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Abstract. A set of axioms which fix Euclidean renormalizations up to a finite
renormalization is proposed. There exists a one to one correspondence
between Euclidean renormalizations and renormalizations in Minkowski
space-time satisfying Hepp's axioms. No restrictions on masses are imposed.

I. Introduction

In [6] Hepp proposed a general axiomatic framework for renormalization theory
in perturbative relativistic quantum field theory. A renormalization is a map
which assigns to unrenormalized Feynman amplitudes (which are not, in general,
tempered distributions) the corresponding tempered distributions (called re-
normalized Feynman amplitudes) in such a way that some conditions are satisfied.
These conditions are motivated by physical considerations, and they include:
Lorentz covariance, unitarity and causality. It is shown that all renormalizations
which satisfy the axioms are essentially equivalent: the only arbitrariness is a finite
renormalization [6] (in renormalizable theories this arbitrariness is removed by
fixing the values of masses and charges). Hepp showed also that the usual
renormalization schemes satisfy his axioms.

In this paper we are concerned with renormalization theory in Euclidean
space-time. The advantages of the Euclidean approach to field theory are well
known: the matters simplify considerably. For the history and modern axiomatic
results in this direction see [9], In the context of renormalization theory this was
recognized already by Dyson [1]. In order to avoid the problem of poles in the
region of integration, he formally replaced p° by ip° in the p-space Feynman
amplitudes. Weinberg [11] proved the celebrated power counting theorem giving
sufficient conditions for the convergence of Euclidean amplitudes and describing
their asymptotic behavior in p-space. Zimmermann [13] developed a p-space
renormalization scheme, proved its convergence, and related it to relativistic
Feynman amplitudes. In the context of one-loop approximation to the φ4 theory,
renormalized Euclidean amplitudes were also discussed by Williams [12].
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We propose a set of axioms which should be satisfied by any Euclidean
renormalization scheme. We prove generally, without resorting to any particular
renormalization scheme, and imposing no restrictions on the values of masses, that
a renormalization always exists, and is unique up to a finite renormalization. To
convince the reader once more that it is easier to do field theory in Euclidean
space-time we prove that the Euclidean counterpart of the analytic renormali-
zation satisfies our axioms. The proof is considerably simpler than the correspond-
ing one in the relativistic approach [6]. We show that there exists a natural one to
one correspondence between Euclidean and relativistic renormalizations. The
way we establish this correspondence is motivated by [2].

The paper is organized as follows. Section II contains the notations. In Sect. Ill
we formulate the axioms for renormalization in Minkowski and Euclidean space-
time. Sections IV-VI contain the formulation and the proof of our main result : the
equivalence theorem. In Sect. VII we prove the existence and uniqueness of
Euclidean renormalization. Section VIII contains an example: the Euclidean
formulation of the analytic renormalization. In Appendix A we prove a technical
lemma. Appendix B summarizes some facts about radially analytic functions.

II. Unrenormalized Amplitudes

Let Γ = Γ(J2? , y) be a connected graph (<& denotes the set of its internal lines, Y is
the set of its vertices). To avoid inessential notational complications, we shall
ignore the dependence of renormalizations on external legs in the following. A
subgraph γ of Γ (in symbols : y C Γ) is a set Y(y) C ̂  of vertices and the set JS?(y) C
££ of all lines in 3? joining two elements of ^(y). Let y1 5 y2 CΓ be subgraphs. By
y : uy 2 we denote the subgraph with /^(y1uy2) = /^(y1)u^(y2), while y1^y2 is
defined as the subgraph for which ^(y1πy2) = ιΓ(y1)n/^(y2). We write y = 0, if
Ήy) = 0. Let <% = {γ19...,ya} be a family of subgraphs of Γ such that y .φ0
(i = l, ...,α), y 1 u.. .uy α = Γ, and y.nyf = 6 (iφj). We call the pair (Γ, ̂ ) a
generalized graph. A subgraph y CΓ is compatible with ,̂ if for any y fe^ either
y t C y or y.ny = 0. Given a subgraph y compatible with tfl we define

