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Exterior Complex Scaling and the AC-Stark Effect
in a Coulomb Field

Sandro Graffi* and Kenji Yajima**
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Abstract. By means of the exterior complex scaling of B. Simon an existence
proof of resonances is given for the time-dependent Schrδdinger equation

dip
ί— =( — Δ + F+μx-L cosωί)φ,

where V belongs to a class of potentials which includes the Coulomb one. The
resonance width is given by the Fermi Golden Rule to second order
perturbation theory and is nonzero for μ small and almost every ω.

1. Introduction

The time dependent Schrόdinger equation

dip
1 cosωt)ιp (1.1)

describes the so-called AC-Stark effect, i.e. the quantum motion of a particle of
mass \, unit charge, coordinates x = (;x1,x2,x3)eIR3 in a potential field V(x) under
the action of an oscillating electric field of strength ^μcosωί, μeIR, directed along
the xί axis. Here ωeIR+, and h=l. If V is not only dilation analytic, but also
satisfies some extra smoothness assumptions, Yajima [12] has obtained, through a
synthesis of Floquet theory and complex scaling, a mathematical justification of
the well-known physical picture associated with the time dependent perturbation
problem (1.1) (see e.g. [5, 11]).

Let us describe in some detail the results of [12], because the purpose of this
paper is to extend the main one, i.e. the existence of resonances, to a class of
potentials sufficiently general to include the Coulomb one. Setting, as in [3] :

),

ί^^

* Present address: Istituto di Matematica, Universita di Bologna, 1-40127 Bologna, Italy
** Partially supported by NSF Grant No. MCS-80-23339-A01. Address since September 1, 1982:
Department of Pure and Applied Science, University of Tokyo, Komaba, Meguro-Ku, Tokyo, Japan



278 S. Graffi and K. Yajima

Equation (1.1) becomes:

dv _ ~
i—=( — Δ + V(xί+ω 2μcosωt,x2,Xτ))vΞΞH(t,μ)v. (1.3)

Then Eq. (1.3) generates a unitary propagator l/(ί,s;μ) and the following
assertions hold true :

(1) The eigenvalues of the Floquet operator U\s-\ -- , s; μ , if any, define the
v ω I

bound states of the problem. Namely if ΛeIR is such that

( ?7Γ \ - λ2πί

s+—,s ,μ\f=e~~f, /eL2(IR3),

then U(t,s;μ)f=e~ί(t~s}λf(t) with / periodic in t and localized in space;
(2) Let JΓ be the Hubert space L2(IR3)(χ)L2(Tj, Tω the circle K/(2π/ω)Z, and

let K(μ) be the self-adjoint realization of H(t,μ) — i — in JΓ. Then
ot

the spectrum of £/(•), is analyzed through σ(K(μ)) in the following way: if
K(μ}φ(t) = λφ(t\ then φ(t) is a ZΛ valued, continuous and periodic function of t
with U(t,Q\μ}φ(0) = e~ίλtφ(t\ and conversely if

then φ(ή = eiλtU(t,Q;μ)φ0 is such that K(μ)φ(t) = λφ(t).

(3) Consider K(0) = -i — + H=-ί—-A + KThen σ(K(0)) = +\J {nω + σ(H)}9
Ot ut n — — oo

so that all eigenvalues of H appear as embedded eigenvalues in
For μφO small enough these eigenvalues turn into resonances of K(μ\
and hence of (1.3), in the standard sense of dilation analyticity. More precisely: if

then K(θ,μ) is a holomorphic family of operators in JΓ for |Imθ|<f σess(K(θ,μ))
+ 00

= (j {nω + e~2θl&+}ι for Im^φO, K(Θ,Q) admits all points of σp(K(0)) as

isolated eigenvalues, and any such eigenvalue is stable for μ>0 small. The
eigenvalues of K(Θ9 μ) are independent of θ, and for almost every ω have strictly
negative imaginary part if Im$<0.

(4) Let λ19λ2 be isolated, simple eigenvalues of H=— A + V, λί—λ2=±ω,
Sip

with eigenvectors φ19φ2. Then the solution U(t,θ;μ)φί of H(t, θ, μ)ψ = i — — with
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initial state φί oscillates in time between the two states φί9φ2 whose energy
difference is ±ω. This "classical resonance" phenomenon displays the "photon"
property of the electric field.

If now F=(x2 + x2 + x2Γ1 / 2ΞΞ(χ2 + χ2)~1/2, we see that

V(eθxί+μω~2cosωt,eθXι), θ = iφ,

is singular for xί = — (ω~2μcosωί)cos(/>, |xj = |(ω~2μcosωί)sin(/>|. This repre-
sents a circle of square-root branch points. Therefore the critical assumption that
V(eθxί -f-ω~2cosωί, Λc±) extends for all t to a holomorphic family of compact
operators from #2(IR3) to L2(IR3) in some strip |Imθ|<α,α>0, is not fulfilled by
the Coulomb potential. We will sidestep this difficulty by means of a method, the
exterior complex scaling, introduced by Simon [9] to overcome the very same
problem arising in the attempt of defining molecular resonances in the Born-
Oppenheimer approximation. Motivated by the fact that the above singularities
are confined within a bounded sphere, the exterior scaling transformation on a
function /eL2(IR3) replaces the unitary dilation (S(θ)f) (x) = e3θl2f(eθx)9 θeR, by
the following unitary map :

(S(θ, R)f) (x) = [det3S(θ, R)x/dx] 1/2f(S(θ, R)x) , (1.4)

where R>Q is fixed, x = x/|x|, and

Therefore the following conditions on the potential V(x) will be assumed: (We
always take |μ|^Sl and M^Γ"1 for some Γ>0.)

Al. There areR>Q,a> 0, such that the function θ-> V(S(Θ, R)x + μE\ E = (1, 0, 0), is
0 C0(\x\^. Revalued holomorphic function of θ in Cfl = {θeC: |Imθ|<α} for any
fixed μ, and a continuous function of μ for any fixed θ.

Here C0(\x\^.R) is the set of all continuous functions from {x: |x |^K} to C,

vanishing as |x|->oo. /Note that Al implies

sup I V(S(Θ, R)x + μω~ 2 cosωtE)\ e L°°(|x| ̂  R)
t

and lim sup | V(S(Θ, R)x + μω~2 cosωtE)\ = 0 uniformly on compacts with respect
|x|->oo t

to CM).)

A2. Let χ(R) be the characteristic function of the ball \x\ :g R. Then:

sup |χ(JR)F(x1+ρ,x1)|1/2eL9

J 3<^f^oo.

A3. There exists a function B(x) > 0 such that the following conditions are satisfied:
(i) For some 3<^oo, B(x)eLq(\x\^R) and BeC0(\x\^R).

(ii) sup \V(S(Θ,R)x-\-ρE)\1/2^B(x) for all xeIR3 and
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(iii) B(xΓ1V(S(θ9R)x + μω"2cosωtE)112 is a C(TJ®C0(\x\^ Revalued analyt-
ic function of θe(Ea.

(iv) lim || \V(S(θ,R)x + μω~2cosωtE)1/2-

A4. The function t-+(—Δ + l)~1/2F(x + μω~2cosωfE)(-zl-h 1)~1/2, taking values
in B(L2) by Ai and A2 above, is strongly differentiate in f >0.

