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Abstract. We consider a reversible jump process on Zd whose jump rates
themselves are random. We show mean square convergence of this process under
diffusion scaling to a limiting Brownian motion with a certain diffusion matrix,
characterizing effective conductivity.

0. Introduction

This paper contains a generalization of the well-known Theorem of Donsker (cf.
Donsker [5]) to a pure jump process whose jump rates themselves contain a certain
degree of randomness. This result can also be interpreted as giving the limiting
Brownian motion and its diffusion matrix for a random walk in random
environment under diffusion scaling.

Consider a probability space (£2, #", P). For ωeΩ fixed, let Xε

ω be a pure jump
process on the ε-spaced lattice εZd with time structure governed by exponential
waiting times with rate λε(x,ω) at xeεZd and space structure given by the nearest
neighbour jump probabilities, pε

+(x,ω) being the probability under realisation ω to
jump from x to x ± εei at the next jump time, 1 ^i^d.

Let aε

i±(x,ω) = λε(x,ω)- pε

i±(x,ω) for all ε > 0 , xeεZd. Assume that

(x \ (x \
c ή ± ( x 9 ώ ) = a l ± \ - 9 ω ) = : a i + [ - , ω ) V ε > 0 , x e ε Z d , ω e Ω , l^i^d, ( 0 . 1 )

l ^i^d, (0.2)

0 < A ̂  flf(x,ω) ̂  B < oo for all Vxe/d,ωeί2, (0.3)

αf(x,ω) is stationary and ergodic, 1 ̂  i: ̂  d. (0.4)

A few words are now in order, considering these fundamental conditions.
Equation (0.2) simply says that the process is reversible and that the "conductivity"
a\(x,ω) is a "bond conductivity," i.e. independent of the direction in which the bond
(x,x + ef) is used by the process. Equation (0.1) indicates intuitively that the
configuration of bond conductivities aε

±(ω) on εZd is simply the configuration
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ai±(ω) on Zd "looked at from a distance." Inequality (0.3) assumes the existence of
uniform bounds A, B with A > 0. Let us now consider (0.4).

We may identify ω with the realisation of bond conductivities at ω: {αt(x, ω) }xeZd

~ ω. This enables us to define a "shift" τy on Ω for yeZd by at.(x,T^):= af(x + y,ω),
i.e. τyω ~ {ai(x + y,ω)} x e Z d. (0.4) contains the assumptions that the probability
measure P on (Ω, J% P) is stationary with respect to the shifts τy9yeZd, and that the
group {τy}yeZd of shifts is ergodic for P, i.e. the only sets Ee 3F with τyE = E for all
j eZ* are those with P{E) = 0 or P(£) = 1.

Our main result (Theorem 5) states that under these conditions, as ε->0, Xε

ω

converges to a Brownian motion X in a certain sense. Theorem 3 will furnish an
expression for the diffusion matrix (q.j) of the process X. In terms of physics Theorem
5 together with Theorem 3 can be seen as giving a formula of the "effective
conductivity" for a conduction process on a lattice with random bond conductivities
at.

If we consider a crystal with diffusion of atoms on interstitial positions what
happens microscopically is in fact a jump process for the individual atoms with
certain jump rates, determined by the potential barriers of the neighbouring lattice
atoms. For details cf. Kittel [9]. For conduction phenomena on lattices cf.
Kirkpatrick [8].

For the proof of Theorem 5 we work in suitable Hubert spaces showing
convergence of resolvents (Sect. 4), yielding semigroup convergence. Compactness
(Sect. 2) of the family {Xε

ω, 1 > ε > 0, ωeΩ} is the crucial ingredient for proceeding to
convergence in distribution.

This paper makes use of the approach developed by Papanicolaou and
Varadhan in [13].

1. Some Properties of the Jump Processes X^

Consider the cubic lattice εZd with lattice constant ε and a\+ (x,ω) :εZd χ β - > [ A # ]
satisfying (0.1) to (0.4), where at(x,w) is the conductivity of the bond (x,x + et) on the
lattice Zd. Fix ω to consider the deterministic lattice first, and let

(VΓ/)(*): = -
ε

for a function /, square summable on εZd or square integrable on Rd, with e the unit
vector in i-direction. It is not hard to verify that

):^/(x,i) (1.2)

is the diffusion equation on the lattice εZd in the terminology introduced above with
density f(x) and conductivity αt (x/ε).

It is a standard result from the theory of Markov processes (e.g. Breiman [3]),
that the operator j£?̂  is the infinitesimal generator of the pure jump process Xε

ω(t)
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described above with scaled time t: = ε2t. Indeed, explosions are excluded, since we
d

have abound on the jump rate λε

ω(x): λε

ω(x) = Σ {aε

i+(x,ω) + aε_(x,ω)} ^2d B(by

(0.3)).

Lemma 1. 5£ε

ω is self adjoint on the space of square integr able functions on εZd with

inner product {f9g):= X/(x)gf(x).

Proof. Observe that for 1 ̂  i ̂  d

Σ a.(--e)f(χ)g(χ-ee.)= £ a.(-)f(x + Be.)g{x)

and

Σ d

aι(τ ~ e^(χ)f(χ - ̂ ) = Σ ^ ( 7

hence

i Γ (x \
= - Σ Σ^\ai[--eί ){f(x ~ εei + eei

^ ε L ε /

= - Σ Σ ^

et)-f{x)g(x)} \ = (f,^ε

ωg). D
ε

Therefore, the backwards and forwards equations for this process (which are
satisfied by the transition probabilities pε(y,t\x), cf. Breiman [3] and Chung [4]) read

d

dt ε ω ε

— Pε{yAx) — L^ωPε(Άx)l(y\ respectively. (1.3)

Moreover with δx(z) = 1 for z = x and δx(z) = 0 for z =/= x:

d

= (δy( • ) , * * - . se 'jx( •)) = (&'„**: δy{ • ),δx( •))



30 R. Kunnemann

This being true for all t,x,y we can conclude that

pε(x,t\y)=Pa(yAx), Vt;x,yeεZd. (1.4)

Since there is at most one set of standard transition probabilities corresponding

to i?ε

ω,

P1(y,t\x) = pe(εy,ε2t\εx) (1.5)

will follow from the following lemma, whose proof is straightforward.

Lemma 2. If fB(x,t) solves dfjdt = £?ε

ωfε, then J(x,t): = fε(εx,ε2t) solves

df/dt=<?*J.

The main result of this paper (Theorem 5) shows that under this type of contracting
the bond lattice by ε and speeding up time by ε~ 2 the jump processes Xε

ω approach a
diffusion with matrix (qtJ) given by (3.17) below.

2. Relative Compactness

Relative compactness of the corresponding family plays an important role in most
proofs of convergence of a family of stochastic processes (cf. Billingsley [2]). In our
case we are dealing with measures Qε

xω, respectively Qx, belonging to the processes
Xε

ω(t) and X(t) with generators S£*ω and if. These are measures on the set D, with
D: = {ζ:[0,oo)-*Md;ζ(t) = \imζ(s) and limζ(s) exists for all t}. This set of right-

s i r sU

continuous functions with left limits contains the trajectories of our jump processes.
Let us recall some standard results (e.g. in Kurtz [10]) :C: = C([0,oo),[Rd), the set

of "continuous paths," is a complete and separable metric space and so is D when
furnished with a Skorokhod-type metric (cf. Kurtz [10]). Using the notation
q(x,y):=\x-y\ Λ 1 on x,yeUd and for δ>0, T> 0

ω'(ζ,δ,T): = inf max sup q(ζ(s),ζ(ή),
{ί,} i s . ί e f ί . - i . ί i )

where {ίj is a partition on [0, T] with min(ίt — ί ^ J > δ, we know that K czD is
i

relatively compact (i.e. cl(K) is compact), if for all ίeQ, t ^ 0, there is a compact set
Γt c Ud such that

ζ(t)eΓt for all ζeK, (2.1)

and

for all T > 0 :lim supωf(ζ,δ,T) = 0. (2.2)
<5^0 ζeK

Theorem (Prohorov). Let {Pa}aeA be α family of probability measures on D or C.
{Pa}aeA *5 relatively compact iff for all ε > 0 there is a compact set K with
inf Pa(K) ^ 1 - ε.
aeA

For the description of processes of the type XE

ω(t) we can restrict our attention to
trajectories in D, which have only isolated jumps of width ε. Such processes can be
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"smoothened" in a natural way: If the path ζ has a jump at tn and the next jump at

ίΛ + i> P u t

ζ(t):=ζ(tn)+ l~1^ {ζ{tn + ί)-ζ(tn)) for ίe[ίπ,ίπ + 1 ] .
K +1 K

The corresponding process on the continuous paths will be denoted by Xε

ω(t)

(respectively its measure by Qε

ω).
Let us recall that 5 c C i s relatively compact, if

sup|C(0)|<oo, (2.3)

lim sup sup | ζ(s) - ζ(t) | = 0 for all T, T< oo. (2.4)
<5|0 ζeS O^s^t^T

t-s^δ

From the previous compactness criterion for K <= D we can deduce the
relative compactness of K: = {ζeC:ζeK and ζ has only isolated jumps} in C.