We label the components of xelR4F (V=\i^\) by the elements of Y, i.e.
2£ = COvey, where xv = (.x°,xJeIR4. Sometimes, however, we find it convenient to
use other notations, e.g. x = (x1, ...,xκ), or

for a given generalized graph (Γ, (¥],
In this paper we consider a theory of a single scalar field. The generalization to

fields with arbitrary spin is straightforward, although notationally somewhat
involved. With a generalized graph (Γ,^) we associate the corresponding (re-
lativistic and Euclidean) amplitudes defined as

^Λ*)te)= Π Λ?χ) Π Z&M-XW), (ii i)
γτe<% σφv&(γί)

<W*)= ΓU?,.(xy,) Π S(xi(σ)-xfJ, (11.2)
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where xγι = (x Jvey(yι)5 i(σ), f(σ}ei^ denote the vertices connected by σ. The
propagators are defined as

= (2πΓ4 J d4keikx(μ2 + k2Γ l ,

(as usual, in the relativistic case kx = k°x° — k x, while in the Euclidean case
kx = k°x° + k x). The /Γs are defined as

1 , if γ£ is a single vertex ,

where Dy is some Lorentz invariant differential operator with constant coef-
ficients, such that D*=(— l) | r (V l )'~1Dyι (the star means complex conjugation).
Λy.(xγ) is defined by the same formula, but Dγ. is now a Euclidean invariant
differential operator with constant coefficients, such that D*=Z)y.. Given y C Γ
compatible with ,̂ the notation ^(y>^ )(xy) [respectively ^^ }(xy)] is clear.

As they stand (II. 1) and (II.2) are purely formal expressions. To give them a
precise meaning we introduce some notation. Given an open set ΩcIR4F we denote
by &(Ω) the set of all /G^(1R4K) with supp/cΩ. By ||/||(II) we mean the Schwartz
norm o f / : ||/|Lπ, = max max (l+x2)n/2\Daf(x)\. ^'(Ω) is the dual of ^(Ω). We

V ; jαί^wjceIR4 K

define the set :

Ω®={xelR4V:x°ή=x°,, if there is no y.e^ with ^,^6^(7.)}.

Proposition. ^(Γ>^}(x) and $(Γ)<%}(x) are elements of &"(Ω^)9 i.e. there is M^O such
that

similarly for ^Γ>^(x)-

This proposition is well known, see e.g. [5, 6].

III. Renormalization

We start with recalling the definition of renormalization in relativistic field theory.
The definition below is equivalent to the one given by Hepp [6] :

(Relativistic) renormalization is a mapping 0t which assigns to each unre-
normalized amplitude &(Γ ^(x) a tempered distribution ^^JΓ ^(x) in such a way
that certain conditions (conditions RO-R4 below) are satisfied. Let τ1 ? . . ., τm φ 0 be
subgraphs of Γ such that τiπτj = 0 (iφj), and τ 1 u...uτ m = Γ. Define

«t)(Xτ) Π
7=1 σ^u^(τ

if τ1 ? ...,τw are compatible with ,̂ and
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otherwise. Here Fσ is defined as follows:

+ (Xί(σ) ~ Xf(σ)) J ίf Z(σ) 6 ̂ (τα) '

/(σ)6τr(τb), with α<b,

+ (*/•(,)-Xi(σ)), otherwise,

where A+(x) = (2πΓ^d4kδ(k2-μ2)θ(k°)e-ίkx. Define also

F

m = l tι,...,τm

Now we formulate the conditions for .̂
RO. ^^Γj^}(x) is an extension of &(Γt<JU)(x) from ^'(Ω^) to ̂

Rl. supp^^JΛίίf)(2c)C^ ί8rΞ{xeR4K:xt> = xv,, i/VXeyχy.), for some yfe*}.
R2. ^ Γ̂ ^}(x) is invariant with respect to the proper Poincare group.
Rl ^ is ίinitarv ^^ ίr^* — όftΦ (Ύ\JXJ. iVZ- 1^ UlliLdiy . <Sl^{γ^ auy^ί) — (Γ, <%){— r

R4. ^ is causal: For any 0φy, y'CΓ compatible with ,̂ and such that
= 0, yu/ = Γ, we have

Later we shall need the following non-covariant version of R4. Denote by

R4r. (III. 1 ) holds o n « i

For the sake of convenience we reformulate also the unitary condition.
Let ^^(x) (Λ>G^) be the retarded function (see e.g. [3])

y,y'cr

• Π

where the summation extends over ^-compatible y, γ'cΓ such that yn/ = 0,
yuγ'^Γ and ^ef^(y). R3 and the relation

y /
y,y 'cr

σ ; π
imply that

.(ί>) / \H« _ ( _ \\V+ IΛ( V > f v ) ίΠI 2)

[ / ^
with (51 £ p.