It is easy to check that the Coulomb potential fulfills the above assumptions.
In the subsequent sections we will explicitly realize the holomorphic families

associated with K(0) and K(μ) through the analytic continuation of their unitary
image under the exterior scaling. This cannot be obtained through a straightfor-
ward generalization of the arguments of [12] essentially because V is too singular
and the operator family — S(Θ,R)AS(Θ,R)~1, the exterior complex-scaled Laplace
operator, is not normal for ImθφO. The main technique will consist in working
out Kato's type estimates [2] with - A replaced by - S(Θ9 R)AS(Θ9 R)~\so that the
arguments of [13] can be generalized to this particular non-selfadjoint case.

In this way we will be able to extend to the present situation, beyond (2) and (3)
above, the existence result for resonances. Furthermore we will see in Sect. 5 that
under an additional condition described there which is also satisfied by the
Coulomb potentials the imaginary part of the resonance is given by the Fermi
Golden Rule to second order perturbation theory. In particular this implies that
the width of such resonances does not vanish for almost all ω and sufficiently
small μ.

However, we were not able to prove in the present context the validity of the
"photon property" recalled in (4) above. Here the main difficulty comes from the
lack of an existence theorem for the time-dependent complex-scaled Schroedinger
equations with potentials as singular as the Coulomb potential.

The reader is referred to [12] for all notations not explicitly recalled in this
paper.

2. Exterior Complex Scaling

We collect in this section some results on the theory of exterior complex scaling
introduced by Simon [9], strictly necessary in what follows. The reader is referred
to [10] for a complete treatment.

Let us denote by x = (x19 x2, x3), the generic point in IR3; r = |x|
= (x2 + x\ + x2)1/2 is its length, and x = x/\x\ its angular vector. For R g; 0 we define
a one-parameter group of exterior scaling transformations S(Θ,R\ θeIR, by

<2 »
This group has a natural unitary representation S(Θ,R) on 3? = L2(IR3), given by

(S(θ, R)f)(x) = [det dS(θ, R)x/dx] 1/2f(S(θ, R)x) , (2.2)

where, as is easily checked

(2.3)
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Let H0 be the unique self-adjoint extension of — A defined on C^(1R3). We define
the exterior scaled free Hamiltonian H0 in the following way :

H0(θ, R) = S(Θ9 R)H0S(Θ, RΓ1, 0eR. (2.4)

2.1. Proposition. Let 0EIR and R>0. Then

and ]imf_(rx) = e-θl2limf+(rx), (2.5)

Λ rl

lim — (r/_(rx)) = e-3β/2lim — (r/+(r
r t « Or rlR Or

and for feD(H0(θ,R))
1 x2-(S(θ,R)x)2e-2θ

H0(θ,R)f(x) = -Δf_(x)®^-e-2θΔf+(x)-

ι - A A _ y *
|vι PUJ AJ -^j

(S(θ,R)x) 2

Here the limits are taken in L2(S2\ S2 the unit sphere in IR3.

To prove Proposition 2.1 and for later convenience we introduced a unitary
transformation φ from L2(IR3) to L2(IR+,L2(S2),dr), defined by

Of(r,ω) = rf(rω)9 r^O, ωεS2. (2.7)

As is well known, & is the transformation into polar coordinates and

where A is the Laplace-Beltrami operator in S2. By a simple computation we see
that

and

^J_ + Λj_
dτ2 r2

&H0(θ,R)&-ίf(r,ω)=\
0<r<R,
-

Λf- R>r
(2.10)

Proposition 2.1 can be proved by using (2.8)-(2.10) and the change of variables. We
omit the details. Π

Hereafter R > 0 is fixed and we shall often omit the dependence on .R in the
following expressions. We assume |α|<π/4 in what follows.

Now we wish to extend the variable θ in the complex plane in such a way that
H0(Θ,R) represents a holomorphic family of operators in θ. For
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0e(Cfl = {0: \Imθ\<a}> we define a quadratic form Q(θ) as:

(2.11)

Q(θ)(f,g)= f
\x\Z

+ dr
R S2 dr dr

(2.12)

To simplify the notation, we write Ω_ = {\x\<R}, Ω + ={\x\>R}, and

where the positive branch is taken for 06 R

2.2. Proposition. (1) // 0eIR, Q(θ) is the quadratic form associated with the self-
adjoint operator H0(θ, R).

(2) For θe&a, Q(θ) is a closed, strictly sectorial form with numerical range:

θ}. (2.13)

Proof. We first show (2). Let {/J be a sequence in D(Q(Θ)) such that /„->/ in 3tf
and Q(θ)(fn — fm,fn — fm)-+Q, as n,m-^oo. Writing θ = ξ + iη, eξ(r — R) = τ, we see
that for \η\<a

ηr}-2_R2 + 2Rτcosη + τ2cos2η cos2α
τ) - =

Thus by taking the real part of Q(θ)(fn- fm, fn- fm), we obtain

and

||r-1l/^^/mjn(r,ω)||L2([^w))L2(s2Mr)-^0, /M§ Λ = /w - /„ .

From this we conclude that /„->/ both in Hί(\x\<R) and f/^lx^Λ). Since the
trace operators on the boundaries |x|=# are continuous both from H1(\x\<R)
and H1(\x\>R) to L2(|x| = R\ f satisfies the boundary condition and we have the
closedness of Q(θ).

Since

it is easy to see that the numerical range is given by (2.13).
To show (1) it is now sufficient to prove that, for f,geD(H0(θ)\ <

= β(0) (/,#). Since this represents a simple computation, integrating by parts and
using the boundary condition together with (2.10) and (2.12), we omit the
details. Π
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Now by Proposition 2.2 and a general theorem (cf. Kato [2], Theorem VI.2.1)
there exists a unique m-sectorial operator HQ(Θ, R) such that Q(θ) is its associated

quadratic form for any 0e(C* ίθ^α< — I.

2.3. Proposition. For 0eC* and #>0, the domain and the action of the operator
H0(θ, R) are given by (2.5) and (2.6), respectively.

Proof. Let us denote by 2(θ) the right hand side of (2.5), and by Γ0(0) the formal
operator in the right hand side of (2.6). Clearly 2(Θ)CD(Q(Θ)\ and by (2.10) after
integrating by parts, we get

gεD(Q0(θ)) (2 14)

Thus T0(0) with domain &(θ) is a restriction of H0(Θ9 R) (cf. ibidem Corollary
VI.2.4). Let us show that ®(0)DD(/f0(0,R)). By its construction (cf. ibidem p. 324).
feD(H0(θ9R))9 if and only if there is ueJt? such that Q(0)(/,0) = <M,0> for all

Taking #eQ(IR^ί2)cI>(β(θ)), we see that T0(θ)f = u in ^'(Ω_uΩ+). Since
Γ0(0)=-Λ for |x|<R, and, for |x|>#, T0(θ) is uniformly strongly elliptic with
coefficients converging to constants such that T0(θ)~ — e~2θA at infinity, by the
elliptic regularity theorem near the boundary and at infinity (see e.g. Mizohata [6],
pp. 213 and 222), feH2(\x\>R)®H2(\x <R). Now using (2.10) once more with
geCco(\x\^R)r^Cco(\x\^R)nD(Q(θ)\ and performing a partial integration we

see that / has to satisfy the additional boundary condition lim — (rf(rx))
rϊR or

θ/2 — (rf(rx)\ Π
or

We write J(θ9x) = eθ/2(R + eθ(\x\-R))/\x\ for 0eCα. Let χ±(χ) denote the charac-
teristic function of Ω±. For θeCα and ze(C we set:

G^(z,x,y)=^^ | χ ^.Λ 2 ΛT J fx-(*)x+W(θ,y),

~" v™' 4π {(S(θ)x-

Correspondingly we define the operators

,x,^)/(y)^, etc., (2.16)
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and

GΘ(z) = G- ~(z) + G- +(z) + G; -(z) + Gθ

+ +(z). (2.17)

Here in the right hand side of (2.15), we take ]/ — z ̂ 0 for zrgO, and the positive
branch of { }1/2 for fleR (unless x = y).