Since lim supωf(ζ,δ,T) = 0 is satisfied by (2.2), it suffices to prove
<5->0 ζeK

sup \ζ(s) - ζ{t)\ = 0. (2.5)
δ^O ζeK δ-+0 ζeK O^s^t^T

Choose δn such that sup ω'(ζ,δ/2, T) < n ~x for all δ < δn, i.e. for all δ < δn and

inf max sup q(ζ(s), ζ(t)) < n ~x.
{ί,} ί s , ί e [ ί i , ί I + 1)

For (5,( fixed we can therefore find a partition {ίj (depending on Q with

max sup (̂C(s),C(ί)) < n~ι

We now fix 5, t O^s^t^T, with \s — t\<δ: If there is an index i with
[5, t) a [ti9ti+ίχ then (̂C(5),C(ί)) <n~1. If such an index does not exist, we can
certainly find an index i with

(a) se[ί f , ί i + 1 ) and ίe[ί i + 1,ί i + 2), or

(b) se\tuti + ι) and ίe[ί i + 2,ί ί + 3), since min(ίi + 1 - tt)> δ/2.

In case (a), we get q(ζ(ή, ζ(s)) ̂  (̂C(s), C(ίί+1)) + «(ζ(t i+1), C(ί)) < π " 1 + π " 1 in case
(b) analogously
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i.e. we have q(ζ(s),ζ(t)) ^ 3n~1, for \t - s\ < δ < δn, and

sup

\s-t\*δ

As this is true for all ζeK, we have sup sup q(ζ(s), ζ(ή) < 3n~* for all δ < δn9 i.e.
ζek \s-t\£δ

lim sup sup q(ζ(s), ζ(ή)=O, proving (2.5). Hence the closure S:=c\(K) is
<5->0 ζek \s-r\<δ

compact and Qε

ω(S) ̂  Qε

ω{K).
We can then use Prohorov's Theorem to deduce the relative compactness of the

family {Pa}a from the relative compactness of {Pα}α, if {Pa}a is a family of jump
processes. A compactness criterion appropriate to our situation is conveniently at
hand:

Theorem 1 [Kurtz], Let {Pa}aeA be a family of probability measures on D belonging
to a family {Xa}aeA of strong Markov processes. {Pa}aeA is relatively compact if (2,6)
and (2,7) hold:

for all T> 0, ίeQ, 0 ^ t S T, η>0,

there is a compact set Γt c Ud with inf Pa(ζ(t)eΓt) >\-η9 (2.6)
aeA

for all T> 0, δ > 0, oceA there is a random variable Ya(δ) with lim sup EYa(δ) = 0, and
δ-+0 as A

E(Ya(δ)\ Ft) ^ E{q{X\t + u\X\t)\ <Ft) a.s.

for a l l 0 ^ u ^ ( 5 , ί ^ T . (2.7)

The proof of this theorem can be obtained by a slight modification of the proof of
Kurtz' original theorem in Kurtz [10].

Let us return now to our processes Xε

ω x with starting point xeεZd and corres-
ponding measure Qε

ω x. We slightly extend our notion of Xε

ω x and Qε

ω x in the sense
that the starting point need not be a lattice point xeεZd. The process may start
at any xetRd: we then simply identify Qε

xω(A) with Qε

ε[x/ε] ω(A — r) for r: =
x-ε[x/ε], where [ ^ ^ ( [ y j , . . . , ^ ] ) , if' y = (yl9 .,yd), and [y.] is the
largest integer not exceeding y.m For 0 < M < oo, consider the set AM: = {(x,ω,ε),
xeUd, \x\ ̂  M, ωeΩ, 0 < ε < 1). We write Qa:=QB

ωtX for xeAM, and want to show
that {Qa}aeAM is a relatively compact family of measures. For this purpose we prove
the following:

Theorem 2. There is a constant C (independent of ε,ω) such that

^ Vί. (2.8)

Before starting the proof of Theorem 2, which will take up the rest of this section,
we should convince ourselves that Theorem 2 is sufficient for the relative
compactness of {βα}α6^M Since our processes are pure jump, they are also strong
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Markov, and we try to apply Theorem 1. Note first that (assuming Theorem 2)

EUXe

ωt0(t + u)- X°ωtΌ(t)\\Xεω,o(t)l = Eί\XlKo{t)(u)^

^ : YM ( 2 9 )

where the first equality is just the Markov property and the second is the property of
the shifts τy on Ω from Sect. 0. Note that ω in (2.9) is of course a parameter according
to the use of the expectation operator E fixed in Theorem \\E~ EQ"<°. With this
choice of Ya{u), condition (2.7) is certainly satisfied, by (2.9).

For the remaining condition (2.6) of Theorem 1 it is sufficient to show that one
can find for any t :0 < t < T, η > 0, a suitable k(t) with supP(|X"| ^ k(ή) ^ η. But

because of Theorem 1, we have P(\X{t)\ ̂ m)^(l/m)E\X«t)\ ^(l/m)Cy/t, so put
k(t):=η~1CΛ/t. This shows that condition (2.6) is satisfied, if we take Γt:=
{x:\x\ < M + k(ή}, for C is independent of ω and ε. Now Theorem 1 implies the
relative compactness of {Qa}aeA .

Proof of Theorem 2. Let us first observe that it is sufficient to prove (2.8) for ε = 1 (in
which case we write X(t)t(O for X ^ J , since the fundamental solutions pί and pε of the
Kolmogorov equations (1.3) have the scaling property /?1(ί,x,.y) = Pε(

ε2t>εx>εy) a s

was shown in (1.5). As p1 ,pε suitably normed are also the transition densities of the
Markov processes X^t) and Xε

ω(t), we get

= Σ ε\y\pε(tAεy) = ε Σ

assuming (2.8) for ε = \. The constant C will turn out to depend only on the
dimension d and on A and B from (0.3). Hence we will drop the subscript ω in the
sequel.

The following proof of (2.8) for ε = 1 makes use of Nash's work on the "moment
bound" in Nash [12]. We will bound the growth oΐE\X{t)\ above by the growth of an
entropy S(t) (Lemma 5) and bound \EX(t)\ below by keS(t)/d (Lemma 6). S(t) itself will
be bounded below essentially by log t (Lemma 4). This way we will succeed in
sandwiching £|X ( ί ) | between two multiples of ί1/2, as we will see, for t ̂  1. For t < 1
the result is trivial.

We start, however, with two technical lemmata

Lemma 1. There is a constant C(d) such that for any piecewίse differ entiable function
), g continuous

[ Ί-4/dΓ Πl+2/d

J \g\dx J \g\2dx (2.10)
ud J L ud J
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Proof (E. M. Stein, cf. Nash [12]). Consider the Fourier transform g of g,

g(y) = (2π)~d/2 J eιxyg(x)dx.

Recall that

J \g(y)\2dx= j \g(x)\2dx.

Since dg/dxk has Fourier transform ykg{y) (for which we need continuity, piecewise
differentiability)

d δg 2 d

 2 A 2

i = l 3 ^» i = l

Since \g(y)\ ̂ ( 2 π ) " d / 2 j |eijc'y||gf(x)|dx = (2π)~d/2 j |gr(x)|dx, we get for p > 0,

| 2 , (2.12)

where Sp is the volume of the d-sphere with radius p, Sp = (πdl2pd/

(d/2)!). On the other hand

j | ^ ( y ) | 2 ^ ^ J (by (2.6)). (2.13)

Now choose a p minimizing the sum of the two bounds in (2.12) and (2.13), to obtain
a bound on \\g\2dy= \\g\2dx in terms of \\g\dx and J |V#|2fibc. Solved for
\\Vg\2dx, this is

. D
27'

Lemma 2. T/zere is a continuous piecewise differentiable function geL2(Ud) n V-(Ud\
such that for some constants ko,k1

a) Σ Σ (Vi + p(x,ί))2^fci

b)

c) Σ
xeZd

where we write p(x,t) or sometimes p(x) for p(x,f,0,0), the transition probability density
of X(t), and where fc0, k1 do not depend on p.

Proof of Lemma 2. Considering the fact that the faces of unit cubes in dimension
(d+ 1) are unit cubes in dimension d, the step from dimension d to dimension
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(d + \) should be obvious from the following construction for d = 2:
Setg(x): = 4p(x) for xeZ2

g(x 4- \ex + \e2) := p(x) + p(x + ej + p(x + e2) + p(x + ex + e2);

if y is on the line segment between xeZ2 and x + e1 ? let g(y) be the linear

interpolation of g(x) and #(x + e j , i.e. #(j;) = #(x) + /c(gf(x -f ex) — g(x)) for j ; =
x + kev Similarly for the other three edges of the unit square <x,x + eί9x + e2ix -f
ei + ^2>( = : (^2( x)) F ° r };e^2(xX ^ ^ x + i e i +1^2' ^ e t χ

s(y) t>e t n e P°int on a side
of C2(x) such that y is on the line segment from x + \eγ + ^e2 to xs(j;). Let #(y) be the
linear interpolation of g(x + ^eι+ \ei) a n c ^ θ(χ

s(y))
Continuity and piecewise differentiability of g are immediate; we are left with

showing a), b), c) of Lemma 2.
to c): Set p{y):= p(x) for ye[x -^eί,x+^e1] x [x-\e2,x +\e2\ xel2. It

suffices to show g(y)^ p(y), VyeU2. This is immediate for yedC2(x)VxeZ2, and
hence for yeint(C2(.x)) in general.