\ j = ι ^
omitted of ή$^(x\ then (III.2) reads:
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(Euclidean) renormalization is a mapping which assigns to each unrenormal-
ized Euclidean amplitude ^(Γ> ̂ fe) a tempered distribution &~$(Γt<%)(x) satisfying
the following conditions :

EO. yg(T ^(x) is an extension of δ(Γ ^(x) from &"(Ω*) to '̂(1R4F).

El.
E2. &~$(Γtqf)(x) is invariant with respect to the inhomogeneous Euclidean

group.
CQ (&-& (v\*_&r& (^\
nj. J β(r,<%)W —J ώ(r,qt)(%)
E4. For any 0φy, y 'CΓ compatible with ̂  and such that yn/ = 0,

• Π S(*ί(,) -*/(,))> (IIL4)
σ:/(σ)eτr(y)
/(σ)eW)

if x
Again, we formulate an alternative condition :
E4'. (III.4) holds on ^(Ωy >y,).
Remark that E3 and R3 though very similar in appearance, are very different

in structure. While E3 is a simple reality condition, R3 is a nonlinear condition
involving products of Feynman amplitudes.

Lemma, (a) (EO,...,E4') o (EO,...,E4),
(b)

The proof of this lemma is given in Appendix A.

IV. The Equivalence Theorem

Theorem ER. The axioms (R) and (E) are equivalent in the following sense. Given
any relativistic (respectively Euclidean) renormalization & (respectively ^~) there
exists precisely one Euclidean (respectively relativistic) renormalization ^~
(respectively 3fc) such that the following condition is satified: For any generalized
graph (Γ,%) and a radially analytic function /e^(IR4F) we have

For the definition of radially analytic functions see [2] or Appendix B. The
strategy of the proof is similar to that of the proof of the basic result of [2]. We use
induction with respect to K For V=ί there is nothing to prove. Our induction
hypothesis is that the equivalence has already been established for all graphs with
V^n—1. Suppose we are given a relativistic (respectively Euclidean) renormali-
zation. To define the corresponding Euclidean (respectively relativistic) re-
normalization we decompose a test function / into two parts : the (essentially)
radially analytic part /1? and the part /0 vanishing on the diagonal. Now, to define

[respectively Λ^^C/i)] we use (*). (̂Γ^)(/0) [respectively
is defined with the help of the induction hypothesis. Observe that the

uniqueness follows immediately from (*) and Lemma B.I.
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V. Proof of the Equivalence Theorem: R => E

1. The Decomposition of f

Let K ̂  0 be an integer, which will be specified later. Consider the C*-function

2π

where ίeIR, λeA (see Appendix B for the definition of A). It satisfies the equation:

Define
κ+2

/Yr° \ γ° 4-F Y r° 4- ̂7 V A 1J Ai ? Λ 1 i Sp Λ2 ' 5 Λl i Sv- 15

j+l -°where ξj = Xj+l -x°19j=l, ..:, V-l. Then

Observe that l |φ|| ( n )^C||/| | ( / I + x+2). Let \v(ξ)e^(]Rv~1) be a radially analytic
function such that w(0) = l, Dαw(0) = 0, for 0<|α|^K. [Such a function exists.
Pr<96>/ By the density of radially analytic functions there is a radially analytic v(ξ)
such that ι;(Q) = l. Assume that Dαt?(Q) = 0, for all 0<|α|gp- 1. Define

where aa = D«v(Q). Then t;;(ξ) is radially analytic, and ι/(Q) = l, DV(Q) = 0, for all
|α|^p.] Define

and /0(x)=/(x)-/1U). Denote by &K(Ω) (Ω - open) the closure of ^(Ω) in the
norm || \\(K). Then /Oe^(ί20), /^^(IR47), where Ω0 = {^eIR4F : there is a pair y
(iφy) such that xjφx?}. Moreover

(V.I)

(a similar bound holds for fj.

