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Abstract. We consider a reversible jump process on Z¢ whose jump rates
themselves are random. We show mean square convergence of this process under
diffusion scaling to a limiting Brownian motion with a certain diffusion matrix,
characterizing effective conductivity.

0. Introduction

This paper contains a generalization of the well-known Theorem of Donsker (cf.
Donsker [5]) to a pure jump process whose jump rates themselves contain a certain
degree of randomness. This result can also be interpreted as giving the limiting
Brownian motion and its diffusion matrix for a random walk in random
environment under diffusion scaling.

Consider a probability space (22, &, P). For weQ fixed, let X?, be a pure jump
process on the e-spaced lattice ¢Z¢ with time structure governed by exponential
waiting times with rate A°(x,w) at xeeZ? and space structure given by the nearest
neighbour jump probabilities, p? , (x,w) being the probability under realisation w to
jump from x to x + e, at the next jump time, 1 <i<d.

Let a¢, (x,w) = A*(x,w)" p%, (x,w) for all ¢> 0, xeeZ*. Assume that

& (x,0) = al, <§,w>=;aii<f,w> Ve>0, xeeZ?, weQ, 1<i<d, (0.1)
€

a;(x,0) = a; . (x,0) = a;,_(x + ¢;,0)xe Z%,1 £i<d, 0.2)
0< A =Za(x,w)< B< oo for all VxeZ,weQ, (0.3)
a,(x,) is stationary and ergodic, 1 i< d. (0.4)

A few words are now in order, considering these fundamental conditions.
Equation (0.2) simply says that the process is reversible and that the “conductivity”
ai(x,w)is a “bond conductivity,” i.e. independent of the direction in which the bond
(x,x +¢;) is used by the process. Equation (0.1) indicates intuitively that the
configuration of bond conductivities a, (w) on &Z“ is simply the configuration
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a;+(w) on Z* “looked at from a distance.” Inequality (0.3) assumes the existence of
uniform bounds A, B with 4 > 0. Let us now consider (0.4).

We may identify w with the realisation of bond conductivities at w: {a(x, ®) } ,a
~ w. This enables us to define a “shift” 7, on Q for yeZ by a(x, T,0):= a;(x + y,w),
ie. 1,0~ {afx+ y,w)}, 4. (0.4) contains the assumptions that the probability
measure P on (2, &, P) is stationary with respect to the shifts ,,yeZ, and that the
group {7,},.za of shifts is ergodic for P, i.e. the only sets Ee # with 7 E = E for all
yeZ* are those with P(E)=0 or P(E)= 1.

Our main result (Theorem 5) states that under these conditions, as ¢ >0, X¢
converges to a Brownian motion X in a certain sense. Theorem 3 will furnish an
expression for the diffusion matrix (g;;) of the process X. In terms of physics Theorem
5 together with Theorem 3 can be seen as giving a formula of the “effective
conductivity” for a conduction process on a lattice with random bond conductivities
a;.

If we consider a crystal with diffusion of atoms on interstitial positions what
happens microscopically is in fact a jump process for the individual atoms with
certain jump rates, determined by the potential barriers of the neighbouring lattice
atoms. For details cf. Kittel [9]. For conduction phenomena on lattices cf.
Kirkpatrick [8].

For the proof of Theorem 5 we work in suitable Hilbert spaces showing
convergence of resolvents (Sect. 4), yielding semigroup convergence. Compactness
(Sect. 2) of the family { X?,1 > ¢ > 0, weQ} is the crucial ingredient for proceeding to
convergence in distribution.

This paper makes use of the approach developed by Papanicolaou and
Varadhan in [13].

1. Some Properties of the Jump Processes X

Consider the cubic lattice ¢Z¢ with lattice constant e and af, (x,w):6Z% x Q - [A,B]
satisfying (0.1) to (0.4), where a,(x,w) is the conductivity of the bond (x,x + e;) on the
lattice Z¢. Fix w to consider the deterministic lattice first, and let

Vi =L 6= 2e) = £

1
(Vi )0 =—Lf (x +ee) = f(x)] (b

for afunction f, square summable on eZ¢ or square integrable on R?, with e; the unit
vector in i-direction. It is not hard to verify that

aféf’t) =- i V?‘(ai<§,w>vl€+ f(x,t))=::f;; f(x.0) (1.2)
i=1

is the diffusion equation on the lattice éZ“ in the terminology introduced above with
density f(x) and conductivity a;(x/e).

It is a standard result from the theory of Markov processes (e.g. Breiman [3]),
that the operator #¢, is the infinitesimal generator of the pure jump process X (f)
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described above with scaled time 7: = ¢2t. Indeed, explosions are excluded, since we
d
have a bound on the jump rate A%(x): 25(x) = Y. {af, (x,0) + a’_(x,0)} <2d-B (by
i=1
(0.3)).

Lemma 1. %% is selfadjoint on the space of square integrable functions on eZ° with

inner product (f,g):= Y, f(x)g(x).

xeZ4

Proof. Observe that for 1 £i<d

> a G —e >f(x)g( —se)= ¥ a,(f>f(x + 5e)g(x),
xeeZd xeeZd &
and
> ai@— e.~>9(><)f(x— se)= Y ai(g)g(x +60) f(x),
xeeZd xeeZd
hence
(Z:51.9)
= — sz Z 2[“ < ei>{f(x —ge; + e;)g(x) — f(x —ee;)g(x)}

- (f){ S e+ ce)glx) - f(x)g(x)}]

=—- 2 Z [ <i—ei>{g(x—Bei+ﬁe,-)'f(X)—g(x-eei)f(X)}

xeeZdi=1 8

—ai<§>{f(x>g(x+se,-)— g(x)}] (£ 259 O

Therefore, the backwards and forwards equations for this process (which are
satisfied by the transition probabilities p,(y,t|x), cf. Breiman [3] and Chung[4]) read

0
Epa(yat’x) ["gwps(y’tl)](x) and

d .
5pe(y,tIX) [Z6p.(-,t]x)](y), respectively. (1.3)

Moreover with d,(z) =1 for z =x and d,(z) = 0 for z # x:
0 .
gzp(y,IIX) =(0,(* ) ZL,p(,1x)=(0,( ), L5e%ed,())
=(6,( )¢ L50,(+))=(L,e%6,(),0,( "))

a
=(Z5p(5t1y)0.(+)) == p(x,t]y).
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This being true for all t,x,y we can conclude that

P(x,t|y) = p,(,tlx), Vi;x, yeeZ®. (1.4)

Since there is at most one set of standard transition probabilities corresponding
to &£%,,

P1(y, t1x) = p,(ey, €%t|ex) (1.5)

will follow from the following lemma, whose proof is straightforward.

Lemma 2. If f,(x,t) solves 0f,/ot= %% f., then [(x,t):= f,(ex,;e’t) solves
afjot= 22 7.

The main result of this paper (Theorem 5) shows that under this type of contracting
the bond lattice by ¢ and speeding up time by ¢~ 2 the jump processes X ¢ approach a
diffusion with matrix (g;;) given by (3.17) below.

2. Relative Compactness

Relative compactness of the corresponding family plays an important role in most
proofs of convergence of a family of stochastic processes (cf. Billingsley [2]). In our
case we are dealing with measures Q% , respectively Q ., belonging to the processes
XE (t) and X(t ) with generators %% and .#. These are measures on the set D, with

= {{:[0,00)— R%;((2) —hm {(s) and lim{(s) exists for all t}. This set of right-

continuous functions with left limits contaIms the trajectories of our jump processes.
Let us recall some standard results (e.g. in Kurtz [10]):C: = C([0,00),R?), the set
of “continuous paths,” is a complete and separable metric space and so is D when
furnished with a Skorokhod-type metric (cf. Kurtz [10]). Using the notation
q(x,y):=|x—y| Al on x,yeR? and for § >0, T> 0
0'((,6,T):=infmax sup q({(s),(t)),

{t} i stelti-g,t)

where {t;} is a partition on [0, T] with min(¢; — ¢, _;) > 8, we know that K = D is

relatively compact (i.e. cl(K) is compact), if for all teQ, t = 0, there is a compact set
I', = R? such that

{(t)el', for all (eK, 2.1
and
for all T > 0:lim supw'(,0,T) = 0. (2.2)
0—0 (eK

Theorem (Prohorov). Let {P,} _, be a family of probability measures on D or C.
{P,}4eq is relatively compact iff for all £>0 there is a compact set K with
infP(K)=1—-¢.

acA

For the description of processes of the type X ¢ (t) we can restrict our attention to
trajectories in D, which have only isolated jumps of width ¢. Such processes can be
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“smoothened” in a natural way: If the path { has a jump at ¢, and the next jump at
tn +1° pUt

{(e,) = (),

5 t—t,
c([): C([n) + t_:(C(tn+ 1) - C(tn)) fOr te[tn 3tn+ 1]'
n+1 n
The corresponding process on the continuous paths will be denoted by X o)
(respectively its measure by 0¢).
Let us recall that S < C is relatively compact, if

sup [{(0)] < oo, (23)
tes
limsup sup [{s)—{(1)]=0 forall T,T< oo. 24)
010 LeS 0%5?;%7‘

From the previous compactness criterion for K< D we can deduce the
relative compactness of K:={{eC:{eK and { has only isolated jumps} in C.

Since lim supw’({,5,T) =0 is satisfied by (2.2), it suffices to prove

-0 ek
limsupw({,6,T)=0=limsup sup [{ —{,l=0. (2.5)
0—0 (eK 0—0 (eK OSssSt=T

Choose 0, such that sup w'({,0/2,T) < n~?! for all 6 <4, ie. for all § <4, and
~ {eK
(eKk,

infmax sup q({(s),{(e)) <n™'.

() i siteltitivn)

For ¢, fixed we can therefore find a partition {¢,} (depending on () with

max sup  q({(s).{() <n"".

i S,IE[li,ti+1)

We now fix s,;0<s=<t< T, with [s—t| <d: If there is an index i with
[s,0) = [t;rt;4 1), then q({(s),{(t)) <n~'. If such an index does not exist, we can
certainly find an index i with

(@) selt;,t;,) and te[t;,,t;1,), Or

(b) se[t;,t;+,) and te[t;,,,t; 4 5), since m.in(t,url —t;)>0/2.
In case (a), we get q({(2), {(5)) = q(C(s), L(t;4 1)) + ql(ti 1), () <n™ " +n~ "5 in case
(b) analogously

q(&(s),L0)) = q(l(s),L(¢; 4 1)) + q(llt: 41,805 1 5))
+ a4 ,), L) =3n7T,
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i.e. we have q({(s),{(1)) < 3n" 1, for |t —s| < <, and

sup q((s),{))=3n"".