to b): For yeC2(x):g(y)^4ma.x{p(x),p(x + e1)9 p(x + e2),p{x + e1 + e2)}.
Since for any x :p(x) can occur at most four times as such a maximum (namely for the
four adjacent unit squares), we get \ g{y)dy ^4.4. £ p{x)= 16 = :fc0.

xeZ2

to a): We compute V 1 ^ ) : Denote the triangle with vertices A, B, C by Δ(A, B, C).
If yeA(x,x + e1 ?x -\-\e1 Λ-\e2\ yeΔ(x + e2,x

 Jr^e1 +^e2,x + eί-\- e2), then
y1Q{y) = 4VVW, respectively V 1 ^ ) = 4ψp{x + e2). If yeΔ(x, x + \e1 +
\e29x + e2), respectively yeA(x + el9x + e1 + β2, x + \eγ + ̂ -β2),

then

V V(y) = 2Γp(x) + p(x + ex) + p(χ + e2) + p(χ + ^ + e2)

2

respectively

$Ό(x + eΛ + 4p(x + eλ

+ p(χ + e2) + p(x + ^ + e2)) J = 2[VJ p(x) + V1 p(x

Hence
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But

X LV1p{x) + V1p{x + e2)']2^ X {(VVM
xeZ

2
 xeZ

2

By Schwarz' inequality

Γ

xeZ2 UeZ 2 xeZ2

= Σ (VVW)2.
xeZ2

Altogether then

= 16 Σ (
xeZ

2

similarly J(V
2
#(.y))

2
dj;^ 16 ̂  (V

2
p(x))

2
, so that

xeZ
2

^-Π^9(y))
2
dySΣ Σ (V^W)

2
- •

1° ί=l xeZ
2

Using the previous lemmata we can bound p(x,t) in terms of t\

Lemma 3. There is a constant k2, depending only on d, A, B, such that

Vx,ί p(x,t)^k2Γ
d/2.

Proof. Define V(t)\= ^ P2(*,t),
xeΈd

7 I d

- T- F(o = 2 Σ P(*. ί)τ"P(*, ί) = 2 Σ Σ P(*. ί)V'ΊΦ)V i +/)(x, ί)), (2.14)
αί x e Z d α r ί = 1 xeZd

by Kolmogorov's equation. Sum V1 + (,4wJ3m) = ΛmW1+Bm + Bm+1V
1 + Am from

m = 0 to m = q

£ amBm = - \ Ambm+1 + Aββ, - ^ o β o , (2.15)
m = 1 m = 1

where {αm}, {6m} are given sequences and

Λm = Λ + Σ ak,Bm = B0+ f V
fc= 1 fc= 1
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Now

i= l x e Z d

d

= Σ Σ ••• Σ p(^i,...,xd)Vi-(αί(x1,...,
i= 1 xieZ XdeZ

d

Treat each summand of £ separately, say fix i= 1,

= Σ ... Σ Σrt*)v l~( ). (2 16)

We will apply partial summation on the square bracketed part by identifying

A m : = p(m - N , x 2 , . . . , x d ) , 5 m + x : = a x ( m - N)Wι+p(m — N),m = 09...,q,

for AT fixed:

q
X p(m - JV,x2,... ̂ JV1 '{a^m- N)V1 + p(m - N))

= - Σ ^ A + i = Σ α A - ^ A + ̂ o ( b y ( 2 15))

lim lim ^ p(w - ^ V 1 " ^ ^ - N)V1 +p{m - N))
N->co q-+co m = l

q

lim lim £ V1 + p ( m - iV-
N-VCXD q-^ oo m-1

= Σ
xieZ

lim p(q - N) [_ax(q -N- l)V1 + p(q -N - 1)] = 0 = lim p( - N) x

[Λ1( — ΛΓ — 1)VX + p( — N — 1)]. Using this result for all i and putting back together
the sums in (2.16), we can write (2.14) in the form

since
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By uniform ellipticity (0.3), V+p{x, ήa^V+pix,ή ^ \Vi+p(x, t)\zA, hence

Σ Σ Wi+p\2*2Ak1l\Vg\2dx, (2.17)
i=lxeZd

for the function g of Lemma 2. Applying Lemma 1 to g

Plugging this into (2.17) and using c of Lemma 2 yields

C k~4/d\ Y Ό2(x)
LxeZ* J

d Γ Ίl+2/d

and

therefore

since Vo = ^ p2(x,0) = p2(0,0) = 1

~dl2

Finally by the Chapman-Kolmogorov identity p(x,i) = ^ p(x,t,x,t/2) x

p(jc,ί/2,0,0), and by Schwarz' inequality

"Lw 2
2/ J

(by (2.18) and the reversibility pω(x, t, x, t/2) = pω(x, t, x, ί/2), together with the fact
that pω(x,t,x,t/2) = pτ-χ(0{x - x,i/2,0,0),and(2.18) was independent of the particular
ω. Put

^2 = ί - J , then p(x,t)^k2Γ
d/2. Π

Now we can take up the program mentioned at the beginning of this proof of

Theorem 1, and define the entropy S(t) = — £ p(x,t)logp(x,t).
xeZd

Lemma 4. There is a constant k3 with S{t) ^ k3 +(l/2)rflogί, Vί.
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Proof. S{t)^t Σ p(x,ήmin( — logp(x,ή)

^ X p(x,t)(-logk2t-
dl2)=-\ogk2t-«2,

xeZd

s ince £ P(χ> t)=ι> h e n c e S(t) ̂  - ( l o S ^ 2 + ( - d / 2 ) l o g 0 = ̂ 3 + (^/2)logί ,

w h e r e fc3 = — l o g fc2. Π

Lemma 5. Vί 2dB(d/dt)S(ή^l(d/dt)E\Xt\T.

Proof E\X{t)\= X |x|p(x,ί),
xeZd

d

= - Σ Σ ^i+\χ\ΦWi+p(χA
i= 1 xeZ d

by partial summation like in the proof of Lemma 3, observing that p(x,t) = o(\/\x\)
for |x| -> oo, since the jump intensities are bounded, which takes care of the boundary
term of partial summation, and

Σ h(χ)Vi+p(χ,r)|,

since

i = l xeZ

II<1. (2.19)

Moreover, since S{t) = — £ p(x9t) logp(x,t)
xeZd

3ΓS(«)= - Σ ~p(x,tyiogp(x,t)+p(x,t)-ϊogp(x,t)
at x7ί<ι\_dt at J

%\dt
x,t)p(x,t

p(χ,t)dt

(1 +\ogp(x,t))—p(x,t)
i at

(l+logp(x,t))V-(α,.V i+p(x>ί))
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using summation by parts with lim p log p = 0 for the boundary term. We assume

VI + p(x,f) Φ 0, for otherwise this summand would not contribute anyway.
Now

_,..^.2 Vi+p(x,ί)

at % VI+logp(x,ί)

Since p{x,t) < 1,

0 <
-V i + logp(x,ί)

and by the mean value theorem

V i+logp(x,ί) άΛ

(2.20)

for some p* between p(x,ί) and p(x + ei?i).

Therefore

and,

V i+logp(x,ί)

:= Σ Σ

= p* ^

^ Σ Σ

Σ P(x + ei,

Now, let us return to (2.20):

_! and 0<
<22i

Then

Hence we can consider

as a measure μ on M:= {l,...,d} x I_ά and apply Schwarz' inequality in the form
\f2dμ= j \2dμ \f2dμ^ [$fdμ]2, (since μ(M)= 1) on (2.21) to get

B

ί Σ kv;

i = l xeZd
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i.e.

where we used (2.19) for the last inequality. •

For a function / on Zd, define / on Ud by f(χ): = f(z) iff x i e[z i -£,z i + £),

i = l,...,d; x = (x l 5...,xd), Mt:= Jdx\x\p(x,t). Since |x| ^ |x| — 1, Vx,

E\Xt\= Σ \x\p(x9ή= \dx\x\p(χj)^ \dx{\x\-\)p(xj)

^Mt-\. (2.22)

Lemma 6. There is a constant K>0 such that

Mt ^ KeS{t)/d.

Proof. Observe that for fixed λ: min(p\ogp + λp) = —e~λ~ι, put λ = a\x\ + b,
p

xeUd, where

a = ̂ ~ b = (7r\d> with Dd:= $ e^dx,

then p\ogp + (a\x\ + b)p^ -e~bde~a{xl, and j ί/x[plogp + a\x\p + bp] ^

- e^-^dxe-*1*1, that is - S(t) + αMr + fe ̂  - e " * " ^ ^ j ί/xe" | x | =
— e~b~ίa~dDd. Substitute on the right hand side for e~fc and on the left for a:
-S(t) + d + b^ - 1 , d+b^S(t)-\. Plug in for b

d-\+ logDd - dloga ^ Sit) - 1, d + \ogDd ~ dllogd - logMJ ^ S(f),

d ^ S(ί) + dlogd - logDdJ

+ l o g d ^ ,
a a

\ogMt ^
Sf + \ogd- logD1/ -

a

e]. D

Now we are in a position to conclude the proof of Theorem 2. Because of E\X0\ = 0
and Lemma 5 we have

at
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so that we get with Lemma 6 and (2.22)
1 Γ d Ί

t)/d -\^Mt-l^ E\Xt\ ^ j 2dB-S{t)

o L dt J

1 / 2

dt. (2.23)

Define R(t) by d R{t): = S(f) - k3 - d/2 log t, where k3 is from Lemma 4, which says
that \/td'Rit) ^ 0. Then d(d/dt)R = {d/dt)S - dβt, (d/dt)S(t) = d(d/dt)R(t) + dβt. Sub-
stitute for S and {d/dt)S in (2.23):

7 1 d V/2

- 1 + K^)+k3fd+m^f] ^E\Xt\^(2d)ll2{Bd)112 J — + — R) dt. (2.24)
o \2ί «ί /

Use the inequality (α + 6)1 / 2 ^ α 1 / 2 + ^/2α1/2 for a > 0, α + b > 0:

)

/ f \ l / 2 t /tV2

S (2ί)1/2 + Λtί - ) - jlV(8ί) 1 / 2dί g (2ί)1/2 +Rt[-) > since R ^ 0.