2. The Definition of

Rewrite f± in the form

j\(2£)= J dtcpι\X^ — f5 s? X) •>
where

ί x

^ / o t \ I V"1
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Then φt_i is radially analytic in A*. Choose K so that K^ the order of
Denote again by $&(Γ ^ the unique extension of $i?(T %) from &" (IR4 ) to

). Define

*)(Φ - *) - (V.2)

We have

I^<Γ,*)(P'-^
Hence, we are allowed to integrate (V.2) over ί. Set

Clearly

3. The Definition of #~<£(rfw(f0)

If ̂  = {Γ}, then we set ^"< (̂Γj ̂ )(/0) = 0. Otherwise, for any pair of subgraphs 0φy,
/CΓ, such that yn/ = 0, yu/ = Γ, we define a distribution ^^e^XΩ^^) as

ίthe right-hand side of (III.4), if y, y' are compatible with ̂  ,

(P, otherwise .

It follows from the induction hypothesis that ^(7) yf) has the following property :

^(yf/)(x) = ̂ (tf0(x), (V.3)

if χeΩytfnΩτtτ,.

Lemma. Every f e £ f ( Ω 0 ) can be decomposed as follows

/=Σ4,/» (γ 4)
7,7'

where supp/(y y')CΩy y,, and 7, y' run through all the pairs of subgraphs of Γ such
that yn/ = 0, γuγ' = Γ; γ, 7'Φ0. Moreover

(i) ll4 ; y ')ll ( M )^C||/| | ( n ),
(ii) z/ supp/Cί2, then supp/ ( y > / )CΩnΩ y > y,,

(iii) z/ / z's radially analytic, then so is f(ytyΎ

The proof of this lemma is standard (cf. [2, p. 105]). Define

By (i) of the lemma ^/^fe) is a distribution in ^'(Ω0) of order (say) JV. By (V.3),
and (ii) of the lemma it satisfies

if supp/Cί2y y,. It follows from the definition that ̂ (r;^ is the only distribution in
&"(Ω0) satisfying (V.5). Denoting again by ̂ (r m} the extension of ̂ (r φ) to ̂ (Ω0)
(we choose K ̂  JV), we define ̂ (r> „(/„) = ̂ ('r> ̂ (/0). By (V. 1)
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4. Verification of the Axioms

We set

It follows from the estimates of 2. and 3. that \&~β(Γ Φ)(/)|^C[|/||(3X+2), i.e.
^^e^XIR47). If /e^(Ω*), then ^=0, and hence «^(Γ>φ)te) is an extension
of <f(Γ 5^}(x). This proves EO. E4' is clear: If supp/C£2 y > / (y,/ compatible with )̂,
then /j = 0, and

We prove (*). Let / be radially analytic. Then also /0 and /x are radially analytic.
For / = /! (*) follows directly from the construction. If / = /0, then by the lemma it
suffices to consider / = /o, (>,,/) only. We have

Π
:ί(σ)eΊ
(σ)ey(

Π

where we have used the induction hypothesis, E4r, R4', and the fact that (A+).(x)
= S(x) for x° < 0. To prove E2 let us define the following differential operators :

where μ = l,2,3. Then, by Lemma B2 (M0μf)i(^) = i(m0μf^). Hence, by (*) (just
proved)

i.e. ^(f(Γj^)(m°μ/) = 0, for all /'s radially analytic in A*. Since such functions are
dense in ̂ (R4F), the last equality holds for any /e5^(IR4F). From the construction
it is clear that ^~<ί(Γ %}(x) is translation invariant. This proves E2. El : Take a
function / with supp/C{xeIR4K :x^ = x°, if *>,*/eτr(y.) for some y.e^}c. Then
/, =0, and ̂ Λ^(/) = »(Λ^(/o) = 0. This and E2 imply that supp^^CΛ*.
The only thing to be verified yet is E3.