0<s<tst
[s—1[<é

As this is true for all {eK, we have sup sup ¢(L(s), {(r)) <3n~ Lforall6 <4, ie.

leK |s—t|=4

lim sup sup q({(s), {())=0, proving (2.5). Hence the closure S:=cl(K) is
-0 (eK |[s-r|<9d
compact and Q% (S) = Q% (K).

We can then use Prohorov’s Theorem to deduce the relative compactness of the
family {P,}, from the relative compactness of {P,},, if { P,}, is a family of jump
processes. A compactness criterion appropriate to our situation is conveniently at
hand:

Theorem 1 [Kurtz]. Let {P,},., be afamily of probability measures on D belonging
to a family {X*},, of strong Markov processes. {P},. , is relatively compact if (2,6)
and (2,7) hold

for all T>0, teQ, 0=t<T, n>0,

there is a compact set I', = R? with inf P,({(t)el")>1—n, (2.6)
acA
for all T> 0,6 > 0, ac A there is a random variable Y () with limsup EY,(5) =0, and
0—0 acAd
E(Y,0)| #) 2 E(q(X*(t + u),X"(1)| #) as.
foral0Su<é,t<T. 2.7)

The proof of this theorem can be obtained by a slight modification of the proof of
Kurtz’ original theorem in Kurtz [10].

Let us return now to our processes X?,  with starting point xeeZ¢ and corres-
ponding measure @, .. We slightly extend our notion of X;, , and Q;, , in the sense
that the starting point need not be a lattice point xeeZ®. The process may start
at any xeR?: we then simply identify Q% ,(4) with Q. ,(4—7r) for r:=
x —g[x/e], where [yl:=([y,].....[yad) if y=(yi,...,y0), and [y] is the
largest integer not exceeding y;. For 0 < M < oo, consider the set 4,,:={(x,w,e),
xeR% |x|EM,weQ, 0<e< 1}. We write Q,:= QZ, | for xe 4,,, and want to show
that {Q,}, 4, is @ relatively compact family of measures. For this purpose we prove
the following:

Theorem 2. There is a constant C (independent of &,w) such that

E(| X2, o(0)):= E%o (L0 S C /1, Ve 2.8)

Before starting the proof of Theorem 2, which will take up the rest of this section,
we should convince ourselves that Theorem 2 is sufficient for the relative
compactness of {Q,} . Since our processes are pure jump, they are also strong

acAy



Diffusion Limit for Jump Processes 33

Markov, and we try to apply Theorem 1. Note first that (assuming Theorem 2)
ELIXG, ot +u) = XG0 (011X5,00)] = ELIXE, . ()]
=E[X: | we@I=CVu=Y,w), (2.9)

where the first equality is just the Markov property and the second is the property of
the shifts 7, on Q from Sect. 0. Note that w in (2.9) is of course a parameter according
to the use of the expectation operator E fixed in Theorem 1:E ~ E%.0. With this
choice of Y,(u), condition (2.7) is certainly satisfied, by (2.9).

For the remaining condition (2.6) of Theorem 1 it is sufficient to show that one
can find for any ¢:0 <t < T, n >0, a suitable k(t) with sup P(IX¢ = k(t)) =<#. But

because of Theorem 1, we have P(|XZ,|=m) < (1 /m)EIX(,)I <(1/m)C /1, so put

k(t):= n_lC\/; This shows that condition (2.6) is satisfied, if we take I';:=
{x:|x| <M + k() }, for C is independent of @ and &. Now Theorem 1 implies the
relative compactness of {Q,},., -
Proof of Theorem 2. Let us first observe that it is sufficient to prove (2.8) for ¢ = 1 (in
which case we write X, , for X, ), since the fundamental solutions p, and p, of the
Kolmogorov equations (1.3) have the scaling property p,(,x,y) = p,(¢*t,ex,ey) as
was shown in (1.5). As p,,p, suitably normed are also the transition densities of the
Markov processes X !(¢) and X¢ (), we get

E|X: o0l = ) elylp(t0,ey)=¢ ). ly|p1< 0y>

yezd yezd

(e ti-evi

assuming (2.8) for ¢ =1. The constant C will turn out to depend only on the
dimension d and on A and B from (0.3). Hence we will drop the subscript @ in the
sequel.

The following proof of (2.8) for ¢ = 1 makes use of Nash’s work on the “moment
bound” in Nash [12]. We will bound the growth of E| X , | above by the growth of an
entropy S, (Lemma 5) and bound |[EX ,| below by ke*® (Lemma 6). S, itself will
be bounded below essentially by log ¢ (Lemma 4). This way we will succeed in
sandwiching E| X ,| between two multiples of /2, as we will see, for t > 1. For t < 1
the result is trivial.

We start, however, with two technical lemmata

Lemma 1. There is a constant C(d) such that for any piecewise differentiable function
ge (RN LYRY), g continuous

—4/d 1+2/d
| IVglzdsz(d)[I Igldx} [j lglzdx] (2.10)
R4 Rd R4 .
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Proof. (E. M. Stein, cf. Nash [12]). Consider the Fourier transform g of g,

§g(y)=Qm)~ 42 | e*g(x)dx.
R4
Recall that

[ 1gPdx = | |g(x)I*dx.
R4 Rd

Since dg/0dx, has Fourier transform y,g(y) (for which we need continuity, piecewise
differentiability)

2 d
dx=Y [Ivl’lg(y)*dy
i=1

d dg
2 — =
j|‘7g| dx _-iZ% j aX'

13

= [Iy*1g0*dy. @.11)
Since |(y)| < (2m) 92 [ [€*[|g(x)|dx = (2m) =2 [ |g(x)|dx, we get for p >0,
[ 1gy)Pdy £S,[@n)~ " [ gldx]?, 2.12)

Iylse
where S, is the volume of the d-sphere with radius p, S,=(z%?p?/
(d/2)!). On the other hand
2

[ 1gwPPdys | % 1g(y)12dy < p~2 [|Vg[*dx (by (2.6)). (2.13)
[¥lzp Iylzp

Now choose a p minimizing the sum of the two bounds in (2.12) and (2.13), to obtain
a bound on [ [§]*dy = [|g|*dx in terms of [|g|dx and [|Vg|*dx. Solved for
[ IVg|?dx, this is

[IVgl2dx
d d\
;<4nd/<d+2))<<5)! /<1+5>] [Jlgldx] 4 [ lgl?dx]' 24 O

Lemma 2. There is a continuous piecewise differentiable function ge L>(R?) n L}(RY),
such that for some constants kg,k,

d

a) 3, Y (V7' p(x0)*zk, | [Vgl*dx,

i=1 xez4

b) [lgldx <k,

o [lgl*dx= Y p*x)

xeZ4
where we write p(x,t) or sometimes p(x) for p(x,t,0,0), the transition probability density
of X, and where k,, k; do not depend on p.

Proof of Lemma 2. Considering the fact that the faces of unit cubes in dimension
(d + 1) are unit cubes in dimension d, the step from dimension d to dimension
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(d+1) should be obvious from the following construction for d=2:
Set g(x): = 4p(x) for xeZ?;

glx +%el + %‘32)3= p(x) +p(x +e;) + plx + e;) + plx + e, + e,);

if y is on the line segment between xeZ? and x +e,, let g(y) be the linear
interpolation of g(x) and g(x+ e,), ie. g(y)=g(x) + k(g(x + e;) — g(x)) for y=
X + ke,. Similarly for the other three edges of the unit square {x,x +e,,x +e,,x +
e, + e, (=:Cy(x)). For yeC,(x), y # x + 3¢, + 3e,, let x(y) be the point on a side
of C,(x) such that y is on the line segment from x + e, + Je, to x(y). Let g(y) be the
linear interpolation of g(x + Ze, + Ze,) and g(x(y)).

Continuity and piecewise differentiability of g are immediate; we are left with
showing a), b), ¢) of Lemma 2.

to ¢): Set p(y):= p(x) for ye[x —%e,,x +3e;] x [x —2e,,x +3e,], xeZ?. It
suffices to show g(y) = p(y), VyeR?. This is immediate for yedC,(x)¥xeZ?, and
hence for yeint(C,(x)) in general.

to  b): For yeC,(x):g(y) < 4max{p(x),p(x +e,), p(x+ey),p(x + e, +e,)}.
Since for any x:p(x) can occur at most four times as such a maximum (namely for the
four adjacent unit squares), we get jg(y)dy <44.) p(x)=16=:k,.

xeZ?
to a): We compute Vg(y): Denote the triangle with vertices 4, B, C by 4(A4, B, C).
If yed(x,x+e,x+%e, +1e,), yed(x+e,x+ie,+Le,,x+e, +e,), then
Vig(y) =4V'p(x), respectively Vig(y)=4Vip(x+e,). If yed(x,x+ie, +
le,,x +e,), respectively yed(x + e;, x + e, + e,,x +%e, +1e,),

then
Vip(y) = 2<P(x) +p(x+e)+plx+ey)+plx+e +e,)
SIS} o1y i+ 9t ]
respectively
Vigl = o LEXAILIELELE) (001 e
+plx+e) + plx e, + e»)) =2[V'p(x) + V' p(x +e3)].
Hence

[(Vig(y)dy = Y (GAV'p(x))* +4(4V p(x +e)))®

xeZ?

+220V! p(x) + V' p(x + €5)])?

-2 Y {16(V' p(x))* + 16(V' p(x + e,))?

xeZ?

+8[ V! p(x) + Vip(x + e,)]%}.
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But

Y IV + Viplx +e) P < Y {(VIp(x)? + (VEplx + e,))?)

xeZ?2 xeZ?

+ Y VIp(x)V! p(x + €,)] 2.
xeZ?
By Schwarz’ inequality

1/2
> IVIp)V! p(x +ey)] é{ 2 (Vip(x))* 3 (Vip(x + ez))z}

xeZ? xeZ? xeZ2

=2 (Vip(x)*

xeZ?

Altogether then

32 32
f(Vig)?dys— 3 (V'p(x ))2+7 > (Vip(x))*

4 xeZ? xeZ?

=16 3 (V'p(x)),

xeZ?

similarly [ (V2g(y))*dy <16 Y. (V?p(x))*, so that

xeZ?
(VQ(J’))Zdy< Z Y (Vipx)*. O
i=1 xeZ?