Note that

+(z,x,.y)~eθ/2 ^ as \y\-+co9

— as |x|->oo, (2.18)

4π|x —
as

2.4. Proposition. Let #e(Cfl αn^ Gθ(z) be defined by (2Λ5)-(2.ΐΊ). Then for any
θe(Cfl, G0(z) is a bounded-operator valued analytic function of z in {z: — 2Im$

<argz<2π — 2Im#} on the Riemann surface of ]/ — z; for any z in the first

Riemann sheet of ]/ — z it is a bounded-operator valued analytic function of θ in the
domain {#eCα: — ^argz<Imθ<π— \ argz}.

Proof. Except for the analyticity in θ, the statements are almost obvious. However
for later convenience let us prove somewhat more detailed estimates than those
stated above when z varies along lines parallel to the real axis. We first show the
boundedness and analyticity (in z) for any fixed $eCfl

+. The case θe(C~ can be
treated in the same way, and the case 0eR is easy.

(i) Gθ~ ~(z) is ^-independent. When z ranges over the sector {z: —2Imθ<argz

<2π — 2Im0} of the Riemann surface of ]/ — z, along a line z = α + ib,b fixed, we
have

O if 6^0, (2.19)

if 6^0, for some Cα>0. (2.20)

Thus there is Mα > 0 such that, along this line :

f f '~dXdy<Ma. (2.21)
~

The analyticity in z is obvious.
(ii) Write now θ = ξ + iη, η>0, σ = x — Ry,

τ = eξ(\y\-R)y for

By the unitary equivalence, it is enough to consider the case ξ = Q. Clearly

<σ,τ>^0, (2.22)

(x — S(θ)y)2 = (σ — e'nτ)2 = σ2 — 2στ cosη + τ2 cos 2η + i(τ2 sin 2η — 2στ sin η).

(2.23)
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From (2.23) it is easy to see that

1/2^, (2.24)

and that, for any ε>0, there is Mε>0 such that, for \y\^Mε

0^-ε^arg{(;x-S(%)2}1/2^ fa>0), (2.25)

cos 2η(x -Ry- (\y\ - R)y)2 ^ \(x - S(θ)y)2\ ^(x-Ry- (\y\ - R)y)2 . (2.26)

Hence we have the estimates :

Re- j/^{(x-S(%)2}1/2^Cε>b on z = a + ιb,\y\^Mε, (2.27)

Re-]/^{(x-S(%)2}1/2^-cos2^sin(^^

on z = a + ib,b^O,\y\^Me. (2.28)

If z = a + ίb, b < 0, and z ranges only over a closed half-line not intersecting the half-

line e~26)IR+, so that f + 2ε — ?/<arg(— ]/— z)<|π — 2ε — η, an estimate analogous
to (2.28) holds with sinε in place of sin (77 — ε) in the right hand side. Combining
these estimates, we have for z = a-\-ib, αelR, fc<0, a ranging over half-lines of IR
such that z does not intersect e~2θIR :

2.s^ J dx J Cε>θ}R(l/cos2η\x-Ry-(\y\-R)y\ 2

4_r Γ A Γ A - £ > - - - ^^+ Gfi \ dx ay - -̂  - — — — - -— = - <CKfi<co.Θ cos2η\x-Ry-(\y\-R)γ\2 ~ R>θ

(iii) For Gθ

+~(z), we can apply the above estimates on the integral kernel,
interchanging the roles of x and y, to get an analogous uniform bound. We omit
the details.

(iv) Let us now consider Gθ

++(z). By unitary equivalence, it is enough to
consider the case θ = ίη, η^Q. We have:

(S(θ)x - S(θ)y)2 = e2θ(x - y)2 + 2e\l - eθ)R(x

+ (i-eθ)2R2(x-y)2 = {cos

+ 2 cosη(\x\ + \y\-2R)(l-x-y) + R2(x - y)2}

+ ί{

Using the identity

χ y), (2.30)
together with (2.29), we get:

cos2η\x-y\2^\S(θ)x-S(θ)y\2^\x-y\2, (2.31)

0 g arg((S(θ)x - S(%)2)1/2 ̂  η . (2.32)

Moreover for any ε > 0, there is Mε > 0 such that for \x — y\ > Mε

(2.33)
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By means of (2.31)-(2.33) we can see that

sup J \G^+(z,x,y)\dx^sup J
* \y\>R

+ sup J
x \χ-y\

whenever z ranges over a line z = a + ib, b ̂  0 or two half-lines z = a + ib, b < 0 taken
as in the case (ii). A similar estimate holds for sup J|Gθ

++(z, x, y)\dx, and this

proves the uniform boundedness.
(v) Finally let us prove the analyticity in θ.
The proof above shows that ||Gθ(z)|| is locally uniformly bounded in θ. Then it

suffices to show that <Gθ(z)/,g> is analytic for /,geC^(Ώ+u£2_), since the latter
space is a dense set in ffl. We show the analyticity of <G0++(z)/j.,g+>,
<G f l

+-(z)/_,0+>, <G-+(Z)/+,#_>. <Gθ--(z) /_,#_> is trivially analytic. Here

On the support of f.(y)g+(x) [respectively f+(y)g.(xj] G0

+ (z,x,y)
[respectively Gθ~

+(z,y,y)] is analytic in θ, (x,y) fixed. Using the estimates in (ii)
[respectively (iii)] we see that <Gθ

+~(z)/_,g + > [respectively <Gθ~+(z)/+,g_>] is
analytic in θ. To see the analyticity in θ of <GΘ

+ + (z)/+,# + >, let us approximate it
by an operator Gθ

+

n

+, whose kernel is given by G^π

+(z,x,y) = G0++(z,x,}>)

I (|x — y\ > ~ )' By tne estimates (iv) it is clear that <G^n

+(z)/+,#+> is analytic in θ

and it converges to <Gθ

f"+(z)/+,gf + ) locally uniformly in θ as n-^co. This
completes the proof. Π

2.5. Corollary. Let θeC* and z<£{έΓ2θIR+ - ωΊL} = {e~ 2Θ x - ωk :x>0,
Then

sup II Gθ(z + nω) \\ = C(θ, z) < + oo , (2.34)

where z + nω runs over the sector W={w : — 2Im$<argw<2π — 2lmθ} of the

Riemann surface of ]/— z.