5. 77ze p-Space Analytic Function

The set of distributions {<τ1? ...,τw>(75^}(x)} is a perturbative (graph by graph)
counterpart of a linear system of F-point functions [4]. In fact, it is easy to see that
the (perturbative analogue of the) set of axioms of [4], Sect. 6.1, is satisfied. We
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denote the corresponding generalized retarded functions by ^^(x), where £f runs
through the set of all cells of Rκ [4]. Let Ij φ)(p) be the Fourier transform

with <5 ^ p. omitted of ̂ ^(x). It is well known that for any ̂  ̂ 2 one has
L \j=ι J J

in the open region of 1R4(K~1)

Π ίpelR^ Σp-O^μ2}, (V.7)
Jc{i,...,F} I j = ι J

where Pj= X p; . ̂  ̂ }(x) has support in a certain cone [4]. Hence, ^^(p) is a
7'eJ

boundary value of a function holomorphic in the corresponding tube. From (V.6)
and the edge of the wedge theorem it follows that the -̂ 's are boundary values
(from the corresponding tubes) of a single holomorphic function denoted by
H(Γ^}(z). The domain of holomorphy of H(Γ^}(z) contains a complex neigh-
bourhood of (V.7).

6. Verification of E3 : μ2 >0

In this case the domain of holomorphy of H(Γ>^}(z) contains the Euclidean
momenta z = ((—ip J, Pi), ...,( — fp^,pF)). Using a suitable regularization one shows
as in [2, 4], that

/κ-1fdeβ-£Σ**^
V / = ι

satisfies (*), i.e.

We shall show that

fl(r,*)((-iP?.Pι).-,(-iPκ»Pκ))

= (-l)κ+1H(Γ^)((ip?, -Pl),...,(ip£, -PK)), (V.8)

which is equivalent to E3. The points ((0,Pl), ...,(0,pF)) are in (V.7), and

DΛH(r,v)((~ ίp?, Pl), ...,(- Φ°, Pκ))lpθ = o

= (-Ol"o|^,.,(i)l£o = o, " (V.9)

for any α. Here |α0| = Σ«° The function
, , . . . , , is real analytic. By (V.9), (III.3), and

(V.6) DαF(Q) = 0. Thus F(p) = 0 in a neighbourhood of Q, and hence F(g) = 0 for
all pelR4F
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7. Verification of E3 : μ2 ^.0

As in [2] we consider the function :

FA(z) = Qxp{iA-1[z2-A2~]1/2 + l}, A>0,

where zeC4, z2φ\_A2, GO) (we choose that branch of the square root, which has a
positive imaginary part in <C\[^42, oo)). Denote

FA(x) = Jim FA(x-iy)9
V+ay-^O

FA(x) = θ(- x°)F+ (x) + θ(χθ)FΪ ( - *)

Similarly as in [4, Sect. 6.3] we define a new (regularized) linear system:

\T1' •••'τm/(Γ,^)te)~ II

where
^?)(^ (σ) ~ */(,)) = FA(xi(σ} - x/(σ)) , if σe &(τ3) , for some 7 ,

^(^(σ)-^/(σ))5

 if z(σ)6-r(τ7.)5

/(σ)eτΓ(τfc), with 7</c,

^(x/(σ)-xi(σ)), if i(σ)6TT(τ7),

/(σ)eτT(τk), with ;>/c.

Then <τ1? ...,τm>(^^)(χ) have positive thresholds ^A~\ and <τ15 ...,τm>^^)

-^<τ1? ...,τm>(7>^) as A->oo. As in 2. and 3. we construct the corresponding
•^(r,<aofe) II Allows from the construction that ^(f,Φ)-» ̂ (r,Φ) Repeating the
argument of 5. and 6., we prove that ^^(r,^)(2ί)*=^"^(r,^)te) This implies E3.

VI. Proof of the Equivalence Theorem: £ => /?

We sketch only the argument, because it is based on the same principle as the
proof of R => E.

1. Any function /e5^(IR4F) can be decomposed as /0 + /1? where

101 = 0

Here

2. We define: ^^T(Γ>φ)(/1) = ϊFjΛ^ΓtΦ)(χ|), where χ( is defined in analogy
with φr

λ.
3. Using the induction hypothesis and proceeding as in the proof of .R => E we

construct the relativistic counterpart of ̂ (Γ }̂, denoted by ^(Γ }̂. Define :
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4. We verify the axioms (without unitarity) and (*).
5., 6. We verify unitarity for μ2>0. Using the already proved properties of

&&(Γ ^(x) we repeat the construction of 5., 6., Sect. V. Then E3 implies (V.8).
Using (V.9) we prove (III.3) in some ball around Q contained in (V.7). Hence
H(Γ <%)(z)*=( — ΐ)v+ 1H(Γtqί)( — z*) in the domain of holomorphy. Passing to bound-
ary values we obtain (*).