So we get from (2.24)

^ £ |XJ ^ (2ί) 1 / 2 + Λfί - )

l. (2.25)

for ί ^ l .

Now, if .R(f) was unbounded as a function of t, then

could not hold, since eR(t) grows much faster than R(t), hence R(t) ^ Bo for all ί, for
some 5 0 , and consequently by (2.25) with K': = 21 / 2[1 + 1/2JB0]:

E\Xt\^K't112 f o r a l l ί ^ l . (2.26)

Take e.g. Bo as the solution of

which depends only on the constants K, /c3, i.e. K' does not depend on ω.

We are left with bounding E\Xt\ for ί < 1, which is immediate, since E\Xt\ is

bounded by the expected number of jumps of the process with highest jump intensity

2dB (cf (0.3)). Since its number of jumps before time t has Poisson-(2djBί)-

distribution, we get E\Xt\ ^ 2dBt ^ 2dB ^Γt ϊov ί < 1. Fusing this result with (2.26)

to obtain E\Xt\ ^ mdix{2dB,K'} y/T, we have completed the proof of Theorem 2.
As a final remark concerning Theorem 2,1 want to point to the fact that Rodolfo

Figari, University of Naples, has recently proven another bond lattice version of
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Nash's method in an unpublished paper, as I have just heard. Without using
interpolation (Lemma 2) he got constants kί, k2 with k^y/t — ε) rg E\Xε

x ω(t) — x\

3. Effective Conductivity

In this section we will show the existence of an "effective conductivity matrix" (q.j),
which will serve as the diffusion matrix for the limiting Brownian motion of Sect. 5.

To develop a feeling for the theorem of this section, let us start with some
heuristic remarks concerning the constructions of the effective conductivity q from
the given conductivities a in the case of one dimension (d = 1). Let us consider the
lattice Z and the conducting bond b(x) between x and x + 1. The conductivity along
b(x) can be defined as the flux thru b(x) under a potential of gradient 1. In order to
construct some kind of effective conductivity on a possibly inhomogeneous lattice,
the first problem arises in finding a potential on this lattice with "over-all gradient"
1. Obviously we have for a homogeneous lattice (i.e., a(x) = a) an effective
conductivity of a according to the previous definition, since the potential is trivial.

In our case of a stochastic inhomogeneous lattice we want to proceed
analogously: We would like to put a potential T(x9ω) on the lattice with overall-
unit-gradient and measure the average flux.

£(fl(x)VΓ(x,4 (3.1)

along a bond b(x), where we assume an overall gradient condition in the sense of

T(x + n) - T(x - n)
lim E

In
= 1. (3.2)

Theorem 3 shows the existence of such a potential on 7Ld. It can be written in the
form xk + χk(x,ω), where k denotes the coordinate-direction in which a unit-gradient
potential is applied, and χk is some "correction" compensating for inhomogeneity
and randomness of the lattice conductivities.

We start the rigorous part of this section with some remarks on the mathe-
matical formalism of Theorem 3. Let Bd be the set of bonds in Zd, Ω\= \_A,B~]Bd,
j f := L2(Ω, #", P), where IF is generated by the cylinder sets whose images are
balls in Md2. Here ωeΩ is a configuration of conductivities {a^x.ω)}^^ Recall from
Sect. 0 that P was assumed to be invariant under the group {τy}yeZd of shifts of the
configuration. This will imply immediately that a function / on Zd x Ω with
/(z,ω):=/(τ_ z ω) for /eJT is stationary on Zd: Let Tx be the shift operator on
Zd, i.e. Tx(z) = z + x:

f(Tx(z)9') = / ( * + *>') = 7(τ- z-*( )) = f(z>τ-χ ) = /(z> )>
where = denotes equality in distribution.

Define Ψ +φ for φe Jf by Ψ + φ(ω) = φ(τ_eω) - φ(ω); k = 1,2,... ,d, and Vί + χ
for χeZd x J>f by Vί + χ(x,ω) = χ(x + ei9ω) - χ(x,ω), i=l,2,...,d. Define ateJ^ by

T h e o r e m 3 . There are functions ι / ^ e j f , i,k= l , . . . , d , such that
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)) = 0, a.s. tPlk = l,...,d9 (3.3)

h Λ (3.4)

!/*, a.s. [P],i,fe=l,...,d. (3.5)

Moreover, there are processes χk(x,ω) on Zd x β,fc = 1,... ,d, with χk(O,ω) = OVωeΩ,
such that

Extend χk from 7Lά x Ω to Ud x Ω, swc/z that χk(x,ω)'> = Jt(M 5 ω), vv/zere [x] is ίfte

(unique) vector in Zd with xe]J [[x], [x] + ef)

= ° for
(3.7)

7. Existence of a solution of(3.3)-(3.5).Here and in Sect. 4 the following lemma
will be important.

Lax-Milgram Lemma [e.g. in Lions [11]]. Let (H, (,)) and (V, ((,))) be Hubert
spaces, Vcz H dense, || φ \\ := ((φ, φ))1/2,for φeV, let a(\jj, φ) be a sesqui-linear form on
V such that

\a(φ,φ)\^y\\φ\\ \\φ\\ for some γ>0 and all ψ,φeV, (3.9)

a(φ,φ) ^ c || φ ||2 for some c>0 and all φeV. (3.10)

For all feH, the equation a(φ,φ) = ( / » , Vφe V, has a unique solution ψeD(A\ where
D(A) := {φeV:φ~^a(ψ,φ) is continuous on V in the topology induced by H}.

In our case let (H9(,)) - J^= L2(dP) and let (K,((,))) be Jf with inner product
d

((φ,φ))\= Σ E(Vι + φVi+φ) + E(φφ),(φ,φ): = E(φφ). If we want to use this lemma
ί = 1

for solving (3.3), we have to apply it to an equation of the form

β(φ,φ)

= (f,φ) for some fixed β > 0.

In this manner we can satisfy (3.10) with

(3.11)

and (3.9) with γ := max{β,B} :

\α(ψ,φ)\ =
d

i= 1
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d

] (|VI + ι/Ί,|Vι + φ | ) + (\φ\,\φ\)

<y{ V [ENι + φ\2E\Vι + φ\2Ί1/2 + [E\φ\2E\φ\2~\
/ 1 / j i - i i i i ' ' —' i_ i i i ι / ι _ i

(by Schwarz in (H,(,))

d / d \ l/2

. i = l \ ί = l

(by Schwarz in ίR r f + 1)

Hence the Lax-Milgram Lemma can be applied in (3.11) with f(ω) := — Vk~ak(ω)

to get a unique χk'βeJ^ solving a(ψ,φ) = ( — Vk~ ak(ω), φ)VφeJtf>. Observe that for all

, i= \9...,d,

E(φV~φ) = E[\l/{φ{τ + eω) - φ(ω))] = E[ψ(ω)φ(τ eω) - φ(ω)φ(ω)~]

= Elφlτ_eω)φ(ω) - φ{ω)φ(ω)-\ = £[(V i + ̂ )φ],

hence

X E(ai(ω)(δik + Ψ + χk'β)Ψ + φ) + βE{χk^φ) = 0,

(3.12)

Now we want to let β ->0 and hope that a limit of the solutions χκβ solves (3.3). For

this argument we need

^ ] , (3-13)

(3.14)

where the constants c1, c2 do not depend on β. To see that these inequalities hold,

substitute χKβ for φ in (3.12):

Σ E(ai(ω)(δik + V + γk-fi)Ψ + χk β) + βE(χk>β)2 = 0, i.e.
ί = ι

-£[«|VY''] = £ £[α,(Vi

i = l

And theretore

(3.15)
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by Schwarz' inequality and (1.3). Set a(β)\=(E{Vk + χκβ)2)112 and γ(β): =E(χk>β)2.
Then (3.15) reads Bot(β) ̂  Λ(oc(β))2 + βγ(β), α(j8), y(j8) ^ 0. This shows that α(j8) is
bounded (e.g. by 5/A) and so is βγ(β) (e.g. by B2/A\ which proves (3.14). Since the left

d

hand side (3.15) is bounded by B2/A, so is A £ E(Vi + χM) 2> proving (3.13).
i = l

Now, because of (3.13) there is some subsequence {β{i)} along which
yi+χKβ^^ψk w e a k i y j n j ^ for s o m e ψkςjjf. Moreover, given a subsequence
{j8(ί)}, we can find by (3.13) a further subsequence {j8(ί+1)} c {β(/)}, along which
V(i+1) + / ^ ί + 1 > ^ ^ * + i weakly in jf for some φk

+1e^. Therefore V^ χk'βid) ^φk

weakly in jj? for i = 1,... ,d. By (3.14) and Schwarz inequality

so that (3.12) goes to (3.3) along the subsequence {β{d)}.
Now let us check (3.4), (3.5):

= (φk\)= lim ( V ^ V Ό )

= lim £[χ* ί W ) ( τ _ e j ω ) - χ * ' " l ) ( ω ) ] = 0 >

/5(d)->0

since obviously E(φ(τ_e(ω))) = E(φ(ω)) for φe Jf, using our remark on stationarity
preceding Theorem 3.