This corollary is proved in the proof of Proposition 2.4.

2.6. Proposition. Let θeCα. Then
(1) <KH0(Θ, R)) = σess(H0(θ, R)) = e~ 2Θ^+ .
(2) // zφσ(H,(θ,R}\ (H0(θ,R)-zΓ1 = Gθ(z).

Proof. For θeIR, (1) and (2) are easy to obtain from the definition and the well

known formula (—A — z)~1f(x) = (4π)~1 j |x — yΓ1 exp(— j/— z x — y|)/(y)dy.
Thus for (z, z')<£IR, we have

Gθ(z}-Gθ(z') = Gθ(z)Gθ(zf)(z- z'), θeR. (2.35)

Since both sides of (2.35) are analytic in θ by Proposition 2.4, (2.35) holds for θ in
{θ : — ̂ argz<Imθ<π — ̂ argz}n{# : — ̂ argz /<Imθ<π — f argz'jnC^. Then,
using the same argument first for z and then for z', we see that for any <9eCα, (2.35)



Exterior Complex Scaling and the AC-Stark Effect in a Coulomb Field 287

holds for z,z'e{z: — 2Imθ<argz<2π — 2lmθ}. By a standard computation we
have that Gθ(z)fεD(H0(θ,R)) if /eC^IR3). Since, for θelR, z£IR, f,geC%QR?):

<Gθ(z)f, (H0(θ, R) - z)*gy = </, gy , (2.36)

and the left hand side is an analytic function of θ (and z), we see that for any
/e C^(IR3) and -2Imfl<argz<2π-2Im#:

(H0(θ,R)-z)Ge(z)f = f in ®'(R3). (2.37)

It follows then that (2.37) holds for all fe ffl, since H0(Θ9 R) — z is a closed operator.
This implies that G0(z)~ 1 exists and is the inverse of an operator which is of course
(H0(θ, R) - z). This proves the second statement and also that σ(H0(θ, R)) C e~ 2ΘIR+ .
Now the converse statement, e~ 2ΘIR+ D σ(H0(θ, R)\ can be easily shown by using a
sequence of trial functions, and this proves (1). Π

Let us now study some properties of the semigroup exp( + z'ίH0($, R)}, θe(C*,
generated by H0(Θ,R\ which will turn out to yield the key estimates needed in
what follows.

2.7. Lemma. Let 0e(C*. Then:
(1) +iH0(θ,R) generates a strongly continuous contraction semi-group

Q\p( + itH0(θ,R))9 t^Q,on the Hilbert space 3f = L2(R?\
(2) For θeί^, ί>0, and /eZ/nL2, exp(-iίH0(θ,R))/ can be expressed as

(2.38)

where Fθ~"(ί), etc., are the integral operators

F ϊ ~ ( t ) f ( x ) = lF;-(t,x,y)f(y)dy, etc., (2.39)
R3

whose kernels are given by:

J(y, θ)
(2.40)

exp J(x,

Similar statements hold for f <0
(3) T/zere is α constant C>0 independent of βelC*, ί>0, α^ /eL1nL2, swc/z

ί/zαί

Proof. (1) Since ίί0(θ, .R) is strictly m-sectorial with numerical range (2.13), the first
statement is a well known result from the Hille- Yosida theory of semi-groups.
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(2) The second statement can be obtained from the Laplace inversion formula
from the corresponding formulae (2.15)-(2.17) for the resolvent and
Proposition 2.6(2). Since this computation is elementary (see e.g. Kato [1, IX.1.8]),
we omit the details here.

(3) As we have computed in the proof of Proposition 2.4 [cf. (2.23) and (2.29)],
the exponents have non-positive real parts. By unitary equivalence, it is enough to
prove (2.41) for θ = iη. In this case |J(x,θ)|^l, so that

llexpίTiίHo^^/ILg^πlίD-^ll/ll j . D

2.8. Corollary. Let /,0eZ/(IR3), 2^p^oo, and denote by F and G the multipli-
cation operators by f and g in J^. Then there is Cp>0 independent of θeC^, ί>0,
such that

\\Fexp( + itH0(θ,R))G\\^Cp\tΓ^\\f\\p\\g\\p. (2.42)

Moreover if f and g have compact support, Fexp( + itHQ(θ, R))G is norm continuous
in f>0.

Proof. The first statement follows from (1), (3) of Lemma 2.7 and a well known
interpolation argument (see Kato [2]). The second statement is obvious. Π

2.9. Corollary. Let /,#eLp(IR3)nLg(IR3), 2^p<3<q^ oo. Then

lim \\F(HQ(θ,R)-λ + i)~lG\\=Q (2.43)

uniformly with respect to θefc^.

Proof. We write :

F(H0(Θ, R) - λ + ί) -1G - + ί ϊ Fe+ ίtHo(θ'R) ± ίλt ^Gάt. (2.44)
o

Let us now decompose the integral in the right hand side of (2.44) as

ε oo

J Fexp( + if#0(θ,JR)±Uί-f)GWί.

Using Corollary 2.8, it is enough to show that for any ε>0 the second term
vanishes in norm as \λ\ -> oo uniformly with respect to θ. By a standard approxima-
tion argument, we may assume /,0eC^(IR3).

In this case a simple computation shows that

Since we can regard the integral as a Riemann integral in B(3?\ by the Riemann-
Lebesgue lemma, we have (2.43). Π

2.10. Lemma. (1) Let VεL2 + L™. Then for any #e€α, V(H0(θ,R)-zΓ\
zφσ(H0(θ,R)), is a compact-operator valued analytic function of z.

(2) Let V=V^ + V2 be such that suppJ^cΩ,, V^L\ 3<^oo, and F2eL°°
with |K2(x)|->0 as \x\-^oo. Then for fleC*, V(HQ(θ,R}-λ + ί)~lV and
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V(H0(θ,R)-λ + i)~1 are analytic in θ and

lim | |K(H 0(θ,Λ)-ATiΓΊl= lim \\V(H0(θ,R)-λ + ίΓ1V\\ = 0, (2.45)
λ-> ±00 λ-> ± oo

sup sup(||7(/ί0(θ,Λ)-λq:ί)-1m + linίίo(β,Λ)-λ :;i)~1ll)<oo. (2.46)
θe<Γ± AelR

Proo/. (1) Since D(H0(θ,R))CH2(Ω_)@H2(Ω+\ and the image of the unit ball in
H2(Ω±) under V is a compact subset of L2(Ω±\ the first statement is obvious.

(2) Let us first assume V2 has compact support. In this case the second = of
(2.45) follows from Corollary 2.9. When θeR, H0(Θ,R) is self-adjoint and

When

and

Furthermore with θ = ξ + ia, we have by (2.26)-2.28) :

-#j^^^

J<RO<eίJ_R}<^
I F M I 2 e x n f — Γ I Y — v\2} IFίΎΪI 2

ί* 7 r 7 I ι \ x l Jr v h i y\ ) c Ί c 7 I ι V x l
J " r*s\c\ O /^l -vr i;|2 J J I-v^ Λ » | 2>~y\

< + oo . (2.47)

Thus we have

sup sup II V(H0(Θ9 R) - λ - ί)": || < + oo . (2.48)
Imθ = 0 o r α ΛeIR

By this and (2.45), when θeIR, we have (2.45) for any θeCα by Hadamard's three
lines theorem (see e.g. [7], Sect. IX.4), since V(H0(θ9R) — λ—i)~1 is clearly analytic
in θ for O^Imfl^α. To obtain (2.45), (2.46) for general F, we split V=Vl + V2 with
V1 of compact support and | |F2 | |0 0<ε for any ε>0, and apply the result for
potentials of compact support.