7. We proceed precisely as in 7., Sect. V. Q.E.D.

VII. Existence of Renormalization

Theorem E. There exists a Euclidean renormalization. It is unique up to a finite
renormalizatίon.

Proof. We use induction with respect to V. Our induction hypothesis is that ̂  has
already been constructed for all (Γ,τΓ) with V^n-L Let V=n. If τΓ = {Γ}, then
we define 3~S(Γ m}(x) = S(Γ ^(x) = Λp(x). Suppose that i^ contains at least two
elements. Define the sets: Ξ y f y , = {xe1R4V :xv + xv,9 if ^ei^(y\ v-'ei^fy)}, and
ΞQ

 = {2ceIR4F: there is a pair z, j (ι+j) such that x φXy}. Similarly as in 3., Sect. V
we construct a unique distribution jjf(Γ ^^"(ΞQ), such that

Here J^(y yl)(x) is defined as the right hand side of (III.4), if y, y' are compatible
with^ , and £f(y x(^) = 0, otherwise. Clearly J (̂Γ ^}(x) is Euclidean invariant.

Let φε^(ΊR*^~1}) be a fixed real valued ' function such that (i)<p(Q) = l,
(ii) D>(Q) = 0, for all |α|^ΛΓ (AT -the order of J^(Γ φ)). Denote by ζj = xj+1-xί9

; = !,. ..,7-1, and

) = f(x)-φ(ζ) Σ
\a\^N α!

for /e^(lR4F). Then Rfe^N(Ξ0\ and

Let 0(4) denote the homogeneous Euclidean group, μ the normalized Haar
measure on O(4). For #eO(4) we denote (g^(Γ Φ))(/) = ̂ (Γ Φ)(^/)5 where (^/)(x)
= f(g~1x). Define

^r, «>(/)= ί dμHg)(gtf(Γ^(Rf).
0(4)

We verify that the so defined 3~${T^ satisfies conditions EO-E4. EO follows from
(VII.2) and the fact that Rf = f9 iϊfe^(Ω%). Fδ(Γ^ is rotation invariant because
of the in variance of the Haar measure. It is clear from the definition that $~$(Γ ^ is
translation invariant. This establishes E2. El and E4 follow from (VII.l) and the
fact that g(Ξyty,)CΞyty,. E3 follows from the induction hypothesis and the
construction of J (̂Γ ^}. Now the uniqueness. If F' is another renormalization, then
by El and E4

supp l^'^(Γ^(x) - ̂ (Γ̂ )(2c)] C {XE R4F : x, = x2 = . . . = xv} .
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Hence

^'δ(r, «)fo) - ^δ(r, <*)(*) = DΓδ(x2 - X j ) . . . δ(xv -χv_ι),

where DΓ is a differential operator. By E2 and E3 it is Euclidean invariant and
real. Q.E.D.

VIII. An Example: Analytic Renormalization

Analytic renormalization [10] provides probably the simplest explicit renormali-
zation scheme. We shall show that the Euclidean version of analytic renormali-
zation is a renormalization in the sense of Sect. III. In the case of the relativistic
formulation of analytic renormalization Hepp [6] proved that the corresponding
set of axioms (conditions RO-R4, Sect. Ill) is satisfied. The main simplification of
the Euclidean approach is the absence of the ε-»0 problem.

Consider a distribution ^Γ>^(x,λ) defined by (II.2) with S(x) replaced by the
regularized propagator Sλ r(x\ which is a Fourier transform of

where r>0, Ae(C with Re/l>0. Γ(λ) is the Euler function. Modifying slightly the
argument of Speer one proves easily

Proposition. Let μ2>0. There is some open set ΏC(CL (L=the number of
propagators in (11.2)) such that $(Γ ΰU}(x,Q = lim ${Γ <%)(& λ) exists in y(IR4F), if

' r-»0

leΩ. <^(Γί^)feΛ) is holomorphic in Ω, and can be analytically continued to a function
meromorphic in (CL.

Define

^A^(Γ^(x) = (L\Γl Σ (2πi)~L § dλ,... $ dλL
PeSL

 CJP(1) CP(L)

i- 1

where 0 < R1 < . . . < RL is any sequence satisfying the condition '• RI> Σ &r Q is
j- 1

the contour 1^-11=1^ oriented counterclockwise. Actually, ̂ A is independent of
particular choice of the R^s.