Using the previous lemmata we can bound p(x,t) in terms of ¢:

Lemma 3. There is a constant k,, depending only on d, A, B, such that

Vx,t  plx,t) Skt~ 42,

Proof. Define V1= ) p*(x,1),

xez4

dt 0= ZZPXI) P(Xt)—2z Y. P, OV (a(x)V' plx, 1)),

d xeZ4 i=1 xezd

by Kolmogorov’s equation. Sum V'*(4,B,)=A4,V'*B,+ B, V' 4,

m=0tom=gq

q q—1
Y a,B,=—Y Aubn.+AB,— ABy,
=1

m=1

where {a,,}, {b,} are given sequences and

A,=Ay+ Y @.B,=B,+ ) b,

k=1 k=1

(2.14)

from

(2.15)
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Now

Y Y PV (@ (VT p(x,1)

i=1xeZ4

d
=Y e Y Py XV T (X XV DX Xg)).
xqel

i=1x1eZ
d

Treat each summand of ) separately, say fix i= 1,
i=1

2 - 2, PV (a,(x)V! T p(x))

x1€Z xaeZ
=2 .Y Y pVIT() (2.16)
x2eZ xq€Z x1€Z

We will apply partial summation on the square bracketed part by identifying
Api=pm—N,x,,...,x),B, ., =a,m— NV 'pm—N),m=0,...,q,
for N fixed:

i p(m—N,x,,...,x)V! "(aq(m — N)V'* p(m — N))
m=1

q q
=— Y Abusi= Y @B, —AB,+ A,B, (by (2.15)
m=1

m=1

Vi*pn—N = Da,m—N — )V * pm— N — 1) — A,B, + A,B,.

1

Z p(xl)vl v(a1(x1)vl  p(xy))

M=

il

m

xleZ
q
= lim lim ) p(m— N)V' (a,(m— N)V'" p(m— N))
N-w g2 m=1
q
= lim lim ) V'*pm—N—1a,m—N—1)V' " pm~N—1)
N-ow gowom=1
= Z VHp(xl)al(xl)VHp(xl),
x1eZ
since lim p(g — N) [a;(g—N = 1)V'"p(g—=N = 1)]=0= lim p(— N) x

gq— 0 N-oo
[a,(— N —1)V** p(— N — 1)]. Using this result for all i and putting back together
the sums in (2.16), we can write (2.14) in the form

d ¢ . .
- EV(I) =2 Y V7 p(x,0)a(x)V7 p(x, 1),

i=1 xez4
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By uniform ellipticity (0.3), V'*p(x,0)a(x)V' T p(x,t) = |V p(x,1)|*4, hence

d d )
—EV(t)g2A YN IV pI? 224k, [ [Vgl|*dx, (2.17)
i=1xezd
for the function g of Lemma 2. Applying Lemma 1 to g
[1Vg|2dx = Cykq * [ [ g|7dx]" 2.
Plugging this into (2.17) and using ¢ of Lemma 2 yields

d 1+2/d
B Et_V(t) = 2Ak1c(d)k64/d,: Z pZ(X):l = k,V(ll)Jr Z/d’
xeZ4

and
d
E(V(:)Z/d)= _sV-Z/d—1 d V. > 2

@) dt ) = Ek/,

therefore

_ a2 2
V(I)Z/dg VO 2/d+3kl’=1+3k/t,

since V, = 3 p*(x,0) = p*0,0) = I;

xeZ4
2 \"92 2K\ 2
Vm§<1 + ok t) §<7> . (2.18)

Finally by the Chapman-Kolmogorov identity p(x,t)= Y p(x,t%,t/2) x
Xez4

p(x,t/2,0,0), and by Schwarz’ inequality

2 2
(p(x,0)* < > p<x,t,>€,—2[—> Y p(;‘c,%,0,0)

xezd xezd

2\ 922
(3]
(by (2.18) and the reversibility p®(x, t, X, t/2) = p®(X, t, x, t/2), together with the fact

that p®(x,t,x,t/2) = p* ~*(X — x,t/2,0,0),and (2.18) was independent of the particular
. Put

IIA

k' 42
k2 = <?> 5 then p(x,t) é kzt_d/Z. El

Now we can take up the program mentioned at the beginning of this proof of

Theorem 1, and define the entropy S, = — Y p(x,t)log p(x,1).

xez4

Lemma 4. There is a constant ky with S, 2 ks +(1/2)d logt, Vt.
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Proof. S, = Y. plx, t)mm(—logp(x 1)

xeZ?

IV

xeZ4

since Y p(x,0)

xeZ4
where ky; = —log

> plx,)(—logk,t™ %) = —logk,t™ 42,

ky. [

Lemma 5.Vt 2dB(d/d)S(t) = [(d/dr)E| X ,|]*.

Proof. E|X,|= ) Ix|p(x.1),
xeZ4
d d d
d—tE|X(z)| = xéd [d—t|x| p(x,0) + |x] I P(X,t)}

I

d .
) el plxs) = Z 2 IV (a()V T p(x,0)

xeZd i=1xezd

Y Y VMV e

i=1 xezd

39

=1, hence o = — (logk, +(—d/2)logt) = k; + (d/2)]ogt,

by partial summation like in the proof of Lemma 3, observing that p(x,t) = o(1/]x|)
for |x| - o0, since the jump intensities are bounded, which takes care of the boundary
term of partial summation, and

d

é Z Z |ai(x)Vi+p(x’t)|)

i=1 xez4

d
$E|X(t)|

since |Vi*|x|| < 1.

Moreover, since S, = — ). p(x.t)logp(x,t)

d

E (G

xeZ4

d d
-y [E p(x,0)-log p(x,1) + p(x,t)alogp(x,t)}

xeZ4

——Zli p(x,t)-log p(x,t) + p(x,t)—— : (x,t )]
= gp D P00 di P

xeZ4

d
=-Y( +logp(x,t))$l7(x,t)

xeZd

2 2 (I+1ogp(x, V'™ (a; V" p(x,1))

i=1xezd

: i+
= Z Z VH‘ ]ng(x’t)aivi+ logp(x,t) \% p(X,[)

xeZ4 Vi+ IOgP(xat) ’

(2.19)



40 R. Kiinnemann

using summation by parts with lim plogp = 0 for the boundary term. We assume

. p—0
V¥ p(x,t) # 0, for otherwise this summand would not contribute anyway.
Now
ds . Vit p(x,t)
B—2= aV'" lo NP
de — ,; xezpi ' el log p(x.1)
Since p(x,t) <1,
i+
o<V PO
T Vitlogp(x,t) =
and by the mean value theorem
Vitlogp(x,t) d 1
o = logp| ==

Vitp(x,t)  dt » P

for some p* between p(x,t) and p(x + e;,1).
Therefore
V7 p(x,)

Vi log plct) p* < max{p(x,1), p(x + e;.1) }

and,

d V1+ ( d
=Z > éz Z p(x,0)+ p(x + ¢;, 1)
i=1 xezd

i EZdV”Llogpx),‘

d

=3 Y plxt)+ Z Y px+e,)=d+d=2d

i=1 xezd i=1 xezd
Now, let us return to (2.20):
B ds_ ¢ Vi p(x,t)

———2 3 Y |a,V'" log p(x,1)?||a, VT ?

K(p) dt == G Vi*log p(x,1)K(p)
Then
a Vi p(x,1) Vi p(x,t)
_ O PY o and 0s——— P2 <
=Z x;d Vi*log p(x,t)K(p) = Vi*log p(x,)K(p)

Hence we can consider
Vi p(x,1)
Vi*log p(x,t)K(p)

=:u({(i,%)}),

(2.20)

(2.21)

as a measure y on M:={l,...,d} x Z* and apply Schwarz’ inequality in the form

[ f2du= [ 12du [ f2dp 2 [ | fdul? (since p(M)=1) on (2.21) to get

B d d ) IV'+P| 2
——8y 2 [ Z Z la;V'" log Pl
K(p)dt i=1 xezd [V " log p|K(p)

d . 2 1
EI:Z Y la;V P(X’I)I] W,

i=1 xezZd
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Le.

K(P) a i+ g
2dBES_ K(p) dt [,:Z EZZd|aiV p(x,t)|:|

2
> [1E|X,|] ,
dt

where we used (2.19) for the last inequality. []
For a function f on Z¢ define f on RY by f(x):= f(2) iff x,e[z, — 1,2, + 1),
i=1,...,d; x=(xg,...,x), M= [dx|x|p(x,t). Since | x| = |x|— 1, Vx,

ElX)= Y IXlp(ot)= [ dx|x|px,) = | dx(x] - 1)j(x,1)

xez4

>M, —1. (2.22)

Lemma 6. There is a constant K > 0 such that

M,z KeS0ld.

Proof. Observe that for fixed A: min(plogp+Aip)= —e *71, put A=alx|+ b,
p

xeRY, where

a=i,e"”=<i>a", with Dy= [ e Mdx,
M, D, e
then plogp+(alx|+b)p= —e e ™, and  [dx[plogp+alx|p+bp]=
—e v fdxe ¥, that is —Sy+aM,+b= —e ?7la"fdxe ™M =
—e "7 'q7D, Substitute on the right hand side for e”* and on the left for a:
-Sy+d+bz—1,d+bz=5, —1. Pluginfor b

d—1+logD,—dlogazS,—1, d+logD,—d[logd —logM, ] =S,
dlogM, +d = S, + dlogd —logD,,

logD
logM,—Hg%—l—logd— Oi 4

S
logM, = % +logd —logD}* — 1,

M >exp<S(')>[d/D”"e] O

Now we are in a position to conclude the proof of Theorem 2. Because of E|X | = 0
and Lemma 5 we have

t
d
EX|<( [2dBd—S(')] 2 dt,
O t
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so that we get with Lemma 6 and (2.22)

t d 1/2
KeSWd_ 1 <M, —1<EX,|< f [2dBES(,)} dt. (2.23)

0

Define R, by d°R,: =S, — k3 — d/2logt, where k; is from Lemma 4, which says
thatVed R, 2 0. Then d(d/dt)R = (d/dt)S — d/2t,(d/dt)S ,, = d(d/dt)R ,, + d/2t. Sub-
stitute for S and (d/dt)S in (2.23):

1 1 d 1/2
— 1 + KdRo+kya+(/ogn) < Ele] < (2d)1/2(Bd)1/2 j (Z + EER> dt. (2.24)
0

Use the inequality (a + b)*? < a'’? + b/2a''? for a >0, a+ b > 0:

t 1 d 1/2 t 1 1/2 t t 1/2d
—+—R dt < - d - —Rdt
£(2r+dt > —0<2z> H(f)(z) dt

1/2

/t 1/2 t t
<)M + Rt\§> — [ R,/(8)"%dt < (21)'? + R’(E) , since R = 0.
0
So we get from (2.24)

t 1/2
— 1 + KeMilizeRo < E|X | < (2012 + R,<§>

= 122121 +1R(t)],
Kek/deRm <2121 4 %R(t)] S
<21 +5R()]+1. (2.25)

fort=1.
Now, if R(r) was unbounded as a function of ¢, then

ol K eRw < (2Y2)[1 +4R(5)] + 1

could not hold, since e®® grows much faster than R(t), hence R(t) < B, for all ¢, for
some By, and consequently by (2.25) with K': =2"2[1+ 1/2B,]:

E|X,|<K'tY* forall t=>1. (2.26)
Take e.g. B, as the solution of
Kebldgh = 212[1 + 1B, + 1,

which depends only on the constants K, k5, i.e. K’ does not depend on w.

