4.7 and harmonic oscillator
estimates for monomials in the g; and p; these series are uniformly convergent in n.
If we combine the corresponding terms of each order, their difference vanishes as
n—o0 by Lemma 4.5. Hence (6.35) follows by the Lebesgue dominated con-
vergence theorem. This concludes the proof of Theorem 6.1.

Appendix A

In this Appendix we give a proof of Lemma 5.2. Choose some large R, K >0, (they
will be specified more below) and let

i( ( ag, s)+v)ds+jjz T (i ,S>daj(s)}.

fdx trace, {Ea(F (o, 1)) —exp—f ( Vix)+in ( O(x)))},

F(o, t)=exp| —

Then

<c¢, | d”an<xR(oc) F(a,t)~exp—[3< (x)+m( (x)))
|x| <K

tey | dxE (@) [ Flos 1))

|x[>K

+ey Jd'XE, (1= 1) @) | F(e, 1)ll)

+ey | d'xe” V)
[x|>K

e E((1 = 2p) (@)
=T+II+II+IV+V. (A2)

)

Here j(a) is the characteristic function of the set {a ||, =R} and we have used
assumption (3.3) and (4.2). We first estimate the expectation in 1. The estimate

le”— ef| S e%|a— fl el (A.3)
for real numbers o and f§ and
et — e < || A— B i+ imi (A4)

for matrices 4, B combined with estimates (4.2) and our assumptions on the 4,
give
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E, (XR(oz) F(a, t)—exp— ,B( V(x)+in ( x)))“)

<c,exp— BV(x)E (xg(®)(B, + B, + B;) exp(B, + B,)), (A.5)

where

= g (v, — BV(x))ds] »

1
B2 = j(aO,s_ ﬂAO(x))dS 5 (A6)
1 v
= [ X a;des)
0 j=1
depend on «. Note that
B, <, (A7)

uniformly in o, x, and t=n"2fm™'. We now use Holder’s and Jensen’s inequality
to estimate the stochastic integral. This leads to a bound of the expression (A.5) in
terms of L? (Da)-norms in the form
¢, exp— V)l xzByll, + 1xzB,ll, + | Xz Bs l 5)
exp(llxxBy Il + 1%z Bsll))- (A.8)

Since [x| £ K, by the continuity of V(x), || xgB, ||, is finite for all t and R. Also B,—0
a.s. as t—0. Therefore by the Lebesgue dominated convergence theorem ||y .B,|l,
<Min(1, &/15¢) with

c=ec, [exp— pV(x)d’x, (A.9)

provided t <t(R, K, ¢). The same applies to || xz B, , yielding another Min(1,e/15¢).
Now consider the term ||yzB;|,. Using the relation

i JA(x)dafs)=0 as., (A.10)
1 v 1 v 1/2
VBl |§ X (0= VBm A0 Seof(las ¥ - VEmaz)
1 d v
S wioay -V Em ) (A1)
0 Jji=1 2

by a standard bound for the a-integral (see e.g. [Si2, p. 159]). Since 4; is in Cg’ we
may apply the mean value theorem which yields the bound

1 5 1/2 dS 5 1 1/2 1 dS
Co ]/Z{(j ds||a(s)]] 2) + [—— o |]2} <c, ]/E{(j dss(1 —~s)> + | s(1 —s)}
0 I—s ) ol—s

<Min(1,¢/15¢) (A.12)
for t<t(g). This gives a bound ¢/5 for the term I in (A.2) provided t=<#(R, K,¢).
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Next we estimate the term III in (A.2).

M =c, [d*xE,(x(@ |l , 2 R)| F(@ 1))

1
Scg[d'XE, (X(a, lofl o = R)exp [ ~ g v ds

)

=cy[d’XE, <X(“’ ol ,, = R)exp [ - p’i Vix+ ]/Zoc(s))dsD
=cgE, (1, la]| , = R) fe PO x. (A.13)
In the last equality we have used Fubini’s theorem. Hence
III§091Ea< sup Ioc(s)l) gclol, (A.14)
R “\ser0, 11 R
where the last estimate follows e.g. from [Po], Theorem II.2. Therefore
III+V=2-¢/5, (A.15)

provided R = R(e).
We turn to a discussion of the term II.

I=c, [ @xE(xg()llF(e 1))

|x|>K

Scg | deEa(XR(“)exp

|x|>K

[d'xE, (exp [ —-B i Vix+ )/t oc(s))dsD

—B :3; Vix+ )/t oc(s))dsD

=cq

- [ &xE, (XR(oz) exp[— Bi Vix+ ]/t oc(s))dsm. (A.16)

[x| <K
Now set

V_(x,)/tR)= Min V(x+y). (A.17)

¥yl =RV?

Then we obtain

II<c,|[dxE, <exp { -B } Vix+ toc(s))dsD — [ et (x"f’R)d”xEu(xR)] .

Ix|<X
(A.18)

Now by [Si2, Theorem 10.1] the first term in the right-hand side of (A.18)
converges to [d'xe” Y as t—0 and by the preceding considerations E,(xz)—1 as
R—o0. Hence for all t=t(¢) and R=R(e)

<, {jdvxe—/’”x)— [ e - <x’WR}+—8—. (A.19)

(<K 10
Now for fixed R V_(x, ]/t-R)—> V(x) as t—0 by continuity for all |x|<K. By
dominated convergence (|[V_|<|V(x)|) the second term in (A.19) converges to
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e~ V@ x. Therefore, if first R is chosen large, then K large and then t small,
'K

we obtain
< g (A.20)
Also ¢
Ivs 3 (A.21)
for all K= K(e).
Combined we have
I+II+II4+IV+V=e (A.22)

concluding the proof of the lemma.
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Note added in proof. The basic relation (4.1) has also been derived and used by D. Zelobenko (Compact
Lie groups and their representations. Transl. Math. Monogr. Providence, RI: AMS 1973).

In [St] it will be shown that the formal series in 7 for the partition function as derived by Uhlenbeck,
Gropper, and Wigner is indeed an asymptotic expansion.