Finally we prove the analyticity in θ of V(H0(θ,R)-λ-iΓ1V. By
Proposition 2.4, it is enough to show that Vl GQ + (λ + i) V2 and F2Gθ

+~(/l + ι)J/ι are
analytic. By (2.47) and an analogous estimate for ||GΘ

+"(1 + 0^11, it suffices to
show that, for feC£(Ω+) and f_εC%(Ω_\ <K1Ge

h"(A + i)Fi/_,/+> and
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< Fx G0~ + (A + ί)F2 /+,/_> are analytic, and this can be proved as in
Proposition 2.4. Π

Remark. 1. As the proof clearly implies, if we assume only FeL2 + L°° in (1) and
F2eZ,°° in (2) without requiring F2(x)->0 as |x|->oo, the same results in
Lemma 2.10 remain true except the compactness. This extends the estimates in the
proof of Proposition 2.4.

2. The severe condition V1eLq, 3<q^ oo in Lemma 2.10 is required to obtain
estimates which are uniform in

2.11. Lemma. Let θε(C* and FeZ/ with 2^p and suppFCΏ_. Then there exists a
constant Cp θ R such that for ί>0,

ir 3 / P ) l l^ l l p . (2.49)

Proof. We prove the lemma for the upper signs only. Since suppFcΩ_,
Vexp(-itH0(θ,R)) = VFό-(t)+VFβ+(t). Since χ_eLq for any q9 we have by
Corollary 2.8 that

ίΓ3/p (2.50)

By (2.23), we see that

| |F-WII 2 ^| |/U 2 , (2.51)

and

\\F-+(m^C9tRΓ*l2\\πv(- (2-52)

Interpolating (2.51) and (2.52), we have ||FF"+(ί)||^Q>Λr3/2p||F||p. This and
(2.50) obviously imply (2.49). Π

3. Unitary Propagators and Coupled Hamiltonians

Let us denote by F(ί, x, θ, μ) the exterior complex scaled potential with translation :

ί

In this and next section 0<ω is fixed and jR>0 is taken in such a way that
R>2ω~2. The positive branch of the square root is taken for $eR Note that for
f,gεD(H0(θ,R))cH1(Ω_)®H1(Ω+), (V(t,x,θ,μ)f,gy^ is a C1 function of ί. Thus,
applying Kysinski's theorem [4], we have the following result : write

and let .̂ (θ) be its dual space, «^1(θ)CL2CJf_1(θ) = «^1(θ)*. V(t,θ,μ) is the
multiplication operator by F(f,x,θ,μ), and H(t9θ,μ) = H0(θ,R)+V(t,θ,μ) with
domain D(H0(Θ9R)).

Clearly H(t,θ9μ) is self-adjoint for

3.1. Theorem. The equation

i^=H(t9θ9μ)9 βeR (3.2)
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generates a propagator {U(t,s;θ,μ)} enjoying the following properties:
(1) U ( t 9 s ; θ 9 μ ) is a unitary operator and is strongly continuous in (ί,s).
(2) U(t9 t;θ9μ = t, U(t, s',θ,μ) U(s, r;θ,μ)= U(t, r;θ,μ) and U(t + 2π/ω, s + 2π/ω

θ 9 μ ) = U ( t 9 s ' 9 θ 9 μ ) .
(3) U(t9s\θ9μ)^(θ)C^(θ) and, for /e^(0), U(t9s;θ,μ)f is strongly differ-

entiable in (f,s) as an ffl_l(θ}-valueά function. Moreover

-i^U(t9s 9 θ 9 μ ) f = U ( t 9 s ' 9 θ 9 μ ) H ( s 9 θ 9 μ ) f .

(4) S(θf) U(t9s 9 θ, μ) S(θf) ~ 1 = U(t9 s θ + θ', μ), ff e R

For the proof of this theorem, see Kysinski [4] or Simon [8]. The statement (4)
follows from the uniqueness of the propagator. Π

According to the program discussed in the introduction, we now wish to
analyze the spectrum of the Floquet operator through the operator defined on a
new Hubert space Jf = L2(TJ(χ)L2(IR3), Tω = K/(2π/ω)Z. For θeC* and σ^O, we
define a one-parameter family of operators {^0(σ, θ)} on Jf by

(Φ0(σ, θ)/)(ί) = exp( + iσH0(θ9 R)) f(t - σ), /e Jf . (3.3)

We also define, for θelR, μ^O, and σeIR

) - t/(ί, ί- σ, θ, μ) /(f- σ), /e JΓ . (3.4)

3.2. Lemma. (1) ̂ 0(σ, θ) w a strongly continuous contraction semi-group on Jf . //
θelR, iί is a unitary group.

(2) For ΘelR, {^(σ, #,μ), σeIR} is α strongly continuous unitary group.

Lemma 3.2 is obvious by the definition of the operator and the properties of
exp(Tiίfl0(θ,R))and U ( t 9 s ; θ 9 μ ) .

We denote the generators of *0(σ,θ) and <%(σ9θ,μ) by K0(θ) and K(θ9μ)
respectively :

(3.5)

(3.6)

By Lemma 3.2, K0(θ) is self-adjoint for θelR and so is K(θ9μ)'9for
is maximal accretive.

Let now A(t9 x, θ, μ) = V(t9 x9 θ, μ)l/2 with the usual choice of the branch, and let
A(θ, μ) be the multiplication operator on JΓ by the function A(t, x, θ, μ).

3.3. Lemma. Let @ = H\Tj®L\lR3)nL2(Tω)(S)D(H0(θ,R)). Then K0(θ) is the

closure in Jf of —i-^~ +H0(Θ,R) defined on 3). Moreover for any θe(Ca

+ 00

σ(K0(θ))= U («ω + e-2"IR+). (3.7)
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Proof. Note first that 3) is dense and <%0(σ,θ) invariant. For fe@ we have

i-f- Φ0(σ, θ) /(ί))^ o - ( - 4 + H0(0, X)) /(ί) .
ασ \ ot I

Thus ̂  is a core of X0(0) and X0(θ) = - i— + JΪ0(0, Λ) on @>. This implies the first

statement.