Using the observation preceding (3.12) we have

so that

E\_{ψ-\jjk)φ~] = E\_\jjkψ-φ-] = lim E\yJ+χk'βV~φ']
β'^0

= l i m + k β ' j j + k

β

for all φe Jf,

proving (3.5).

Pαrί 2. Construction ofχk. Let us define the shift operator Tx on J4? as follows:
Tx^(ω): = g{τ_xω). {Tx}xeZd is a unitary group of operators on Jf. Here Tx has the

spectral representation Tx= J βaxί/(^/L), where {(7(^1)}^ is the corresponding

family of spectral operators. Put

'where \e — 1|2 = £ \e ι ~
1 = 1

) : ί ( g l ) . i A

d

iλι
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In the sequel we show first of all that χk is well-defined on Zd x Ω. Because of
j U(dλ)ψk(ω) = φkj(ω) we need for this purpose simply an upper bound S(x) on the
integrand:

\e

iλx — i\\e~iλj — II
^ L

 = S(x), for all xeZ d , j = l , . . . , d^ 2
eιλ — I f

implies \χk(x,ω)\ ̂  d S(x) \φk\^. In order to get a hand on S(x), define p :ίR^[0,π]
such that p (λ) = /, if there is an /,0 ^ / g π and/ce/with/ί = 2πk + /, or if the re is an/,
0 ^ / < π and keZ with λ = 2πk — /. For λjβU we now have

2

and because of the triangle inequality

S\e±iλj-\\^p(λj) for all = 1,2,...,

and hence (since p(μ + A) ̂  ρ(μ) + p(A)) | e U x - 11 ̂  p ^ ^ J +••••+ ρ{λdxd) ^
lχilp(^i)H 1-l̂ dlP^d)- W e redistribute indices if necessary, such that p{λd) ^
ρ(Af) > 0 for all i ^ d. Then

\eiλ-\\2 ~ 1 *

d

Hence ^(/IJ-^O does no harm.

We now turn to the properties of χk. Here χ*(0, oo) = 0 holds trivially for all ωe Ω:

Vi+χ\φ)= J (eiλx~ I W ^ T ΰ Σ ((e-iX>

1 d

= f ( £ i ; U — 1)—r: r V (ψ), Ψ ~ (elλj —
1\ j = l

d

- y (Φk,vj~

= ( Σ
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which implies (3.6). Note that we have made use of (3.5).
We show (3.7) for xeZd first, with ε of the form \/n (i.e. x/εeZd):

v 2

i

— V f | e u < Λ : ' ε ) —
(p -iλι _ — Π

\eiλ-l\2)2

Put μji= \e~iλj- 1|:

ί = l

^ ΣA 2

ί = 1 i = l

by Schwarz' inequality.

Because of £ M? = Wλ ~ ! | 2

?

 t n i s implies
ί=l

χ \ \ 2 \Jλ(xjε) _ 1 |2 d

As was shown above, the integrand is bounded independently of ε:

iλd(xd/ε) _ i |2 Σ

where the indices have been redistributed if necessary, such that \xd\
2ρ(λd)

2

x^l2/?^.)2}, and where we have used the inequality

^ Σ l^ l2pW/

But then we can apply the Theorem on Bounded Convergence to proceed from

oiλ(x/ε)

limε
o | ^ Λ -

- = 0, for all λφlπZ\ to

εχkl ~ )) = lim (3.16)
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For /Le2πZd, however, Ό{λ}^ is 7^-invariant, for all xeZ d :

TxU({λ})ψt= j e>λ l

since eiλx = 1 and U{dλ)U({λ}) = U{{λ}) for λedλ, and U(dλ)U({λ}) = 0 for λφdλ,
because U is a projection operator. Now, the only {Tx}xeZd-invariant functions are
the a.s.-constants, since the unitary group {Tx}xeZd was assumed to be ergodic in
(0.4), hence (U{λ}ψΐψ)) = £/{/l}^(l,i/φ - U({λ})ψΊE(ψ*) = 0, so that

limE(εχk(x/ε))2 = 0 for xeZd and εe{l/n, neN}.

d

We now drop the conditions on x and ε: Recall that for xe γ[ [[x], [x] + ej:
i = 1

χ\x,ω) = χ f c([x],ω). Assume first that x = αe h αelR, / = l , . . . ,d,

We now extend this result to xeUd in general. Set

and

Because of the stationarity of the \j/\, we see that yι and γt have the same distribution,
/ = ' ! , . . . , d , hence

^ X (^εy^^εy,)2)1/2 = f
i . 7 = l i,j=ί

Since lim^εy^x/ε))2 = 0, i = 1,..., d, as was shown above, this last sum will vanish in
ε->0

the limit, completing the proof of (3.7). •
In the beginning of this section we tried to develop some intuition how the

"effective conductivities" qtj should be defined and constructed. Theorem 3 gives us
the necessary "correction potentials" χk, so that we can now define

qu := Eia^iδ, + Vf V ) ) , Uj=h ., d. (3.17)

We conclude this section by proving some properties of (qtj), which are more or less
immediate from the definition. We will show that the matrix (qi3) is symmetric and
that for any eigenvalue q of (qij)
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By (3.3) and the construction of χKβ(d)eJf in part 1 of Theorem 3 we get
d

X E(a^ώ)(blχ + ψ{)Ψ + χk'βld)) = 0. SinceV/, Vι + χk'βid)^ ιA* in J fa long {β { d ) } weakly,
ι = l

0= lim ΣEfaβi + MV'VO
0«<>->O/ = l

= X E(aι(δH + ψi)φk,),
1=1

hence by definition

qki = E(ak(δki + φl)) + E\J] ΦH + ΨϊΨi
u = i

fe + ̂ i)+^fe + ̂ i^ϊ + Σ

Ifk

= E\ak(δki + ̂ )(1 + Φί) + Σ ^ « + Ψb

so that

qki = E | ^f ΦH + ̂ ')(^ίfc + ^ ) } (3.19)
The symmetry of (qkί) is immediate from this equation. Moreover by (3.19), we have

for a n y x:=(xl9...9xd)eMd,
d d

Σ xk1kiXi= Σ E(Φu + ΨΪ)Φik + Ψkι)Xk)
i,k = l i,k,l = l

d / / d

= ΣE(4 Σ Vij + ΨD

ί,k,l = l

d d

^xl + A Σ XkXiίEtfiiΦΪ) + E{διkψi) +
fc=l i,k,l = l

d \2

so that, since E [ ^ ] = 0, Vfc, /, and

Σ ( ^/i Σ χ.2 (3 2°)
i,/c = l i = l

Similarly

Σ
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d d / d

Σ^+ΣE( Σ ^
k=l 1 = 1 \j=ί

) Σxf, (3.21)
k,l=l / £ = 1

by Schwarz' inequality. Inequalities (3.20) and (3.21) yield (3.18).

Being symmetric, (qi}) is diagonalizable. If (q.j) is diagonal, the upper bound in
(3.18) can be slightly improved,

d \
max £ E^2 )B, if (qt,) is diagonal, (3.18')

ί=d / = i /

as can be seen by letting x = ehi=\,...,d,m the proof of (3.21).

4. Resolvent Convergence

Before introducing the Hubert space framework for the formulation and proof of
our Theorem 4 on strong resolvent convergence, let us consider for a moment the
intuitive background of our approach, which is due to Papanicolaou and Varadhan
(cf. [13]). As outlined in Sect. 1, we need the strong convergence of the semigroups

e&
εj —>£^ f

? w h e r e

if = Σ Qij—Λ— (with (qtJ) from (3.17)), and 5£ε

ω = - ^ VJ ( atl —,

are the generators of the corresponding jump, respectively diffusion processes. The
convergence of semigroups will result from the convergence of resolvents:

f o r α > 0 , (-JSf^ + α)" 1 ->(-J5f 4-α)"1, (4.1)

i.e. if / is a given function and wε( , ω): = ( - S£*ω + α)~ 1f9 and u( ): = ( - if + α)" V,

then we claim

uε(\ω)^u(-) (in some sense). (4.2)

We use multiple scales for proving (4.2). This method will be indicated in a few words
(for details cf. e.g. Bensoussan, Lions, Papanicolaou [1]): The idea is to expand uε as

x,-,ω \ + ε2u2{ x,-,ω ) + ... . (4.3)

Plugging this into the equation for u\ collecting and equating coefficients of equal
powers of ε, gives a sequence of equations for u, u^ w2, The trick then is to set

Ul(x,y,ω):= Σ Xk(y,ω)Ψk

+u{x). (4.4)