We are left with bounding E|X,| for ¢ < 1, which is immediate, since E|X,| is
bounded by the expected number of jumps of the process with highest jump intensity
2dB (cf (0.3)). Since its number of jumps before time t has Poisson-(2dBi)-
distribution, we get E|X,| <2dBt <2dB \/; for t < 1. Fusing this result with (2.26)
to obtain E|X,| <max{2dB,K'} \/?, we have completed the proof of Theorem 2.

As a final remark concerning Theorem 2, I want to point to the fact that Rodolfo
Figari, University of Naples, has recently proven another bond lattice version of
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Nash’s method in an unpublished paper, as I have just heard. Without using
interpolation (Lemma 2) he got constants k,, k, with kl(\/t — &) S E|XE (1) — x|
<ky( \/t +¢) for all t,0.

3. Effective Conductivity

In this section we will show the existence of an “effective conductivity matrix” (g;;),
which will serve as the diffusion matrix for the limiting Brownian motion of Sect. 5.

To develop a feeling for the theorem of this section, let us start with some
heuristic remarks concerning the constructions of the effective conductivity g from
the given conductivities a in the case of one dimension (d = 1). Let us consider the
lattice Z and the conducting bond b(x) between x and x + 1. The conductivity along
b(x) can be defined as the flux thru b(x) under a potential of gradient 1. In order to
construct some kind of effective conductivity on a possibly inhomogeneous lattice,
the first problem arises in finding a potential on this lattice with “over-all gradient”
1. Obviously we have for a homogeneous lattice (i.e., a(x)=a) an effective
conductivity of a according to the previous definition, since the potential is trivial.

In our case of a stochastic inhomogeneous lattice we want to proceed
analogously: We would like to put a potential T(x,w) on the lattice with overall-
unit-gradient and measure the average flux.

E(a(x)VT(x,w)), (3.1)
along a bond b(x), where we assume an overall gradient condition in the sense of

lim E T(x+n—Tx—n) _
n— o 2n

1. (3.2)

Theorem 3 shows the existence of such a potential on Z¢. It can be written in the
form x, + ¥*(x,w), where k denotes the coordinate-direction in which a unit-gradient
potential is applied, and ¥* is some “correction” compensating for inhomogeneity
and randomness of the lattice conductivities.

We start the rigorous part of this section with some remarks on the mathe-
matical formalism of Theorem 3. Let B, be the set of bonds in Z% Q:= [A4,B]%,
H=12Q, #,P), where & is generated by the cylinder sets whose images are
balls in R?*. Here weQ is a configuration of conductivities {a,(x,w)}:54.. Recall from
Sect. 0 that P was assumed to be invariant under the group {t,} .4 of shifts of the
configuration. This will imply immediately that a function f on Z¢x Q with
f(z,w):=f(1_,w) for fe# is stationary on Z%: Let T, be the shift operator on

7% ie. T (z) =z + x:
[(T(@) = fe+x) =T, ()= flzt )= f(z)
where = denotes equality in distribution.

Define V¥* ¢ for pe # by V¥ p(w) = p(t_, ®) — @(w); k=1,2,...,d, and V"¢
for yeZ4 x A by V' y(x,0) = y(x + ¢;,0) — y(x,w), i = 1,2,...,d. Define a;e # by
a,(w): = a,(0,w).

Theorem 3. There are functions y¥e #, i,k=1,...,d, such that
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a
Z “(a(@)(0y + ¥ (w)) =0, as. [Plk=1,....d, (3.3)
(lpz(w)):()a l’k: 1a5d7 (34)
Vityk=vityk, as [Plik=1,....d. (3.5)

Moreover, there are processes y*(x,w) on Z* x Q.k =1,...,d, with 1¥(0,0) = OVweQ,
such that

Vit = Vi o) = Yi(xo) as. [Pliik=1,....d (3.6)
Extend y* from 79 x Q to R* x Q, such that y*(x,w): = y([x],w), where [x] is the
d

(unique) vector in 7 with xe [ | [[x], [x] + e).
i=1

2
hmE{(ng{fD }:0 for all xeR4k=1,...,d. 3.7)
£=0 &

Part 1. Existence of a solution of (3.3)—(3.5).Here and in Sect. 4 the following lemma
will be important.

Lax—Milgram Lemma [e.g. in Lions [11]]. Let (H, (,)) and (V, ((,))) be Hilbert

spaces, V< H dense, | @ || := ((@, ))!/?, for p€V, let a(yy, @) be a sesqui-linear form on
V such that

la(, @) =yl @l for some y>0 and all y,peV, (3.9)
a(e,p) 2 cll@||? for some ¢>0 and all peV. (3.10)

Forall feH,the equation a(y,p) = (f,¢), Voe V, has a unique solution e D(A), where
D(A) := {YeV 9 > a(y,p) is continuous on V in the topology induced by H}.
In our case let (H,(,)) = #'= L*(dP) and let (V,((, ))) be # with inner product
d

()= 3 E(V*'YV* @)+ E(Y@),(,0): = E(y¢). If we want to use this lemma
i=1

for solving (3.3), we have to apply it to an equation of the form

a(y,p):= ZE(a o)V YV o) + B(),p)

=(f,p) for some fixed B> 0. (3.11)

In this manner we can satisfy (3.10) with

d

Y. E(a(w)V'" oVt o)+ ﬂ(wp)‘,

min{4,f} ¢ < |a(p,0)| =

and (3.9) with y:= max{f,B}:

d

Z (a; V'YVt o) + B(!l/,eo)l

la(y, @)l =
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d
év[ S (VYL @) +(I¢I,I§0I)]
i=1

lIA

V{Z [EIVTYIPEIVT @112 + [ElllfleIqolz]}

(by Schwarz in (H,(,))

1/2

d
< % S E|VY[? + Elgf? ”2< Y EVTYPR+ E|<p|2>
i=1 =
(by Schwarz in R4*1)

=yl

Hence the Lax—Milgram Lemma can be applied in (3.11) with f(w):= — V¥ q,(w)
to get a unique y*#e # solving a(y,p) = ( — V¥~ a,(w),p) Yo € #. Observe that for all
l//,qoe%, i=1,....d,

E(WYV'™ @)= E[Y(o(t . 0) — p(w))] = E[Y()p(r, ») — Y(@)p(w)]
=E[y[1_, w)e(®) — Y@)e(w)]=E(V'Y)e],
hence

d
Y E@(@)0y + VT VT 0) + BE("0) =0,

Yoe . (3.12)

Now we want to let § —0 and hope that a limit of the solutions *# solves (3.3). For
this argument we need

d
E[ y (V”x"”’)z]écl, (3.13)
j=1
BE(Y*?)* Zc,, (3.14)

where the constants c,, ¢, do not depend on f5. To see that these inequalities hold,
substitute y** for ¢ in (3.12):

d
Y E(a ()84 + VI AV AR 4+ BE(FF? =0, e

i=1

d
—E[a V""" =} E[a(V"" 1] + EB(¢"-")*

i=1
> E[a, (V¥ %521 + BE(y“F)2.
And therefore ke 2071+ BE(™T)
BLE(VS* 7721 2 BIE(VS* 70) 2 |E(a,V**70)
d
= A Z E(VI* P2 4 BE(5*F)>

> AE(VE* y20)2 4 BE(45F)2 (3.15)
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by Schwarz’ inequality and (1.3). Set a(f): = (E(V**¢*#)%) V2 and y(B): = E(x**)?.

Then (3.15) reads Bu(f) = A(«(B))* + By(B), a(p), y(B) = 0. This shows that «(p) is

bounded (e.g. by B/A) and so is By(f) (e.g. by B>/ A), which proves (3.14). Since the left
d

hand side (3.15) is bounded by B?/A, so is A ). E(V'* "), proving (3.13).
i=1
Now, because of (3.13) there is some subsequence {B*} along which
VIR b Sk weakly in # for some y¥e#. Moreover, given a subsequence
{B®}, we can find by (3.13) a further subsequence {£* 1} = {#®}, along which
VEFDHkbUeh gk weakly in # for some ¥, e #. Therefore Vit 58 @ )k
weakly in o for i=1,...,d. By (3.14) and Schwarz inequality

BE(Y“" @) < BLE((“*)?Ep*]"* = [ fc,E@?]"2,

so that (3.12) goes to (3.3) along the subsequence {f?}.
Now let us check (3.4), (3.9):

E(wf) = (lﬁj‘,l) = lim (Vj+Xk,ﬁ(d)’])

B0

= lim E[{**“(z_, ) — 1" “(0)]=0,

B0

—e,

since obviously E(p(r_, (0))) = E(¢(w))for pe A, using our remark on stationarity
preceding Theorem 3.
Using the observation preceding (3.12) we have

E[V/" PV @] = E(“'V/ V") = E(/*'V'"V/"¢)
= E(V'* VI ),

so that

EL(V'"yHe]=E[Y;V o] = [}lili() E[V/" 'V ¢]

= lim E(V* PV~ @) =E[(V/ "y o]
50
for all pe #,

proving (3.5).

Part 2. Construction of y*. Let us define the shift operator T, on # as follows:
T g(w): = g(t_ ). {T,}cza Is @ unitary group of operators on #. Here T, has the

spectral representation T, = | e**U(dA), where {U(d)}, is the corresponding
R4

family of spectral operators. Put

)= [ (e**~ Z e” " — DU(dAY}(w)),

Rd

‘where [e”* — 1|2 =} |e* — 1>
=1
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In the sequel we show first of all that y* is well-defined on Z¢ x Q. Because of
J U(dAh(w) = y}(w) we need for this purpose simply an upper bound S, on the

integrand:
Ieilx_ l”e—i)»j__ ]'
Ieil_ ]|2

<S(x), for all xez, j=1,....d

implies [*(x,w)| < d-S(x):[/¥|,,. In order to get a hand on S(x), define p : R — [0,7]
such that p(4) = I, ifthereisan [,0 <l < mand ke Zwith A = 27k + [, orif there isan [,
0=!<mn and keZ with 4 =2nk — . For ;,eR we now have

p(x./)

3 Sle*™—11Zp(h) forall j=1,2,....d,

and because of the triangle inequality
Ieilx . ll — |eiA1x|+-~<+iAdxd . ll é |ei,11x1 _ ” 4+ 4 |eildxd o ]l’
and hence (since p(u+24)= p(p)+ p() [ — 1| < p(Ax,)+ -+ p(hex,) <
>

[x{lp(A)+ -+ |x41p(2,). We redistribute indices if necessary, such that p(4,)
p(4;)> 0 for all i £d. Then

d
Iei/lx _ 1,',8—“” _ ll - (,%‘ |x1|p(/11)),0(/11)
= d
o

Iei/l_1|2 =

Z
d
Z |X |p d)z d
SE——— =4 |x|=:5()
(L) i=1

Hence p(4,) 0 does no harm.
We now turn to the properties of Xk- Here x*(0,00) = 0 holds trivially for all we Q:

(Vi+)(k,§0)= J" (ei}.x Z ’—l U(dA)lﬁk Vz,
Rd

= f(e”"— Z W5,V (e — HU(dA)gp)
R4

= [ (e*=1) 1 2 Z(!/ff‘,V’ (e — 1) U(dA)p)
R4

d
< Z Vit j (ei7~x_ 1)__1_( - HU{d2) 1’¢>
J R

= leul_”z

=<D£de"“U(di) f%(/)) (Th,0),
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which implies (3.6). Note that we have made use of (3.5).
We show (3.7) for xeZ* first, with ¢ of the form 1/n (i.e. x/eeZ9):

o(e(3))

d . lz(e*“' — 1) — 1)

iA(x/e) __ k k
:if\;gd leiAeeie) — | 1) (UdAyEgh)

Put p;:= e —1]:

Z (U (A ( 2 wUAYT, Y #iU(dl)!ﬂ{‘>

d
é(Z ﬂ?)
i=1 i=1

2 U(di)!ﬁ?

by Schwarz’ inequality.

d
Because of Y u? =le” —1J?, this implies

i=1

X zl(x/s) ”2 d
E(sx"(;)) j Z (U, U(dA").