Theorem EA. yA satisfies conditions EO-E4.

Proof. For the proof that FAβ(Γ ^}(X)E^'(^V\ see [10, p. 1407]. To see that
^4^(rfΦ)te) is an extension of $(r^}(x) observe that S(xi(σ}-xf(σ}) is a C^-function,
if x?(σ) — x °(σ) =t= 0. Thus, the limit r->0 can be taken trivially, and we conclude that
δ(Γ, <*)(&$ is analytic in (CL. It follows from (VIII. 1) that «f4^(ΓfΦ)U) = ̂ (ΓfΦ)(2ί).
This proves EO. El follows from the fact that supp^(Γ >φ)(& λ)cA®'. Similarly,' E2 is
valid, because <f(Γ ^(x, /I) is Euclidean invariant. To prove E3 observe that
^(r,^)fe^)* = (^(r,^)fc^*) Now we change the variables λ-+λ* in (VIII.l). This
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results in the change of the orientation of the Q's, which is, however, cancelled by
(— 1)L coming from conjugation of iL. The proof of E4 is also simple. If xeΞγ ^,
(y, y' compatible with °U\ then

Π S^(xi(σ)-xf(σ})

is analytic in the corresponding A's. Using this fact and the factorization property
of FA (property 6 of [10, p. 1407], we find:

Π S(xi(σ)-Xf(σ})]

' \

.*γ.)(Xϊ) Π

Remark. It can be shown that the BPHZ scheme [13] (and also its massless
version as proved in [7]) satisfies the axioms. In particular, it follows from the
equivalence theorem that the corresponding Minkowski space renormalized
amplitudes exist and satisfy physical conditions. This remark shows that one can
overcome the long and non-elementary argument of [8].

Appendix A

Proof of the Lemma of Sect. Ill

(a) The implication <= is clear. => Due to Euclidean invariance E4 is equivalent to
E4". Equation (III.4) holds on

(A.I)

Given a point x in (A.I) we can decompose its coordinates into
(2cτι)u(xt2)u...u(xJ, in such a way that (i) x°<x°, if ^^(τ^ ^ef"(Tj.), i<j,
(ii) τ 1 ?...,τ 3, . . .Cy, τ 2,τ 4,.. .Cy', or τ 1 ?τ 3, . . .Cy', τ2,τ4, . . .Cy . Then, by E4'

&7~β> (Ύ\ tfΓ/^ (\ ^ 1 ί ^ί^v v ^
(Γ, ί%)V—/ (ti,^T l)^—τi/ II V ^iXσ) f(σ)'"'

f(σ)eir(τ2)

Π e/r _ rύV^ t (<T) Λy

*v)fey)^y', ̂ θfe/) Π SUi(σ) ~ ̂ /(σ)) >
σ:i(<τ)er(y)
/(σ)eτΓ(y')

where we have used the fact that S( — x) = S(x). Hence E4".
(b) The proof is similar. One uses the fact that Δ + ( — x) = A + (x), if x2<0.

Appendix B

We collect here some basic facts concerning radially analytic functions [2],
Let A denote the set {λe<C:\λ\>Q, O^arg/l^π/2}, and A* = {λe<L :λ*eA}. A

function /e^(R4F) is called radially analytic in A (respectively in A*\ if there
exists a continuous mapping (f,λ)-+fλ from ^(lR4K)x/l (respectively x^4*) to

), such that
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(i) for fixed x fλ(x) is analytic in λelntA (respectively Int.4*).
(ii) for λ > 0 fλ(x) = /(λx°, Xl . . . λx°, xv).

Lemma B.I. Functions radially analytic in A (respectively A*) exist. They form a
dense subset of ^(R4Γ).

For the proof see the appendix of [2].

Lemma B.2. // /e^(IR4F) is radially analytic in A, then for any α, Daf is also
radially analytic, and

(D«f)i(x) = Γ^D«fi(x),

where \a0\ = Σtf.

Proof. It follows from (ii) of the definition, Cauchy's integral formula, and the
Lusin-Privalov theorem.

Remark. we^(IRF~ 1) is said to be radially analytic, if 0<λ-^wλ(ξ) = w(λξ) has the
required analytic continuation.
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