By Fourier transforming with respect to ί, we have — z — + K0(θ) f(t) = ̂ t~
 1(nω

+ H0(θ9R)(&tf)(n) for /e®. Thus £0(0) is unitarily equivalent to

0 (nω + H0(θ,R)) on 0 Jf and (3.7) follows from Corollary 2.5 and
n= — oo n= — oo

Proposition 2.6. Π

3.4. Lemma. Let 0e(Cα and zφσ(K0(θ)). Then
(1) ^4(05μ)(X0(0) — z)"1 z's a compact-operator valued analytic function of (Θ9z).
(2) A(Θ9 μ)(K0(θ) — z)'1 A(Θ9 μ) is a compact-operator valued analytic function of

(3) For any

\\A(θ,μ)(K0(θ)-zΓ1A(θ,μ)\\->Q as ±Imz^oo. (3.8)

Proof. Let D be a compact subset of (Cfl and F a compact subset of P) ρ(K0(0)). It
θe£)

is enough to prove the lemma for (#, z)eDxF. Since A(θ, μ)B~l and J3~ 1yl(θ, μ) are
^(JΓ)- valued analytic functions of θ by A 4, it suffices to show the lemma with
A(θ, μ) replaced by B. By Fourier transforming :

-zΓl, (3.9)

,-z)-iB. (3.10)
» = — oo

By Lemma 2.10 and the resolvent equation, we see that \\B(H0(θ,R) + nω — z)~l\\
and \\B(HQ(θ,R) + nω-zΓlB\\ are uniformly bounded in θeD, zeF, neZ. Since
each term B(H0(θ9R) + nω — z)~l and B(H0(θ9R) + nω — z)~ίB is analytic as it was
shown in Lemma 2.10, we have the analyticity of the right hand side of
(3.9) and (3.10). Furthermore since both ||B(fί0(θ,JR) + nω + i)~ 1 | l and
\\B(H0(θ,R) + nω + i)~1\\ converge to zero as w-> ± oo for any fixed z, the left hand
side of (3.9) and (3.10) are compact operators. This proves (1) and (2).

Statement (3) can be proved as in Lemma 2.10 since sup\\B(HQ(θ9R)
+ nω — z)~15||->0, as ±Imz-»oo by a formula analogous to (2.44). We omit the
details. Π

For a later use we present a stronger version of Lemma 3.4 for

3.5. Lemma. Suppose that for j =1,2 Wj(t9 •) ( respectively Xj(t9 •)) is an LP(Ω_)-
valued (respectively ^(Ω^-valued) bounded function of te Tω with 3 <p. Let Ύ be
the multiplication operator by the function Wj(t,x)+Xj(t,x). Then for each
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zeC1 and #>0, Y1(K0(θ)-z)~1Y2 and Y^K^-z)'1 are bounded operators on
JΓ, and there exists a constant Cp independent of W and Xj such that

+ sup||Z1(ί, .)ll^ = C/1>p, (3.11)

(3.12)

Here, of course, W.(t,x)-\-X .(t,x] is the function which is equal to W (t,x) for xeΩ_
andXj(t,x) for xeΩ+.

Proof. Since 1 =χ_(x) + χ+(x) and χ_el/* for any 0<g^ oo, it suffices to prove the
estimate (3.12). By the Laplace transform we have for /eC°°(Tω, C^(R3)), writing
as Yj(t) etc., the multiplication operators by the functions Yj(t, x) etc.,

= i j Y1(t)eίσz-ίσHo(θ>R}Y2(t-σ)f(t-σ)dσ (zGC+,0eC f l

+). (3.13)
o

Hence by Corollary 2.8, Lemma 2.11 and its adjoint statement, we have
2π/ω

\Y1(K0(θ)-zΓ1Y2f\\ί= J * J Y1(t)eiσz~iσHo(θtR)Y2(t-θ)f(t-θ)dσ
o

2π/α> foo

, ί dt f ,
o lo

o lo

e-σ\lmz\σ-3/pdσ

By the density argument this completes the proof of the lemma for the upper signs.
For the lower signs the proof is similar. Π

By Lemma 3.4, and by the analytic Fredholm theorem, the function

is a meromorphic function of θ and z (separately) taking values in β(Jf). Then by
the proof of Lemma 3.3 of Yajima [13], we have the following result whose proof
we omit because the argument is exactly the same:

3.6. Lemma. Let θeR Then for ImzφO:

(3.15)
Now as a ^(JΓ)-valued function, the right hand side of (3.15) has a meromor-

phic continuation to C^ and zφσ(KQ(θ}\ We denote by L(θ,μ,z) the right hand
side of (3.15), continued in this way.
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3.7. Lemma. Let L(θ, μ, z) be as above. Then
(1) L(θ, μ, z) - UΘ9 μ, z') = (z- z')L(θ, μ, z)L(θ, μ, z'}.
(2) KerL(0,μ,z) = {0} if z is not a pole of Q(θ,μ,z).

Proof. (1) can be shown as in Proposition 2.6. We omit the details.
(2) Let L(0,μ,z)/ = 0, and write A(θ9μ)(KQ(θ)-zΓ1f = g.
By the definition of L(θ, μ, z), we see that

0 = g-A(θ,μ)(KQ(θ)-zΓ1A(θ,μ)Q(θ,μ,z)g = Q(θ,μ,Z)g.

Since z is not at the pole, this implies g = 0, which in turn implies (KQ(Θ) — z ) ~ 1 f = Q
by (3.15): L(θ, μ, z) / - 0. Therefore / = 0. Π_

By Lemma 3.6, we find that for any θeC* and μ^O, there exists a closed
operator, denoted again by K(θ, μ), such that

(K(θ9μ)-zΓ1=L(θ,μ9z)9θe<CΪ9ze

3.8. Corollary. (K(θ9μ) — z)"1 is a meromorphic function of θeC* and zeρ(K0(ΘJ).

Formally we see that K(Θ9 μ)=-i— + H0(Θ9 R) + V(Θ9 μ).

To conclude this section we recall a result which connects the spectral

properties of the Floquet operator 17 h s, 5 Θ9 μ and of J£(0, μ),
\ ω /

3.9. Lemma. Let θeR απrf let Ws(θ,μ) be the operator in JΓ defined as

W 8 ( θ , μ ) f ( t ) = U ( t 9 s ; θ 9 μ ) f ( t ) 9

extended by periodicity to all t. %s(θ, μ) is a unitary operator in JΓ and

(1) Va(θ9μ)(ί®u(s+^9s;θ,ιλfa

(2) If fεtf is an eigenvector of K(θ, μ) with eigenvalue λ : K(Θ9 μ)f = λf, then f
is an J^ -valued continuous function of te Tω, and

(3) // φeffl is an eigenvector of U\s-\ -- ,s,θ,μ\ with eigenvalue
\ ω

exp —iλ\ — ) ) , then
V \ ω / /

-oo<ί<oo,

belongs to D(K(Θ, μ)) and /5 an eigenvector of K(Θ9 μ) wi'ί/i eigenvalue λ :

K(θ9μ)f = λf.

Since the proof is identical to Proposition 2.9 of [12], we omit it here.
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4. Existence of Resonances

Let us now investigate the spectrum of K(θ,μ) for θeC* by perturbation theory.
We first locate the spectrum of K(Θ9 0). To this end, we need the following lemma.
Let us denote

and let W(θ) be the multiplication operator by W(x9 0) in 3tf.

4.1. Lemma. Let W(θ) be as above, and let H(Θ) = H0(Θ,R)+W(Θ) with domain
D(H0(Θ9R)). Then

(1) The operator family H(θ) is a self-adjoint holomorphic family of m-sectorial
operators.