As was shown above, the mtegrand 18 bounded independently of e:

d—1]y |2
) . 4¢ A1)
62|ez/h(x1/£)+--- +idg(xale) __ 1'2 jzl p( 1)
1P =70y
22| X[ 2
se2a24) p(i,)
+ < 4d%x)%,
p(j'd)z

where the indices have been redistributed if necessary, such that |x,|?p(4,)* =

max {|x;|* p(4,)*}, and where we have used the inequality
j

|eillx1+"- Fikaxa 1|2 S(xylpAy) + -+ de[p()m))z

d

= Z ’xjizp(/lj)z + d? max {|x;|* p(2,)*}.

But then we can apply the Theorem on Bounded Convergence to proceed from

Ieii(x/s) _ 1|2

lijxg)ez—le—iljl—li—:o, for all A¢2nZ¢, to

2 d
. x . [
im E<8Xk<*>> =lim Z z 821311(::/2) _ HZ
£>0 & £=0j j=1Ae2n24

. (e—i).l _ 1)(@“” _ 1)

(I =12

Ui

(3.16)
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For Ae2nZ* however, U {A}y* is T.-invariant, for all xeZ*:
U({ADyE = | e UE)U{DYE = U{ADYE
R4

since e** =1 and U(dA)U({1}) = U({A}) for LedZ, and U(dA)U({A}) = 0 for A¢d2,
because U is a projection operator. Now, the only { T}, z.-invariant functions are
the a.s.-constants, since the unitary group {7,},.,« was assumed to be ergodic in
(04),  hence  (U{Zpy ) = U{yH(Lys) = U{ADYIEWS) =0, so  that
lim E(ex*(x/¢))* = 0 for xeZ“ and ¢e{1/n, neN}.

£~ 0
d

We now drop the conditions on x and e: Recall that for xe [ ] [[x], [x] +e]:
i=1
x¥(x,) = ¥([x], w). Assume first that x = ae,, 2eR, [=1,...,d,

(o () =t (o) =l ][ o)) -0

We now extend this result to xeR? in general. Set

X . [xi/e]—1 x,—l
0L ] [
[xi/e]—1
y,(%):: go M(O,...,O,m,O,...,O)=X"<[%‘~:|e,>.

Because of the stationarity of the /¥, we see that y, and §, have the same distribution,
I=1,...,d, hence

(e () - 2)) ol £ )

Z (Eley:)*E(ey)?)'? = Z (E(e7)°E(e7,))"2.

ljl i,j=1

and

Since lim E(ej(x/e))* = 0,i=1,...,d, as was shown above, this last sum will vanish in
=0
the limit, completing the proof of (3.7). []
In the beginning of this section we tried to develop some intuition how the
“effective conductivities” g; ; should be defined and constructed. Theorem 3 gives us

the necessary “correction potentials” ¥* so that we can now define
4= Ea(@)(0;+ V'), ij=1,....d. (3.17)

We conclude this section by proving some properties of (¢, ;), which are more or less
immediate from the definition. We will show that the matrix (g; ;) is symmetric and
that for any eigenvalue ¢ of (g, ;)

A<q <1+ Z E()) ) . (3.18)
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y (3.3) and the construction of ¥*#“es# in part 1 of Theorem 3 we get

d
Z E(a(w)(3, + yHV' ") = 0. Since VI, V' y* 7" - y¥ in # along {f¥} weakly,

d
0= lim ) E(af,;+ YOV M)

pO=01=1

d
= Z E(a,(@u + l)bll)l/jll()a

hence by definition

d
9 = E(a(6,; + V1)) + E{ Z a0, + l//;)‘plzc}

= E{ak(éki +¥5) + a(0y; + l//Ilc)l//ﬁ + Z a0, + ‘M)W?}

L#k
{ Ou + YD +¥9) + Y af(d,; + ) }
¥k
so that

d
Ay = E{ Z a0, + ‘M)(&k + ‘/’f)} (3.19)

=1

The symmetry of (¢,,) is immediate from this equation. Moreover by (3.19), we have
for any x: =(x,,...,x,)eR%,

d d
kz Xkl X; = Z E(a)(6,; + ‘/fzi)xi(fszk"‘ ‘//If)xk)
ik=1 ik l=1
d d ' 2
= Z E<a1< Z (6lj+lplj)xj> )
=1 j=1
d . .
=4 Z E(x,x;[0,:0 + 51:"” + ol + 'M‘//ﬂ)
k=1
d d ' _
2AY q;+A Y ux[EGW) + EGu) + EQivh],
k=1 ikI=1
d d 2
so that, since E[Y}] =0, Vk, I, and ) xxyjyt =< Y x xpl> >0
k=1 j=1
d d
Z XelpiXi = Z (320)
ik=1 iz
Similarly

d d d
Z Xkaixi§B< Z Xl%+ Z xkxiE(WIiW;)>
k=1

k=1 ikJd=1
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L5 o))

< + z E(%) ) i (3.21)

kl=1

by Schwarz’ inequality. Inequalities (3.20) and (3.21) yield (3.18).
Being symmetric, (g; ;) is diagonalizable. If (¢;;) is diagonal, the upper bound in
(3.18) can be slightly improved,

d
A<q< <1 +max Y E(¢{)2>B, if (q;,) is diagonal, (3.18))

isd =1

as can be seen by letting x =¢;, i =1,...,d, in the proof of (3.21).

4. Resolvent Convergence

Before introducing the Hilbert space framework for the formulation and proof of
our Theorem 4 on strong resolvent convergence, let us consider for a moment the
intuitive back ground of our approach, which is due to Papanicolaou and Varadhan
(cf. [13]). As outlined in Sect. 1, we need the strong convergence of the semigroups

eZot — <! where

2

= Z Gz o 66 - (with (g;) from (3.17)), and £, = — Z V“( < >V”)

Lj=1

are the generators of the corresponding jump, respectively diffusion processes. The
convergence of semigroups will result from the convergence of resolvents:

fora>0, (— % +o0) '>(—ZL+a)", 4.1

i.e. if fis a given function and v*(",w): = (— &% + o)~ ' f,and u(*): =(— L +a) "' f,
then we claim

(-, w)—u(:) (in some sense). 4.2)

We use multiple scales for proving (4.2). This method will be indicated in a few words
(for details cf. e.g. Bensoussan, Lions, Papanicolaou [1]): The idea is to expand u° as

X
W, @) = u(x) + 81, <x§w> + 82u2<x,;,w> Yo 4.3)

Plugging this into the equation for u*, collecting and equating coefficients of equal
powers of ¢, gives a sequence of equations for u,u,,u,,.... The trick then is to set

(x,y,0 Z 2, o)V u(x). 44)
This will result in an equation for x* which is essentially (3.3), and is an equation

characterizing u, of the form (— % + a)u = f. Can we hope for &u,(x,x/e,w)— 0, for
i= 1,60, in some sense, or more directly:
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d
Can we hope for z*(x,w):= u'(x,w) —u— ) ex*(x/e,w)Vi" u(x) to vanish in some
k=1
sense, as ¢ —07?

Now let us turn to making these ideas precise. Let H be the Hilbert space
H = LXR*; 2#) of square integrable functions on R? with values in # and inner
product (f,9):=E[dx fg,|f]l:=(f.f)"*> Let H' be the subspace of H with
square integrable distribution derivatives (cf. Richtmyer [14]) and inner

4 /0 0
product ((f,9)):= Y. <5;f,gg>+(f,g); /1= /)2 Let H} be the

i=1 i i
Hilbert space consisting of the same functions as H, but with inner product

d

(f,9):= D (VF* f,Vi*g)+(f.9). Let Hy:=L*(R%,R) be the Hilbert space of
i=1
square integrable real functions with inner product (f,g),:= [dxfg. Let H} be

the Hilbert space of functions in H, with square mtegrable dlstrlbutlon
d

- . o .0
derivative and inner product ((f,9))y:= ), <6—f’ﬁ—g> +(f,9),. For
i=1 \0X;  0X; /o
feHy,e>0, has (— £ u + oaut”, @) = (f, ¢), VeeH}, aunique solution u*eH}, as
follows from the Lax—Milgram Lemma applied to the Hilbert spaces H,, H. It is
sufficient for this matter to consider

i jde(V;?“ (al(%,w)Vf*lk))q) +afdxEye =E[dxf(x) o, (4.5)

i=1

Le. a(y,p) = (f,p), where a(yy,p) = Zd: Ef dxa(%,w)Vf*lpVﬁJ’(p + aE [ dxiy¢. This
i=1

sesquilinear form on H,, H, = H, is of the same structure as (3.11) on V, V= H, hence
satisfying (3.9), (3.10), so that the Lax—Milgram Lemma is applicable. Moreover

a(u?, w’) < e, u) | = |(f,u)| < (f, )12, u) 2, e

lu | o™t f1, Ve 0. (4.7)
Observe that even
d
S IVERw P £ad "t f[?, where 6:= min {o,A}, (4.8)
i=1

since (Z (V5 e, V) + (', u )>= o, u), = la(@’, W) = | 11w, e

=1

1
Z IV > + | <67 fl. By (4.7), then Z IVerur|? <

luell = L fl &

Tl Z [Ve*ue|2 <671 f . Now consider
i=1

(= Lu+au,9), =(f,9)o, VoeH,. (4.6)

This equation has a unique solution ue H, for any feH,, by the Lax—Milgram
Lemma applied to H} and H,,. To see this we have to check the sesquilinear form
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ay, @):= (— LY + oy, @) for (3.9) and (3.10). Inequality (3.10) is immediate from
(3.20). To check (3.9) consider the matrix

0

(qij)a:: (qij) :
O b

0 0...0 «

and let f:=((0/0x,)f.....(0/0x,) f,f). Here (q;;), is real symmetric and its largest
eigenvalue is ¢,,,, = max{q,,,.o}. Just as in (3.18), we get
0 0 _
Z q.,< fiss g>+°<fg, (/i g
i,j=1
é max|f| |g| max {qmax’a} Hf”l “g”ls le (3 9)

Moreover, H} is dense in H, since C{ is, and C, < H]. Hence the Lax—Milgram
Lemma applies.