This will result in an equation for χk which is essentially (3.3), and is an equation

characterizing w, of the form (— if + cήu = f. Can we hope for ειwf(x,x/ε,ω) ->0, for

/ ^ l,ε->0, in some sense, or more directly:
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d

Can we hope for zε(x,ω):= ιf{x,ω) - u - Σ εχ*(x/ε,ω)VJ+ w(x) to vanish in some
fc = l

sense, as ε -> 0 ?
Now let us turn to making these ideas precise. Let H be the Hubert space

H = L2(Ud; Jf) of square integrable functions on Ud with values in 2/£ and inner
product (f,g):=E$dxfg9 \\f\\ : = (/,/)1/2 Let H1 be the subspace of H with
square integrable distribution derivatives (cf. Richtmyer [14]) and inner

product ((/,^)):= Σ ( ^ / ' ^ ) + (/^);ll/lli = ((/'/)) 1 / 2 L e t Hl b e t h e

Hubert space consisting of the same functions as H, but with inner product

«J,θ)\:= Σ (VΓ/>VJ+0)+ (/,£)• L e t H°' = L2(U*>U)
 b e t h e H i l b e r t s P a c e o f

ί = l

square integrable real functions with inner product (f,g)0'
 = \dxfg. Let if* be

the Hubert space of functions in Ho with square integrable distribution
d ( d d \

derivative and inner product ((f,g))0: = Σ \^~f>J~g ) +(/'^)o F o r

feH0, ε > 0, has ( - ifε

ωt/ε + ocu\ φ) = (/, φ\ VφeH^ a unique solution uεeH^ as
follows from the Lax-Milgram Lemma applied to the Hubert spaces H\, H. It is
sufficient for this matter to consider

V ^ (4.5)

d f* \
i.e. a(ψ,φ) = (f,φ\ where a(ψ,φ)= Σ E\dxa\—,ω Vt

ε + ^Vε + φ + ocE j rfx^φ. This
ί = i \ε /

sesquilinear form on //ε, iί ε cz //, is of the same structure as (3.11) on V, Kc= //, hence
satisfying (3.9), (3.10), so that the Lax-Milgram Lemma is applicable. Moreover

φ\u*)^ |α(ι/,ιθl = |(/5u
ε)|^(/,/)1 / 2(u ε

?u
ε)1 / 2, i.e.

lltt'H^ α"111/11, Vε>0. (4.7)

Observe that even

d

, where δ:= min{a,^4}, (4.8)

since δ Σ (Vε + wε,Vε + wε)+ (wε,uε) = δ((uε,uε))ε S \a(u\uε)\ S H/l| ||wΊI, i.e.

+ u ε | | 2 + N ε | | ^ ^ 1 | l / l l By (4.7), then -^ + 2

a

Now consider

(4.6)

This equation has a unique solution weif^ for any feH0, by the Lax-Milgram
Lemma applied to HQ and HQ. To see this we have to check the sesquilinear form
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a(ψ9φ):= (-^φ + ocφ,φ) for (3.9) and (3.10). Inequality (3.10) is immediate from
(3.20). To check (3.9) consider the matrix

(%)*'• =

0

and let T: = ((d/dx1)f,...,(d/dxd)fJ). ^..

' x,α}. Just as in (3.18), we get
/ ((/^f,

eigenvalue is ^ " - m a x

^qmjf\-\g\ = max{q^a

Moreover, HQ is dense in Ho, since Cg3 is, and Co

Lemma applies.

0

^ 0 0...0 α

,/) . Here (g^ )α is real symmetric and its largest

Theorem 4. Let feH0; ueH^, ifeH* be solutions of

( - Se*y + au\φ) = (f,φ)

(-£Cu + au,φ)0 = (f,φ)0

then Me-»M strongly in H, as ε-»0, i.e. \\uε — u\\ ->0.

,, i.e. (3.9).

Hence the Lax-Milgram

(4.5)

(4.6)

t h i r d s u m m a n d s i n \\uε

f — uf\\ ^ \\uε

f—uεf\\ + \\Uf — Uf\\ + \\uf — uf\\
small uniformly in ε (cf. (4.7)), by continuity of ( — !£ + α ) " 1 and ( —

Proof of Theorem 4. Observe that it is sufficient to give a proof for / e C ^ : We use
the notation uε

f, respectively uf, for ( — <£ε

ω + α)" 1/? respectively ( — if + α ) " 1 / -
Since C^ is dense in ΉQ, choose feC^ close enough to /EHQ, SO that the first and

can be made

+ 00"1,
since the left-hand-sides of (4.5) and (4.6) are sesquilinear forms. Now / e C ^ implies
wey, the set of rapidly decreasing functions (cf. Richtmyer [14]).

The proof for feC% will proceed along a series of lemmata: Extend the function
χk:ΩxZd-^M oi Sect. 3 to a function defined o n Ω x ^ by χk(x,ω):= χ*([x],ω),

d

where [x] is defined to be the vector in Zd satisfying xe Y[ [[x], [x] + et). Define
i=ί

d
7ε(χ m\ — ,fi(Ύ m\ __ j,(Y\ _ y pΎ

k(χ/p mWε + υίx)
k = l

Lemma 1. There is a constant Cγ independent of ε such that \\zε\\ :g Cx.

d

Since | |z ε | | > \\uε — u\\ —

Lemma 2. lim
ε->0

- 0, and
k = ί
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Lemma 3. lim||z ε | | = 0
ε->0

will yield lim \\uε — u\\ = 0, i.e. the claim of Theorem 4. For proving these lemmata,

we need

Lemma 4. There is a constant C2 independent ofε, such that || V + zε | | g C2,for all

Lemma 5. There is a constant C 3 such that E(χk(x,ω))2 ^ C3(d + |x|)2, Vxe(Rd.

Proof of Lemma 5. Consider the case xeZd first. From the proof of (3.7) we recall that
in this case

Hx\χ))2ύ J 4ί/2|χ|2 Σ (U{dλ)φ),U{dλ)φ))

Extending χk from Zd to Ud in the manner indicated prior to Lemma 1, we can only

say that E(χk(x,ω))2 ^ C3(|x| + dd)
2, where dd is the diagonal of the unit d-cube,

dd^d. Π

Lemma 6. Let ueSf, φeL2(U% φ a polynomial on Ud. Then

(i) lim $dxφ(Ψk

+u)2= \dxφ(-^-u] ,

(ii) lim
ε-0

(iii) limί^xιA(V ε +VΓ^) 2= \dxφ{ ——u

, _ + + , r ί d d d \2

(iv) lim J dxφ(Vε

k V Vε uy = dxφ\ u ,
ε^O \Vχi 3χi Vχj J

forij, k=\,...,d.

Proof of Lemma 6.

Concerning (i): By the Mean Value Theorem Vε

k

+u(x) = (d/dxk)u(xr) for some xΈUd

coinciding with x except in the kih c o o r d i n a t e : x = ( x 1 , . . . , x Λ , . . . , x d ) ,

x' = (x l 9 . . . 9xk,... 9xd) and xke[xk,xk + ε]. Define gε

k(x): = sup{ \(d/dxk)u(x')\:
x'ke[xk,xk + ε']}. Obviously \ψk

+u(x)\ ^ gk(x)^ gk\x). Since ueSf, g\
goes fast enough to 0 as |x|->oo, so that § dx\φ\(Vε

k

+u)2 ^ j |^|(^f^(x))2(ix < oo,
hence by bounded convergence and since Vε

k

+u^>(d/dxk)u as ε-»0, we get (i).

Concerning (ii): Since Vε + u is differentiable: — V^~(Vt

ε + ι/)(;c) = ((d/dxk)
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(Vi+u))(xΊ, for some xr =(x1,...,x'k,...,xd) with x k e [ x k —ε,x k ], and (d/dxk)
(Vt

ε + u\x) = (1/ε) [(3/3xk)w(x + εef) - (3/3xk)M(x)] = V?+((3/3xk)κ(x)). Since
(d/dxk)u(x) is differentiable, we get altogether — Vk~(Vf + w)(JC) = (β/dxi) x
(d/dxk)u(x") for some x" = (x i , . . . 5 x I _ 1 , x /,x + 1 , . . .,xd) with xfefx/jX + ε ] .

Since x ^ f ] [xf - 2ε, x. + 2ε]:
i = 1

|VΓ(Vf+«)(,)! ^ sup
3 _5_

9X; 3X,,
ye 2e,xf + 2ε] > = : ̂ .

For ε ̂  1, gfξk ^ 0 ί k and gfίk decreases rapidly enough for |x| -> oo, so that

ί IΦ(VΓVΓu)|dx ύ [ ί ^ φ 2 J dx\gϊk\
2Y'2 < αo, (4.9)

xί) (d/dx^uix") for some x " e [ ] [x - 2ε,x + 2ε], implies by

continuity of derivatives (since ue^) that lim( — SJl~V\ + u(x)) = (δ/δxf) (5/5xfc)w(x).

Hence by bounded convergence lim j dxφ(V^V + w) = — j dxφ^d/dx^ (d/dxk)u).

Concerning (iii): Proof similar to (ii) except for j \\jj\(yE

k~V\ +u)2dx < oo not by
Schwarz' Inequality as in (4.9), but by using the fact that g\k{x) decays rapidly, as
|x|->oo.