(2) σ,M(H(θ)) = σm(H0(θ9R)) = e-2θR+9 σd(H(θ)) = σ(H(θ))\σess(H(θ)) is con-
tained in the union of σd(H(θ))π1& = σd(H) and {zeC : +2Imθ< ±argz<0},

(3) σd(H(θ)) is independent of (Θ,R) and σs.
(4) Let φ, \p be exterior dilation analytic vectors (i.e. S(θ)φ and S(θ)ψ are the

restriction to 0eIR of analytic vector-valued functions of θε(Ca). Then the scalar
product

fφtψ(z) = <φ9(H-zΓ1Ψ>9 (4.2)

which is a priori meromorphic in 0 < argz < 2π, has a meromorphic continuation to the
sector —2a< argz < 2π + 2a. The set of the poles {z : fφt ψ(z) has a pole at z for some
(φ,ψ)} coincides with σd(H(θ)}.

Proof. Since the arguments are very close to the Aguilar-Balslev-Combes ones (see
e.g. [7, Sect. XIII. 10]) we shall be very sketchy. Writing

θ}-zTl, (4.3)

by Proposition 2.4, Proposition 2.6, and Lemma 2.10, we see that (H(θ) — z)~1 is a
holomorphic family. Since the second term in the right hand side of (4.3) is a
compact operator, (2) follows from WeyPs theorem and the Aguilar-Balslev-
Combes argument. Statements (3) and (4) are also consequences of standard
complex scaling arguments. We omit the details. Π

4.2. Lemma. Let K(θ9μ) be defined as in Sect. 3, and let K(Θ) = K(Θ90). Then:
(1) K(θ) is a holomorphic family of operators for ΘE^.
(2) K(θ) is a unitarily equivalent to the direct sum

+00 +00

0 (nω + H(θ)) on 0 # . (4.4)
M = ~ O O n— — oo

(3) σessM)= +J (nω + e-2β^+); σd(K(θ)}= +J {nω + σd(H(θ))},

σd(K(ΘJ) is independent of θ.
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Proof. By Corollary 3.7, K(θ) is a holomorphic family in θeC^, since

+ 00

This proves (1). By Fourier transforming and regarding £2(7L)®3f= φ J f,
n = — oo

we see by (3.15) that

(K(θ)-zΓ1 = 0 ((tfo

= 0
n= — oo

This proves (2). By (4.4) and the fact that, for any z<£έΓ2θIR+,

as Π-+00 by Lemma 2.10, we see that

σ(K(θ))= +(J (nω + σ(H(θ)). (4.5)
n = — oo

Statement (3) obviously follows from (4.5). Q

It is not difficult to locate the essential spectrum of K(θ, μ).

4.3. Theorem. Let 0e(Cβ. Then for any O^μgl,

+ 2θR+}. (4.6)

Proof. This follows from Lemma 3.4, (3.15) and WeyΓs theorem. Π

4.4. Theorem. LetO^μ^l. Then
(1) ^lim^^^^-z)-1-^^^)-^-1, ξeR, zeC*.

ε j O

(2) // φ, ψ are t®S(θ) analytic vectors in Jf, then the scalar products

which are holomorphic functions of z in ̂  can be continued respectively from the
upper and lower half-plane into the other one as meromorphic functions of z in

Alt ! (e"2θR+ + nωn (f°r each fiχed θ)-
\ [n= -oo )

Proof. By the equation

(K(θ9μ)-z + zfΓi= Σ (z-zΎ(K(θ,μ)-zTn~1,
n = 0

and a connectedness argument, it is enough to show (1) for z=±iη, η>Q large
enough. We prove it for the + case only. By (3.9), (3.10), Lemma 2. 10 and
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Proposition 2.4, we see that B(x)(KQ(θ)-z)~1

9 B(x)(K0(θ)-z)~1B(xl as well as
(K0(θ) — z)"1 are strongly continuous as θ^ξ(z = ίη). Therefore by (3.15) and the
obvious remark that A(θ,μ)B~1 and B~1A(θ9μ) are strongly continuous we have

W
To prove (2), we write: φe = (ί®S(θ))φ9 ψθ = (ί®S(θ))ψ9 and

fφ^θ) = ̂ K(θ,μ)-zΓ1Φe,Ψθ>^ θεC^zeC*. (4.7)

For zeC1, this is an analytic function of 0eC*5 and by (1) we have
Since S(ξ\ £6R, is unitary, fφtψ(z,θ) is

0-independent : fφ φ(z, θ) = fφ> ψ(z). Now the right hand side of (4.7) can be
continued into the complement of the lower half-plane with respect to

IJ {nω + e~2θl&+} as a meromorphic function of z. (Note that, as a function of
n= — oo

z, the choice of the branch depends on θ.) Π
To prove the final theorem of this section, we recall that, by Assumption A 3(2),

for any θe<La we have:

Hence, repeating the proof of Lemma 3.4, we obtain

4.5. Lemma. Let θeC*. Then for any zeC1

Proof. By the proof of Lemma 3.4, we have, asμ->0:

\\A(θ9μ)(K0(θ)-zΓ1-A(θ90)(K0(θ)-zΓ1\

and similarly

\\A(θ9μ)(K0(θ)-zΓ1A(θ9μ)-A(θ90)(K0(θ)-zΓ1A^^^^

Combining this with (3.15) we have the lemma. Π

4.6. Theorem. Let θe(L^. Then there is μ>0 such that for all μ<μ,

\

+00
IJ {nω + e~2θ1&+} with possible

n= — oo
accumulation points {nω,ne%}.

(2) σd(K(θ, μ)) is θ-ίnvarίant.
(3) σd(K(σ, μ)) φ 0. More precisely, if λ is an eigenvalue of H with multiplicity

m(λ), let ^ + n1ω, . . . , Λ , + nkω foe ί/iβ eigenvalues of H which differ from λ by integer
multiplies of ω, and let m^(λ\ ...,mk(λ) be their multiplicities. Let N(λ)

Then for all μ<μ there are exactly N(λ) eigenvalues A1(μ), ...,λN(μ) (counted
according their algebraic multiplicity) of K(θ, μ\ such that

) = λ, k=!9...9N.
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The proof is a direct consequence of standard arguments of perturbation
theory given the results obtained above and is therefore omitted.

5. Resonances and Perturbation Theory

Our purpose in this section is the justification, to the lowest non-vanishing order in
perturbation theory, of the Fermi Golden Rule for the resonance width under the
following additional condition on the potentials which is satisfied also by the
Coulomb one.

A5. For some #e(Cfl the following properties are satisfied:
(i) There exist 3 <prg oo and Q > 1/3 such that for \μ\^*

(ii) There exist 6/5 < q and κ>l such that for \μ\ ̂  Γ,

\\Z(θ,μ,x)\\Lg(Ω_}+\\Z(θ,μ,x)\\Lm(Ω^Cμκ,

where Z(θ, μ, x) = V(S(Θ, R)x + μE) - V(S(Θ, R)x) - μtfV/dxJWΘ, R)x).

It is not hard to check that the Coulomb potential V(x) = Z/\x\ satisfies the
assumption A 5 with any 3<p<9/2 with ρ = (6 — p)/p and 6/5<g<3/2 with

K=3-L
P
Under this condition we can prove the following theorem. To avoid un-

necessary complications, we henceforth assume, as in [12], m(λ) = 1 in Theorem 4.6
so that N(λ) = 1 for almost every ω.