Theorem 4. Let feH,; ucH}, u'eH] be solutions of
(=L +a,0)=(f,9), VoeH,, 4.5
(— Lu+ou,0), =(f,0), YoeH}, (4.6)

then u®—>u strongly in H, as ¢—-0, i.e. |u®—ul -0.

Proof of Theorem 4. Observe that it is sufficient to give a proof for feCg : We use
the notation uf, respectively uy, for (— &5, + o) )~ 1 f, respectively (— &£ +a) 1 f.
Since C? is dense in H{, choose [ €C¥ close enough to feH}, so that the first and
third summands in |ju} —u,|| < |uf —uf| + |uf —usl| + u; —u | can be made
small uniformly in ¢ (cf. (4.7)), by continuity of (— £ +a) ™! and (— Z% +a) !,
since the left-hand-sides of (4.5) and (4.6) are sesquilinear forms. Now f eCg implies
ue, the set of rapidly decreasing functions (cf. Richtmyer [14]).

The prooffor feCg will proceed along a series of lemmata: Extend the function
x*:Q x Z°— R of Sect. 3 to a function defined on Q x R? by y*(x,w):= y*([x], ),

d

where [x] is defined to be the vector in Z¢ satisfying xe [ | [[x], [x] + e;). Define
i=1
d

Z(x, )= u(x,0) —u(x) — Y. ex*(x/e, w)Vi u(x).

k=1

Lemma 1. There is a constant C, independent of ¢ such that ||z°|| = C,.

£

=0, and

Since 2% = | lu® — ul| —

d
Y exf(x/e,w)Vitu

k=1

Lemma 2. lim
>0
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Lemma 3. lim|/z¢]| =0

£~0

will yield lim ||u® — u| =0, i.e. the claim of Theorem 4. For proving these lemmata,
£~0
we need

Lemma 4. There is a constant C, independent of ¢, such that |Vi* 25| £ C,, for all
i<d

Lemma 5. There is a constant C, such that E(x*(x,w))* < C5(d + |x|)?, VxeR%

Proof of Lemma 5. Consider the case xe Z¢ first. From the proof of (3.7) we recall that
in this case

P s | 4d? S (U,
R4 =1

J
=4d?|x|? Z W55 =:Cslx|?.
j=1
Extending ¥ from Z¢ to R? in the manner indicated prior to Lemma 1, we can only
say that E(y*(x,w))* < Cs(|x| + d,)?, where d, is the diagonal of the unit d-cube,
d;<d. I

Lemma 6. Let ue %, e L*(R%), Y a polynomial on R®. Then

e=0

(i) lim | dxy (Vi u)? = | dxt/z(%u)z,
k

(i) lim | dxe(Vi Vitu)= — jdx(i—a—u>(p,

60 0x; 0,

2
(iii) lim | dxy (V5 Vitu)? = jdxgb(—i)

e=0

(iv) Tim [ dxp(VE~ VeV up? = jdw(iii )2

e—0 Ox; 0x, 0x

fori,j,k=1,....d.

Proof of Lemma 6.

Concerning (i): By the Mean Value Theorem V" u(x) = (8/0x,)u(x’) for some x’eR?
coinciding with x except in the k™ coordinate: x=(x;,...,X;,.--,Xy),
X' =(x1,..05Xp,.05%)  and  xpe[x,x, +¢]. Define gf(x):=sup{|(d/dx,)u(x’)|:
Xp€[x,x,+€]}.  Obviously |Vifu(x)| S gi(x)< g}(x). Since ue¥, gi
goes fast enough to 0 as |x|— oo, so that [ dx|y|(Vitu)> < [ [Yl(gi(x))*dx < oo,
hence by bounded convergence and since Vi u—(d/0x,)u as ¢— 0, we get (i).

Concerning (ii): Since Vi*u is differentiable: — Vi~ (Vi*u), =((0/0x,)
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(Vi*u)y,, for some x'=(x,...,x;,...,x,) with x;e[x, —&x,], and (8/x,)

(VETu), = (1) [(0/0xJulx + se,) — (8/0x,Ju(x)] = VE*((6/x,)u(x). Since

(0/0x, )u(x) 1is differentiable, we get altogether —Vi‘(Vf*u)(x)—(a/ﬁx)

(0/0x Ju(x") for some x"=(x1,....%/_;,Xx!,X/;1,--.,X5) Wwith x'e[x/ x;+¢].
d

Since x}e[] [x; —2ex; + 2¢]:

i=1

0x, 0

J 0 a
Vi (V)| gsup{ —wu(w{; velllx =2 +2eJ} ~: g}

For e <1, g% < g and g}, decreases rapidly enough for |x| — o0, so that

[lo(ViVituldx < [ | dxe? | dxlgi*]1"? < oo, (4.9)

d
— VETVitu(x) = (0/0x;) (0/0x,)u(x") for some x"e[] [x; — 2¢,x; + 2¢], implies by
k i

i=1

continuity of derivatives (since ue &) that lim( — Vi~ Vit u(x)) = (8/0x;) (0/0x;)u(x).

=0

Hence by bounded convergence lim | dxo(Vi Vi*u)= — [ dxe((9/0x;) (0/0x,)u).

e—0 .
Concerning (iii): Proof similar to (ii) except for | [/|(V; ViTu)?dx < co not by
Schwarz’ Inequality as in (4.9), but by using the fact that g} (x) decays rapidly, as
|x|— 0.

Concerning (iv): Proof similar to (iii) with g5, replaced by
d

0 ¢ 0
glk} Sup{ a—xla_xk_a_xju(y)'yen [xi_38’xi+38]}- D

i=1
Proof of Lemma 2.
2
hmE(sx (")) =0 for all xeR? by (3.7). (4.10)

e>0 /

Now, by Lemma 5 and the proof of Lemma 6(i),

2
E[ey(;wﬂ (Vi u(x))? §82C3<d +f

S Cy(d +IxD*(gi(x)* ¥x, for e<1;
and | dxC4(d + |x])* (g, (x))* < co. Therefore (4.10) implies by bounded convergence

d X
Z 8Xk< )V5+u(x) ey < ,CL)) Ve+ X)\
K=1

_hmz[jdx Vit u(x))2E [ <_,w>]sz:O. O
e 0k=1

d

Z *(x/e,)Vitu

2
) (gi(x))?

lim

£=0

<lim Z

e~ 0k=1

Proof —of Lemma 1. |z¥] =[] + [[u] + Ml <ot S
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d

D ax"(x/s,w)Vfu'
k=1
we can choose C,:=a (| f | + lu| +C,. [

Before we take up the crucial part of the proof of Theorem 4 (i.e. Lemma 3) one
last technical point:

by (4.7), and =< C, (independent of ¢ < 1) by Lemma 2, hence

Proof of Lemma 4.

IV 2o S |V ue |l + | VETull +

¢ x
Z 8Vf+{xk<~6—,w>VE+u} ‘
k=1

Since [[Vi*uf|| S o671 f||* by (4.8), and | Vit ul| < ||gl| as in the proof of Lemma
6, it is sufficient to show [[eV¢* {y*(x/e,w)Vitu}| < C; ik=1,...,d, for some
constant C independent of ¢. Use the following product rule

ViIFLo(Y(x)] = (x £ ee)Vi h(x) + Y(x)Vi* ¢(x), (4.11)
to get

2 0.
§de[V§+(axk<§,w>vi+u(x)>] - jde[sx"(’“;w* ,w) L VEVE U(x)

2
(Ve u(x))VfJ'ex"(%,w)]

2 2
<3 de{[sx"(x 2eef ,w>V§+V§+ u(x):| + [(Vﬁ*u)(Vi*u)Vf*s;ﬂ‘(%,w):l }

(4.12)

Now, by Lemma 5
2
| de[an<f + ei,w>V§+ Vi*u}
&

< jdx52C3<

< [dxCy(Ix] +e(l + d))*(VET Vi u)* <y, (independent of ¢ < 1 by Lemma 6 iii).

On the other hand eV:™*yk(x/e,w) = y*(x/e + ¢;,) — ¥ (x/e,w) = Y(x/e,w) as. (by
(3.6)), where J/¥(y,w),yeR?, is the analogous extension from Z¢ to R? as in the case of
x*, prior to Lemma 1. Since y/¥(x,w) is stationary, E(y*(x/e,0))* = y,, independent of
x/e. Therefore | dxE[V:* ey (x/e,w)(Vitu)]* = [ dxy,(Vi*u)* <y, independent of
£ <1, by Lemma 6(i). Altogether | dxE[V*(ex*(x/e,0)Vi*u(x))]* < 3(y, +73) =:
cC. O

2
+ d) (VEr Vet u)?

X
—+e
€
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Proof of Lemma 3.

d
X
a2 Y <ai(;,w>Vf+zwf+ze>+a(zs,zf)
i=1

x
<Vf‘ai<—,w>V§+z‘,z£> + a(z%,2°)
) €

=((= &, +2)z".7),

YR

where the second step is justified by

1
E[ | dxo(x)Vi"y(x)]=E | dxo(x)_[Y(x +ee) — ()]

1
= E[E | dxp(x — ee,)y(x) — E [ dxp(x)(x)]

=E [ dx(V; (x)o(x). (4.13)

Hence it is sufficient to show ( — £%z° + az®,2°) -0, as ¢ > 0. The first part of this
proof will mainly consist of simplifying this limit up to (4.21). The second part
beyond (4.21) contains the actual key of the proof in terms of the construction of the
Giks,
J
Take peH', fix w; then ¢(w)eH} and (4.6) implies

(= Zu+ o) =(f.9@))y, YoVpeH!,
hence
( - gu + OCU,QD) = E( - -gu + 0‘”#’(0)))0 = E(f’(l’(w))o = (fs(p)9 V(PEHI .