Concerning (iv): Proof similar to (iii) with g\k replaced by

d

———u(
dxi dxk dxj

• D

Proof of Lemma 2.

limE[eχk(- ) ) =0 for all xeUd by (3.7).
ε^O V

(4.10)

Now, by Lemma 5 and the proof of Lemma 6(i),

^ C 3 ( d + \ x \ ) 2 ( g l ( x ) ) 2 V x , f o r ε ^ l ;

and § dxC3(d + \x\)2(gl(x))2 < oo. Therefore (4.10) implies by bounded convergence

lim
ε->0

x

k = ί \ ε ?

d

lim 2̂

7,ω)vr«w

= 0.

Proof of Lemma J. ||zεj| ^ ||uε|j + ||M|| +
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by (4.7), and sχ\x/ε,ω)Ψk

+u
fc=l

^ C 4 (independent of ε ̂  1) by Lemma 2, hence

we can choose C1 : = α * | | / | | + ||u|| + C 4 . Π

Before we take up the crucial part of the proof of Theorem 4 (i.e. Lemma 3) one
last technical point:

Proof of Lemma 4.

Σ
fc=i

Since || V*+ uε || ^ α (5"11| / 1 | 2 by (4.8), and ||V^ + u|| ^ || gf /1| as in the proof of Lemma
6, it is sufficient to show ||εV + {χk{x/ε9ω)Vε

k

+u} || ^ C; i,/c = l, . . . ,d, for some
constant C independent of ε. Use the following product rule

to get

S 3 j dxE< εχ

= </>(* ±

u(x)XY= x +

-,ω

(4.11)

J.
(4.12)

Now, by Lemma 5

- + e , , ω Vξ+V

^ j JxC3(|x| + ε(l + d))2^]+Ψk

+ u)2 ^ y i (independent of ε ̂  1 by Lemma 6 iii).

On the other hand εV* + χ*(x/ε,ω) = χk(x/ε + efJω) - χ*(x/c,ω) = ^(x/ε,ω) a.s. (by
(3.6)), where ^(j;,ω),};e[Rd, is the analogous extension from Z d to [Rd as in the case of
χfc, prior to Lemma 1. Since φk(x,ω) is stationary, E(φ^(x/ε,ω))2 = y2, independent of
x/ε. Therefore j dxElV^εχk{xlε,ω)ί^V~UΏ2 = ί dxγ2(Ψk

+u)2 < γ3 independent of
ε ^ 1, by Lemma 6(i). Altogether j dx£[Vf+(εχk(x/ε,ω)Vϊ+M(x))]2 S 3(yx + y3) =:
C. Π
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Proof of Lemma 3.

p α J -,ω JVε + zε,zε 1 + α(zε,zε

where the second step is justified by

V\+ ιA(x)] = £ J <*x<3P(x)-

[ j φ( ^ψi) — E J

(4.13)

Hence it is sufficient to show ( — if ^z£ + αzε,zε) -*0, as ε ->0. The first part of this
proof will mainly consist of simplifying this limit up to (4.21). The second part
beyond (4.21) contains the actual key of the proof in terms of the construction of the
G Γ s

Take φeH1, fix ω; then φ(ω)eHl and (4.6) implies

( - i f u + αu,φ(ω))0 = 0 > ( ω ) ) 0 , VωVφe//1,

hence

( - JSfM + 0M,φ) = £( - if« + αM,φ(ω))0 = E(f,φ(ω))o = (/^λ

This identity together with (4.5) gives rise to the equation (( — if ε

ω + oc)uε,φ) = {fφ)
= ( — if ι/ + au,φ\ for all φeH1, ε > 0, hence

- <£ε

ω + α ) z » = ((- 5£ε

ω + α) L ε - u F,

φ

«( Σ εχk{-,ω Wε

k

 + u,φ I. (4.14)
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Since (4.14) holds for all φeH1, the corresponding identity for the left members of
the inner products holds a.s. \_dP x dx~]\ Observe that C% c H1 and take as test
functions e.g. a suitable φ(x,ω): = g(x)eC^ to justify this statement.

But then we can as well take zε instead of φ in (4.14) by Lemma 1.
Consider

/ d

• « ( Σ β .
\k= 1

d

Σ 9u
i,k=l

Now ||zε|| ^ Cx by Lemma 1, lim

d d

= 0, since \Vε

k

+u\ is bounded

and by (4.10). Hence lim|FJ = 0 by an obvious analogue of Lemma 6(iii), and it is

sufficient to show: Fε + (( - ifε

ω 4- α)zε,zε) vanishes as ε->0. With (4.14), we get

i,k = i

d

i= 1
r ai-,ωvruiz

We will now use the product rules (4.11) on some terms in (4.15).

i) First on the third term in (4.15):

Σvrh(7.»)Σvί+«Wf.ω

ii) On the second term in (4.15):
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iii) Finally on the first summand in i):

Vf

Making the corresponding replacements in (4.15) yields

d

ί,k = l

- ( Σ

ί V Λ ί l\7ε~\7ε +

- L °ikai\ ~~ei }Wi Vk
\i,k=l \ S

d

-( Σv;
,i = l L \ 6 / / c = l

ε V £ + Ί Λ Ύ -4- PP λ 7£

The second and fourth terms in (4.16) are combined to

(4.16)

^ Γ ^ i ^ ^ (4.17)

In order to be able to combine the first, third and fifth terms in (4.16)
we need a slight rearrangement. In the fifth term we first want to replace
Ψi + VΪΉx + εβi) by VΓVfu(x). This can be done by adding

Gε: = ( Σ0.(χ/ε,ω) X V\+[_εχk{x/&,ω)']V\-ψk

+{u{x)-u{xΛ-&et)\f ) on both sides

of (4.16). Observe that limGe = 0: Since V ~V^+(w(x) - u(x + εef)) =
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d

* Σ
i , fc=l

d

£,fc= 1

a\ j, • I I 2 * II

εfl -

Then lim|Gε|=0, as a consequence, by Lemma 1 and (4.10) using

llβχ^^ + ε^/ε^VΓVΓvr^WII = l|εχ*(x/6,ω).VrVί+Vf + «(x-εe f)|| and an
obvious analogue of Lemma 2, (same proof, but g{ replaced by

gjjk(x):= sup{\(d/dXi) (d/dxj) (d/dxk)u(y)\; ye [ ] ί*i + ^ , xf - 6]}.)

The third term in (4.16) can be written as

Σ M T - ^ F
ι , / c = l

Let

= Σ U " V

. := Σ W - [Vf-Ve

k

+

ε

= ( - εVε+zε(*))VΓVε+ιφc) + εzε(x

Therefore

by Lemma 1 and Lemma 4. These norms are bounded independently of ε ̂  1, by
Lemma 6 (iii), (iv), hence

(4.18)
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Making use of the observations lim|Gε | = 0 = limE J dxKε and of the term

(4.17), we conclude by combining the new third and fifth terms with the first term in
(4.16), that we only have to show the vanishing of the following term, as ε->0:

d

• Σ
i,k=l

(4.19,

Now consider the third summand of (4.19). Using (4.13),

sΣ

X

a,\ -,c Σ

with

(4.20)

, which vanishes as

ε-^0 by an analogue of Lemma 2 (same proof except g]k replacing gl). Using this

result and Lemma 4 in (4.20) shows that the third summand of (4.19) goes to 0 in the

limit.
d d

Now consider J dx £ Ψk

+ u £ E{Vr(α.(χ/ε,ω)[δίfc + εV? V(x/ε,ω)])zε},
fc = 1 ί = 1

the second summand of (4.19), Fix x:zε(x, )eJf. Recall that εV +χfe(x/ε,ω) =
ψ*(x/ε,ω)9 which is stationary by Theorem 3, and so is αf(x/ε,ω), hence

ε i = i

=0,

by (3.3) in the form ~Σ E(ψ-lai(ω)(δik
ε

= 0, with φ{ω):=

XjT^ω). Hence the second summand of (4.19) is identically zero.
The proof of Lemma 3 is therefore reduced to showing that the first term in (4.19),

i.e.
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vanishes as ε-»0
We are now ready to enter the key portion of the proof.
Set gik(χ,ω):= ^(x,ω)((5i/c + ^f(x,ω)) - qik9 i,k = 1,... ,d9 where #ί/c is stationary

/ d - \
since α. and ι/̂  are. We want to show lim £ #ιfc(x/ε,ω)Vf V£+w,zΊ = 0. We define

ε - 0 \ i = l /

the shift operator Tx on H as Txg{y,ω): = g{y + x,ω). Here {Tx}xeZd is a unitary

group of operators on H; with spectral representation Tx= § eiλxU(dλ), where

[U(dλ)}λ is the corresponding family of spectral projectors. Set

G?(x,ω):= J ( e W x - l ) τ τ r ^ C / ( d λ ) ^ ( 0 , ω ) , for xeZ d . (4.22)
κ d \e —-1!

d

where | e a — 112 : = £ |eiA/ — 112. It is immediate that Gjfc is well-defined, by the very
z = i

same argument used for χk in Sect. 3.
The extension of Gf on 1d x Ω as usual to Rd x Ω has the following properties:

d

X VjG?(x,ω) = gik(x,ω) for all xe[Rd, (4.23i)

E(G?(x9ω))2 g C3(ί/2 + |x|)2 for all xe[Rd, (4.23ii)

εGf ( - , ω j j ^ 0 , as ε->0, for all xeUd. (4.23iii)

The proof of (4.23i) is straightforward:

V , G f ( x , ω ) = f V , J ( e i λ * - l ) i e ι J ~

= Σ I ^λiX + ei) ~ ̂ {\J^2 UW)g*(O,G>)

= Σ ί e ΪΓ—j2 -U{dλ)gιk(O,ω)

= j eiλxU(dλ)gik(09ω)= gik(x9ω).