This identity together with (4.5) gives rise to the equation (( — Z%, + a)u’,0) = (f,¢)
=(— Lu+ au,p), for all peH*, ¢ > 0, hence

d
((— ,S”Z,Jroc)z‘,(p):(( — % +a) [us—u— Y sx"(%,w)V,ﬁ*u}(p)

k=1

d
—oc( Y sxk<§,w>v,§+u,(p>. (4.14)
k=1
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Since (4.14) holds for all peH!, the corresponding identity for the left members of
the inner products holds a.s. [dP x dx]: Observe that C¥ < H' and take as test
functions e.g. a suitable ¢(x,w): = g(x)eC{ to justify this statement.

But then we can as well take z° instead of ¢ in (4.14) by Lemma 1.
Consider

(v § ok oo St
= Vi Viu+ q; ﬁ—u,z‘>+ ( EX( ,w> k uz>
ik=1 g ‘ ik=1 kaxi 0x;, k=1

IF£I§< )’HZEH-

d
Z < >V5+
d .
Now ||zf]| £ C, by Lemma I, lim | )/ ex*(x/e,w)Vitu| =0, since [V u| is bounded
=0

k=1

and by (4.10). Hence lim|F,| = 0 by an obvious analogue of Lemma 6(iii), and it is
e=0

sufficient to show: F, +

(=
d
((—‘$8+OC (que Va+uz>

d

0 0
eoyety g
Zl <V v +6 o u)

k=

<,.;Vf-[ <s )V“{éka<zaw>m}}za>.

We will now use the product rules (4.11) on some terms in (4.15).
i) First on the third term in (4.15):

¢ X + l k X et

ZV?-[a,- o i 3 (S vitu

i=1 & k=1 €
d X l e+ ok X e+
Z a| o Y Vitey —0 Vitu(x + ee;)
fn K=1

X d
+a,-(—,w) )3 exk(f,w)wvru].
& k=1 &

1)) On the second term in (4.15):

gl o] £ (o) v
+ ai<% - ei>5ika_V§+u}.
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iii) Finally on the first summand in i):

d X d x
Y Virlal S ) Y Vf*sxk<~,8>V‘,i+u(x + se,-)]
i=1 € k=1 &
d d
- ng[ai(’f—,w) 5 sxk<5,w>]vz+u(x)
i=1 8 k=1 &

: * l V£+ k X Ve—vs+
+'Zlai 0 st P\ e VTV u(x + ee;).

=1

Making the corresponding replacements in (4.15) yields

d
Fe+((—$i,+0<)25,28)=< ) qika_VZW,Z”)

k=1
X

—< ( ¢ a(—,w))éika*u(x),zg)
k=1 &

5ikai< —ei>V§_Vi+u(x),zs>

(v [ofs) (20 iouns)

i=1 & k=1 &

d

—< ai<i,w> > Vf*[sx"(f,w)]V?_Vi‘Lu(x + ae,»),z‘>

i=1 & k=1 3

d X d x
(Er L) o

The second and fourth terms in (4.16) are combined to

(Erleloersrdze) )

In order to be able to combine the first, third and fifth terms in (4.16)
we need a slight rearrangement. In the fifth term we first want to replace
VErVitu(x +¢ee) by ViTVitu(x). This can be done by adding

d
G,:= < Zd: alx/e,w) Y. Vi [Lex*(x/e,)]VE™ VT (u(x) — u(x + sei)),f> on both sides
i k=1

i=1

a

<
I

™ | =

(= Tpaga

M=

1]

of (4.16). Observe that IlimG,=0: Since Vi Vi"(u(x)— u(x +ee;)) =
e~ 0
— 8V§’V‘+V?+u(x)

£ (ool e

lel_
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( )V”[ ( ,w>]V§_V§+Vf+u(x
d

B ) ( )HZGH-
k=1

Then Ilim|G,/ =0, as a consequence, by Lemma 1 and (4.10) using

N2

lIA

ax( ,cu)Ve VitVitu(x)

ax"e + ei,w>V§‘V;+Vf+ u(x)| +

e—0
lex*((x + 6e)/6,0) V" VET VI u(x) | = lex*(x/e,0) Vi VE* Vit ulx — se)|| and  an
obvious analogue of Lemma 2, (same proof, but g¢g; replaced by
d

Ginx):=sup{|(0/dx,) (0/0x;) (3/0x )u(y)l; ye [T [x; +6, x,— 6] }.)
i=1
The third term in (4.16) can be written as

d
( Y bud )V?“Vifu,ze)

k=1

( ( >V£ Vi'u (X+Sei),2”(x+ge")>5""’

m|><

Let
%)[V‘ Vit u(x)z5(x) — Vi~ ViTu(x + ee,)z(x + ee;) ],
i, k 1
[VETVE u(x)]25(x) — [Vi~ViTu(x + ge;)12%(x + ¢e;)
=[Vi Vit u(x)]125(x) — [VE Vit u(x)]125(x + ee;)
+ [VEVE u(x)]25(x + ee;) — [VE™Vitu(x + ee) 12°(x + ge;)

=(—eVErZ5(x))VETVEiTu(x) + ezf(x + ee,) [ViT Vi~ Vitu(x)].

Therefore

|E | dxK, |—|sEfdxa< >V” Z(x)Ve~VEitu|

x
+|eE | dxz(x + sei)ai<;,a)>Vf+Vf'Vi+u

SeB([IViTz()I- Vi ViTul + llz(x +ee) |- [[V: Vi~ Vitull)
SeB(C, Vi Vitul + CIVITViVitul),
by Lemma 1 and Lemma 4. These norms are bounded independently of ¢ <1, by

Lemma 6 (iii), (iv), hence

limE | dxK, =0. (4.18)

=0
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Making use of the observations lim|G,|=0=1limE | dxK, and of the term

=0 £=0
(4.17), we conclude by combining the new third and fifth terms with the first term in
(4.16), that we only have to show the vanishing of the following term, as ¢ —>0:

( <ai<§’a)>{6ik + 8Vf+Xk<£’w>} B qik>V?_V;i+ u,zs>
ki=1 & &
d X X
+ ) <V§’ [ai<~,w>{5ik + sz*X"(—,w)}]Vi*u(x),zE)
ik=1 & &

d " /x 4 X
+ Y (Ve al<—,w> Y sxk<~,w>V,ﬁ+V”u ,z‘>. (4.19)
i=1 L € k=1 & i

Now consider the third summand of (4.19). Using (4.13),

" /x d X ]
<V?‘ (—w > e —,w>Vf+Vi+u
i=1 L € k=1 & _
X d X
a| = ) Y ed| o ViV VT
& k=1 &

X d X
) el =0 [VETVET
al<8 )kgl X<3 IR

d

Mn.

IVirz|, (4.20)

d
a;(x/e0) 3, ex"Vi ViTu Y ex (x/ew)VitViTu
k=1 k=1

¢— 0 by an analogue of Lemma 2 (same proof except gJ replacing g;). Using this

result and Lemma 4 in (4.20) shows that the third summand of (4.19) goes to 0 in the
limit.

d d
Now consider fdx Y Vituy E{Vi (a(x/e,0)[0y + eVi 1 (x/e,0)])z"),
k=1 i=1

the second summand of (4.19), Fix x:z%(x,-)e#. Recall that eVi*y*(x/e,0) =
¥ (x/e,w), which is stationary by Theorem 3, and so is a;(x/e,w), hence

E{Vf_ (aie,w)[éik + an*X"(gaa)ﬂ)zE(x,w)}

d
= % .;1 E{V'"(a;(0,t_,,,0) [ + VEO0,0_ e 0)])

with <B which vanishes as

>

M~

]

i

25X, T T x/aco)} =0,

d

by (3.3) in the form lZE(V"‘[a,‘(w)(éfwxbf-‘(w)]co(w))=0, with @(w):=

&i=1
z°(x,7,,,w). Hence the second summand of (4.19) is identically zero.
The proof of Lemma 3 is therefore reduced to showing that the first term in (4.19),

1.e.
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Sl apr) e

vanishes as ¢ —0
We are now ready to enter the key portion of the proof.
Set g*(x,w):= a,(x,w)(S;; + ¥ ¥ (x,)) — gy, i,k = 1,...,d, where g'* is stationary
d

since a; and y* are. We want to show lim< Y g (x/e,0)ViT VT u,zi =0. We define
e—0 =1

the shift operator T, on H as T g(y,w):= g(y + x,w). Here {T,},.,¢ is a unitary

group of operators on H; with spectral representation T, = [ ¢'**U(d4), where
Rd
{U(dA)}, is the corresponding family of spectral projectors. Set

(e —1)

GHxw)= [ (*—1) EQeeTE U(d2)g™*(0,w), for xeZ*. (4.22)
Rd

d
where |¢'* — 1]2:= ) |e* — 1]*. It is immediate that G is well-defined, by the very
=1

same argument used for y* in Sect. 3.
The extension of G} on Z¢ x Q as usual to R x  has the following properties:

Z V,G¥(x,0) = g™(x,0) for all xeR?, (4.23i)
E(G¥(x,w))* £ Cy(d* + [x])* for all xeR, (4.23ii)
2
E(agj.k(f,w)) -0, as 60, for all xeRY, (4.23iii)
&
The proof of (4.23i) is straightforward:
d d (e—ilj _ l) )
Z Vlek(XCU = Z VJ j iAx _ *‘M—Z—U(d;l)glk(O,Q))
j=1 j=1 Rd le** — 1]
d —id; 1 )
Z j‘ ( 1l(x+e,) Mx)(e — Z)U(di)g"‘(O,w)
Jj=1Rd Ie - 1[

Mx(eilj _ 1)(e—ilj _ 1)

NTE

U(d2)g™(0,w)

M~

e
1 R4 e

"

J
= [ e**U(dA)g™(0,0) = g™(x,0).
R4

For the proof of (4.23ii), we recall from the proof of (3.7), that for xeZ*

Ieilx _ ”2

T < 4d?*x|*, hence for xeZ?,
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ik 2 leux — Hzleilj - ”2 ik ik
E(GHx0)* = | (U(d2)g™(0,0),4™(0,0))

R |ei/1_ 1|2|e"’1— 1|2 \

|

e ,ei}._ ”2

leilx _ 1[2

(U(d2)g™(0,0),9™(0,00))

Il

< 4d%|x*(g™(0,0),¢(0,)).
Choosing C; := (g*(0,w), g*(0,w))4-d?, we get (4.23ii) as in the proof of Lemma 5 for
xe R4
For the proof of (4.23iii) we start out with xeZ¢, as usual:

. X 2 leil(x/s) _ 1|2 ) )
E(¢GH o )| = | &7 (U(dA)g*(0.0).4%(0.0)).
& R4 ,el - 1'
The argument for xeZ¢ is completely analogous to the argument of

lim E(ex*(x/e,w))* =0 in Sect. 3. For xeR? in general, we have to be a bit more
£—0

careful. If xeRe,, [ = 1,...,d, the argument for y* can still be adopted. Now consider
more general xeR?; set

X bafl=1 /Ty x
(2)= 8 ([ ] [ e
_G;;k<[ﬁ}...,[xl”l}m,o,...p),
& &

Ix (xifel =1 .
i(2)="%, @+ e —Goen)

m=0

bjed=1
= Y V,G¥me).

m=0
The V,G;", however, is stationary, since

(e — 1)(e ™ — 1)

VGHxw) = | e = U(d)g™(0,w),
Rd le'” — 1]
and
V,G¥(x + y,m)
. (eiil_l)(e—izj_l) ,'
= [ &t P U(d1)g™(0,w)
Rd -
- L (@R —1)e M —1) )
= [ U@d)) | ettx a 5 U(dA)g™(0,w)
R4 Rd Iel - 1]

=T,V,G¥(x,).
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From the definitions of 5, and it is therefore immediate that », and #, are equally
distributed, hence

(i) ~o{e(£0()) <ol £l Jo2)
() ) )
£ () el ) )

Since G¥*(0) =0, n,(x/e) = G¥((x,/¢)e,), and since we have already established the

lIA

M=~ Ip1-

[

result for xeRe,, [ =1,...,d, we have lim E(en,(x/e))* = 0, hence E(eG¥(x/e,w))* -0,
&= 0

as ¢ -0, by the inequality above, so that we have proven the last of the three
properties of G%*.
Now we use G for the proof of (4.21) in the form

hm<Zg <x )Vﬁ‘vru,zs):o, k=1,....d. (4.21")
=0 \i=1

By (4.23):

d
(Z < >Vs Vc+uza)_< Z Vs+G1k<x >V7"Vﬁ+u,zs>
= i,j=1

=¢[dxE Z ver G"‘< )Vf’fo uz

,j=1

C[dxE Y le( > CLVEVE 0]

ljl

=¢|dxE 21 G"‘< )[Vj.‘Vf"V;i*u(x)z“(x —se,)+ Vj.*z“(x)Vf‘V;’;*u(x)]
ij
4 [x
¢+ 8G}"<;,w>Vf-“V,i+u N\

[ x
eG;k(—g,w>V;-Vf—Vz+u b
i.j=1
[x
+ 8G}"<—,60)Vf’V,§+u },
P

(X
aG}k<~,w>\7f— VEVETu
€
by (4.11), (4.13), Lemma 1 and Lemma 4.

Here V5™ Vi~V u, respectively Vi~ V;*u, are bounded independently of & by a
function in & (cf. proof of Lemma 6), say by g,, respectively g,. Then by (4.23) for

e<1:
ik X E—\7&+ 2 X 2 2 1
eG! -0 VieVitu|| | [dxCe?|d+ o1 9

<[] dxC(d+1x]?g3]"* < oo,

d

=393

Li=1

d
S(C+Cy ) {

ij=1
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By dominated convergence and (4.24),
lim [[eG{¥(x/e)Vi~ Vit ull <[ | dxE(EGH(x/e,0))* (Vi Vit w)* 12 = 0.
=0

Similarly lim [|eG{(x/e,0)Vi~V;* ul| =0. This proves (4.21)" and hence Lemma

£—-0
3.0

Lemma 2 and Lemma 3 yield Theorem 4.

An obvious consequence is the uniqueness of the g;;: We have just proven u*—u
strongly in H, where we did not use uniqueness of x*. Since v is formulated (as the
solution of (4.5)) independently of ¥*, its limit u is independent of y*, hence g;;
(characterizing the limit u) is independent of y*, as long as x* satisfies the properties of
Theorem 3.

5. Mean Square Convergence in Distribution

In this section we combine the results of sections 2 and 4 to prove the main theorem of
this paper.

Theorem 5. Let Q_ be the measure of a diffusion process starting at x with generator

d
& =Y q;(0/0x,0x;), with q;; as in (3.17).
i,j=1
Let Q% , be the measure of the jump process of Sect. 0, starting at x, with gene-

d
rator %, = — Y. Vi~ (a(x/e,0)ViT). Let Q2 , be the measure of the corresponding
i=1

smoothened process of Sect. 2
Let F be a bounded, continuous function on the space C:= C([0,00],R%).
Then, for any nonnegative function ¢,peL*(RY):
imE| [ dxp(x) | FQOO% @)~ | dxo() [ FOQ@OP=0.  (5.1)
R4 C Ra C

e—~0

Proof of Theorem 5. ¢ and & are generators of Markov processes. Let us denote
their respective semigroups by e'%. and e'?.

Lemma 1. et f—e? f as ¢—0, for all feH,, (5.2)

strongly in H and uniformly in any finite interval 0 <t < T.

Proof. Using the strong resolvent convergence of Theorem 4, (5.2) can be shown
following Kato’s proof of his well-known Theorem in Kato [6], p. 504. [
Since 2, ¥¢, are generators of Markov processes with measures Q% s Oy, We

have the respresentations (e“s f)(x) = E2 f({(1)), (e f)(x) = E@ f({(t)), for all
fe€H,, so that (5.2) can be written as

im sup E [ dx|E%s(f(((t))— E2(f((@))?=0, for all feH,. (5.3
T

£00=ts

In order to show (5.1), start with taking M, 0 <M < o0 ;
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[f F(O)0% ()~ [ F (C)Qx(dC)]

2
<3E| | dxo® [FOOL )~ [ dxp(x) [ FOQ.(d)
|x| =M C |x| =M C
+3E| [ dve() [FQOOLLED— [ dxo(x) | FOQ. (5.4)
lxizM c x|z M c

Since | F(0)O: ,(d) S Fll, 2 f F(0Q.(dL), we have
C C

} 2
which can be made arbitrarily small by choosing M large enough, since peL?.
Hence it is sufficient to show that the first summand in (5.4) can be made small.

In Sect. 2 we have shown that for § > 0 a relatively compact set K; < D can be
found with Q5 (K;)=1—0, for all £0<e<1, we®, |x| <M, and that the
corresponding set S;:= cl(K,) is compact in C and satisfies 0% (S;) = 1 — 8, for all

&0 <e<1; weQ, |x] < M. We can use S; now to reformulate and bound the first
summand in (5.4)

S20Fl, | @%dx=:KM),

[x{zM

jasof|f

|xl 2M

[ FO)05 0(d0) — iF(C)Qx(dC)

E

) dx(/’(x)< [ F(OO5 o(d) + IF(C)Qi,w(dC)>
Ss S5

x| =M

- dX(p(x)< J FOQU)+ | F(C)Q(dC))

x| =M

2

2
<3E

| dxo( x)j F)0: (D~ | dxo(x) | F()Q(d))
Ss

x| =M |x] =M
2

) dW(X)fF(CQ WodD)— [ dxe(x) [ F(OQ.(d))| .
55

|x| =M |x] =M

+3E (5.5)

Now, [ FQ:,(d) and | F(0)Q,(d¢) are bounded by |[F| -5, so that the second

S5 85
summand in (5.5) is bounded by 3K (M)-§, which can be made small by choosing ¢
small.
So we are left with showing

[ dxe(x) [ F(OQ%,d)— [ dxe(x

[x] =M Ss Ixl=M

imE

=0

or, making use of Schwarz’ inequality and ¢eL?, with showmg

limE | dx (5.6)

£=0

2
j F(O)0: ,(d)— [ F)Q(d)| =
Ss

The set of finite linear combinations of products of the form

[EE)). (LLENOSt = .. S1, < o0, with f,eCT(RY) 6.7
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is an algebra in C(S;), the set of continuous functions on S, and moreover it contains
the constant functions and separates points. Hence, since S is compact, this algebra
is dense in C(S;) by the Stone—Weierstraf-Theorem (cf. e.g. Kelley [7]).

It is therefore sufficient to show (5.6) for F of the form (5.7), i.e.

IimE

=0

| dx

|x| =M

{ §£1€@))- - £ C(5,)) 05 o (d0)
Ss

2

=0, (5.8)

- ffl(i(tl))-ufn(C(tn))Qx(dC)}
Ss
for all neN. But for this purpose, we need only consider

limE | dx
e~ 0

{ 111€)). . £,(0,))Q% w(d0)

2
=0, (5.9)

- ffl(C(tl))---f..(C(t,.))Qx(dC)}

since all functions f;eC§ and their derivatives are bounded, and since

If(l(t)) — £i€(8:))] < e-max{ f'(x); xe[min(((¢,), {(z,)), max({(r,), ()]}

where { is the smoothened path corresponding to {, and [y — Zml <e¢ by
construction, for all ¢.

We begin the proof of (5.9) by considering thecase n = 2, n = 1 is covered by (5.3),
Le. we show

limE j dx|E®o f1(L(t))) f5(L(ty) — EQ"(f1(C(t1))fz(C(tz)))lz =0, (5.10)

£~ 0

E [ dx|E%[ f1(L(t)))E%=(f2(L(t)) )]
— E&[ (L&) ES( LN Z )1
< 3E [ dx|E%e[ f1(L(t))el> =045 f,(((t)))]
= E%a[ f1(l(t)))e =7 fHL(t)]1?
+ 3E [ dx|E%e [ f1(L(t))e>=0% f5(L(z))]
— E%[f,(L(t,))e>=0 f(L(t))I, (5.11)

using the Markov property. The second summand vanishes as ¢ — 0 by (5.3), with
f(x):= fi(x)e2=2 f.(x),feH,, since f,,f,eCF(RY).
Now consider the first summand in (5.11).

E [ dx|E%e f1(Ut,))[eta=0<% f(((1,)) — €270 fr({t;)) DI
S E [ dxE%[ f1((t,)]E%e[G(,{(t,))*]

< max f 2(x)E [ dxE%.[G(w,{(t;))]% (5.12)

xe R4
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by Schwarz’ inequality, since f,eCg(R?), where
G (w,X): = [el2=1) 2% f(x) — ef2=% f,(x)].
By (5.3) we have

lim E [ dx(G¥(,x))* = 0, (5.13)
£—0
Let p;,(v,t|x) be the transition probability for the Qf, ,-process at time ¢. Consider p;,
as a density on R by our usual extension of functions from ¢Z¢ to R?. By self-
adjointness (cf. (1.4)) [ dxpt (y.tlx) = [ dxp(x,t]y) =1.
Altogether then

E | dxE%«(GX(o,{(t,))* = E | dx | dypt,(yt,|x)(G¥(w,)))*
=E [ dy(G*(o,y))* [ dxp,(y.t;[x) = E [ dy(G¥(,y))?,

which vanishes in the limit ¢ —» 0 by (5.13), and consequently the first summand (5.12)
of (5.11) vanishes also, proving (5.10).

It is now obvious how we can conclude (5.9) for all neN by induction. This
completes the proof of Theorem 5.
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