For the proof of (4.23ii), we recall from the proof of (3.7), that for xeZd

\eiλx — II2

U 1 ^ < 4 ί / 2 | x | 2 , hence for xeZ d ,
k1 - I I 2
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E(Gf(x,ω))2= ί l^S^S

md \e ~ ι\

^ 4d2\x\2{gik(0,ω),gik(0,ω)).

Choosing C3 := {gik(0,ω), gίk(0,ω))4-d2,we get (4.23ii) as in the proof of Lemma 5 for
xeUd.

For the proof of (4.23iii) we start out with xeZ d , as usual:

/ /χ \ \ 2 ι i λ ( x / ε ) _ 1 | 2

E(εGf(-,ω)) ύ j β2' .A ' (U(dλ)gik(0M,gik(0,ω)).

The argument for xeZd is completely analogous to the argument of

\imE(εχk(x/ε,ω))2 = 0 in Sect. 3. For xeUd in general, we have to be a bit more

careful. lfxeUel91 = 1,... ,d, the argument for χk can still be adopted. Now consider
more general xe[Rd; set

- Y - '*"£ ' IGfUm + 1 )e,) - Gf(me,))

m = 0

The Wfif, however, is stationary, since

(piλl _ ])(p~ίλJ

Vfif(xω)= \eaχ(

and

= ί emx+y) , „ i,2 J
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From the definitions of ηι and ηt it is therefore immediate that ηι and ηι are equally
distributed, hence

2 X 1 / 2

Since Gf (0) = 0, η^x/ε) = Gf((xι/ε)eι\ and since we have already established the

result for xeUet, / = 1,... ,d, we have lim£(ε^(x/β))2 = 0, hence E(εGf (x/ε,ω))2 ->0,
ε->0

as ε-»0, by the inequality above, so that we have proven the last of the three
properties of Gf.

Now we use Gf for the proof of (4.21) in the form

lim = 0, fc=l,...,d. (4.21')

By (4.23):

= ef<fr

^ Σ

Mr
•if X

εGιH - , ω
J \ ε

U = i

d

Σ
X

ε
||Vj-zε||

eGf I ^,ω aGf ( -,c

by (4.11), (4.13), Lemma 1 and Lemma 4.
Here VJ~VpV£+w, respectively VpV^+w, are bounded independently of ε by a

function in Sf (cf. proof of Lemma 6), say by g3, respectively g2. Then by (4.23) for

l/2
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By dominated convergence and (4.24),

lim ||εGf(x/ε)VΓ V£+w|| ^ [ Jdx£(εGf(x/ε,ω))2(VΓ Vfw) 2 ] 1 / 2 = 0.

Similarly lim ||εGΐfc(x/ε,ω)VpV£+u|| = 0 . This proves (4.21)' and hence Lemma
ε^O

3. D
Lemma 2 and Lemma 3 yield Theorem 4.

An obvious consequence is the uniqueness of the qtj: We have just proven if -> u
strongly in H, where we did not use uniqueness of χk. Since uε is formulated (as the
solution of (4.5)) independently of χ\ its limit u is independent of χ\ hence qtJ

(characterizing the limit u) is independent of χ\ as long as χk satisfies the properties of
Theorem 3.

5. Mean Square Convergence in Distribution

In this section we combine the results of sections 2 and 4 to prove the main theorem of

this paper.

Theorem 5. Let Qx be the measure of a diffusion process starting at x with generator
d

^= Σ Qijid/dXidXjlwithqijasintf.lT).

Let Qε

xω be the measure of the jump process of Sect. 0, starting at x, with gene-
d

rator^ε

ω = - £ V p ^ x / ε ^ V ^ ) . Let Qx ω be the measure of the corresponding
ϊ = l

smoothened process of Sect. 2
Let F be a bounded, continuous function on the space C: = C([0,oo],[Rd).
Then, for any nonnegatiυe function φ,φeL2(Ud):

limEl J dxφ(x) f F(QQxJdζ) - j dxφ(x) j F(QQx(dζ)\2 = 0. (5.1)
ε->0 ud C Ud C

Proof of Theorem 5. £?ε

ω and if are generators of Markov processes. Let us denote
their respective semigroups by e1^ and eιSέ'.

Lemma 1. (**«f-*e*xf, as ε^O, for all feH0, (5.2)

strongly in H and uniformly in any finite interval 0 ̂  t ̂  T.

Proof Using the strong resolvent convergence of Theorem 4, (5.2) can be shown
following Kato's proof of his well-known Theorem in Kato [6], p. 504. D

Since if, &e

ω are generators of Markov processes with measures Qε

x ω , Qx, we
have the respresentations (e^f)(x) = EQ^f(C(t)\ (<**f)(x) = EQ*f(ζ(i))9 for all
feH0, so that (5.2) can be written as

lim sup E J dx\EQ*.~(f(ζ(t)) - EHf(C(t))\2 = ̂  for all feH0. (5.3)

In order to show (5.1), start with taking M, 0 < M < oo
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dxφ{x)\ J F{ζ)Ql
Lc

(dζ) -I
us"

< 3 £

3£

JC| ^

(5-4)

Since J F(ζ)QxJdζ) ^ \\F\\^ ^ j F(ζ)Qx(dζ), we have

J dxφ(x)
\x\ZM

j φ2dx = :K(M),

which can be made arbitrarily small by choosing M large enough, since φeL2.
Hence it is sufficient to show that the first summand in (5.4) can be made small.

In Sect. 2 we have shown that for δ > 0 a relatively compact set Kδ<=:D can be
found with Qε

xω(Kδ)^\-δ, for all β , 0 < e < l , ωeΩ, \x\ ^ M, and that the
corresponding set Sδ := c\(Kδ) is compact in C and satisfies Qε

Xt(0(Sδ) ^ 1 - δ, for all
ε,0 < ε < 1 ωeΩ, \x\ ^ M. We can use Sδ now to reformulate and bound the first
summand in (5.4)

- ί

dxφ(x)[ J
Sa

F(OQ(dO+

\x\ <M
J

J rfx(p(x)j

- ί dxφ(χ) f F(0βx(d0
μ|^M sδ

f (5.5)

Now, J F(0^>ω(ί/C) and J F(ζ)Qx(dζ) are bounded by HFH^ ό, so that the second
si sc

δ

summand in (5.5) is bounded by 3K(M) δ, which can be made small by choosing δ
small.

So we are left with showing

J dxφ(x)$F(ζ)QiJdζ)- J dxφ(x) J F(ζ)QM)
sό

or, making use of Schwarz' inequality and φeL2, with showing

ε->0

F(ζ)Q°xJdζ)- $F(ζ)Qx(dζ) = 0. (5.6)

The set of finite linear combinations of products of the form

/i(C(ίi)) -(fn(ζ(O)fi ^ h ύ • • • ύ tn < oo, with fjeC%(Ud) (5.7)
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is an algebra in C(Sδ), the set of continuous functions on Sδ, and moreover it contains
the constant functions and separates points. Hence, since Sδ is compact, this algebra
is dense in C(Sδ) by the Stone-Weierstraβ-Theorem (cf. e.g. Kelley [7]).

It is therefore sufficient to show (5.6) for F of the form (5.7), i.e.

J dx
sδ

= o, (5.8)

for all neN. But for this purpose, we need only consider

\\mE\dx

= 0,

since all functions /jeC^ and their derivatives are bounded, and since

hi mi:

(5.9)

where ζ is the smoothened path corresponding to ζ, and \ζ{t) — ζ{t) \ ̂  ε by
construction, for all t.

We begin the proof of (5.9) by considering the case n = 2, n = 1 is covered by (5.3),
i.e. we show

lim£ - EHfMh))f2(ί(t2)))\2 = 0, (5.10)

using the Markov property. The second summand vanishes as ε->0 by (5.3), with

Now consider the first summand in (5.11).

S E j

^ max /\(χ)E J Λc£«.. [G'(ω,ζ(ί (5.12)
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by Schwarz' inequality, since fίeC$(Md), where

Gε(ω,x): = [ ^ - Ί ί ^ / ^ x ) - ^2-^/ 2 (x)] .

By (5.3) we have

limE$dx(Gε(ω,x))2 = O. (5.13)
ε->0

Let pε

ω(y,t\x) be the transition probability for the Qε

x ω-process at time t. Consider pε

ω

as a density on [Rd by our usual extension of functions from εZd to Ud. By self-
adjointness (cf. (1.4)) J dxpε

ω(y,t\x) = J ώφS>(x,r|j;) = 1.
Altogether then

J dxEKHG'iω&tJ)2 =E$dxi dyp^t,\x)(Gε(ω,y))2

= E J

which vanishes in the limit ε -• 0 by (5.13), and consequently the first summand (5.12)
of (5.11) vanishes also, proving (5.10).

It is now obvious how we can conclude (5.9) for all neN by induction. This
completes the proof of Theorem 5.
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