5.1. Theorem. Let H=-Δ + V(x\ E(ξ) its spectral measure, H= \ξdE(ξ\ φ the
eigenfunction corresponding to the simple eigenvalue λ, Hφ = λφ. Let θe(L^ and λ(μ)
be the simple eigenvalue of K(θ, μ) such that lim λ(μ) = λ. Then there exists ε > 0 such

μ->0

that
ε). (5.1)

To establish (5.1), let us first collect some preliminary estimates under the form
of lemmas. Hereafter the parameter θe<C^ is the one taken in A 5, and we assume
θe€α

+ taken and fixed. We denote by V(θ\ T(θ,μ), F(θ)1/2, and T(θ,μ)1/2 the
multiplication operators by V(S(θ,R)x)9 T(θ,μ,x) = V(S(θ,R)x + μω~2 cosωtE)
-V(S(θ,R)x), V(S(θ,R)x)ΐl2, and T(θ,μ,x)1/2, respectively.

5.2. Lemma. Let F be a compact subset of ρ(K0(θ)). Then there exists a constant
C>0 such that for zeF,

9 (5.2)

(5.3)

(5.4)
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Proof. These estimates are obvious by Lemma 3.5, A 5 and the resolvent
equation. Π

5.3. Lemma. Let F be a compact subset of ρ(K(θ, 0)). Then for all sufficiently small
|μ|, F is also contained in ρ(K(θ,μ)). Furthermore setting R(θ,μ,z) = (K(θ,μ) — z)~1

and R0(θ9z) = (K0(θ)-zΓ1, we have

+ R(θ, 0, z) 7X0, μ)1/2 - 7X0, μ)1/2 R(θ, 0, z) T(θ, μ)1/2 - T(0, μ)1/2 R(θ, 0, z)

+ R2(θ,μ,z)9 (5.5)

w/ί/z ||K2(0,μ,z)|| ^Cμ2+ε with some ε>0 for all zeF.

Proof. By Lemma 3.5 and Lemma 3.6, we can write the following identities valid

R(θ, 0, z) - K0(0, z) - Λ0(0, z) F(θ)1/2(l + V(Θ)1/2R0(Θ, z)V(θ)l/2Γ 1 V(Θ)1I2R0(Θ, z),(5.6)

R(θ, μ, z) - R0(Θ9 z) - R0(θ, z) V(θ, μ)1'2

θ,z), (5.7)

where V(θ, μ) is the multiplication operator by the function

V(S(Θ, R)x + μω ~ 2 cos ωί£) .

By Lemma 5.2, T(θ,μ)1/2^0(θ,z)T(θ,μ)1/2, T(θ,μ)1/2^0(θ,z), and ̂ 0(
are bounded operators which satisfy (5.2)-(5.4). Hence by comparing the
Neumann expansions at large Imz, once more as an identity in J'(JΓ), we have

R(θ, μ, z) - R(θ, 0, z) - R(θ, 0, z) T(θ, μ)1/2

•(1 + lift μ)ί/2m 0, z) 7X0, μ)1/2)- : T(θ, μ) R(Θ9 0, z) . (5.8)

(This identity can be proved first for bounded F, then the general case may be
proved by an approximation argument.) Hence, through the second order
geometric expansion we obtain (5.5) with

R2(θ, μ, z) = R(θ, 0, z) 7X0, μ)1/2(T(θ, μ)ll2R(θ, 0, z) T(0, μ)1/2)2

• (1 + 7X0, μ)1/2 Λ(θ, 0, z) T(0, μ)1/2)~ λ Γ(θ, μ)1/2 R(θ, 0, z) .

By Lemma 5.2 and (5.6), this completes the proof with 2 + ε = 6ρ. Π

Proof of Theorem 5.1. Let φ(θ) = S(θ,R)φ. Then under the present conditions, we
know that φ(θ):<£a-+L2 is holomorphic and that H(θ,R)φ(θ) = λφ(θ), H(Θ9R)
= H0(Θ,R)+V(Θ). We can of course regard φ(θ) as a vector- valued holomorphic
function in jf , with K(θ90)φ(θ) = λφ(θ). Let P(θ9μ) be the projection operator on
the eigenspace of K(θ,μ) associated with λ(μ). Then by [l,p. 77],

(K(θ9μ)-λ)P(θ9μ)=-(2πί)-1S(z-λ)R(θ9μ9z)dz9 (5.9)
r

where Γ={z:\z — λ\ = η}, 0<η<d, d being the isolation distance of λ. Then by
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Lemma 5.3, denoting by S(θ) the reduced resolvent of K(θ,0) at z = λ, we have

λ(μ) _ A = Tr(X(θ, μ) - λ)P(θ, μ) = - Tr [P(θ, μ) 71(0, μ)P(θ, μ)]

- Tr [P(θ, μ) 7X0, μ)S(θ) T(Θ9 μ)P(θ9 μ) + S(θ) Ί\θ, μ)P(θ, μ) T(θ, μ)P(θ, μ)

+ P(0, μ) T(Θ9 μ)P(θ9 μ) T(fl, μ)S(0)] + 0(μ2 + ε) .

Now S(θ)P(θ,μ) = P(θ,μ)S(θ) = 0, and hence Tr[S(θ)T(θ,μ)P(θ,0)T(θ,μ)P(θ,0)
+ P(θ,0)Γ(θ,ju)P(θ,0)Γ(θ,μ)S(θ)]=0. Therefore, since P(θ,0)φ(θ) = φ(θ\ P(0,0)*'
= P(0,0), and T(θ,μ)* = T(θ,μ), we have

λ(μ) - A = < 7XΘ, μ) #0), <£(£)> - <S(0) 7X0, μ) 0(0), 71(0, μ) #0)> + 0(μ2 + ε) , (5.10)

which with (5.2) and (5.6) implies

Imλ(μ) = Im(S(θ)T(θ,μ)φ(θlT(θ,μ)φ(θ)y + 0(μ2 + £), (5.11)

because the first term in the right hand side of (5.10) is θ-independent and hence
real. Now we expand

T(Θ9 μ,x) = μω~2 cosωt - (dV/dxJ (S(0, R)xj) + Z(0, μω~ 2 cosωί, x) .

Since φ(θ)εD(H(θ,R))CH2(Ω_)®H2(Ω+)cL(Ω_)®H2(Ω+l and the assumption
A5 implies ||T(θ,μ,x)||L<r(fl _ } + ||T(0,μ,x)||Loo(β+)^Cμ as well, Lemma 3.5 implies

<S(θ)T(θ9μ)φ(θ)9T(θ9μ)φ(θ)y

= (μ/ω2)2(S(θ)(dV/dxί)(S(θ,R)x)φ(θl(dV/dx1)(S(θ,R)x)φ(^^

+ <S(0) T(0, μ)0(0), Z(0, μω~ 2 cosωί,

+ <S(0)Z(0, μω~ 2 cosωί, x)0(θ), Γ(0,

+ <S(0) Z(0, μω ~ 2 cos ωί, x) φ(θ\ Z(0, μω ~ 2 cos ωί, x)

- (μ/ω2)2 <S(0)(δ7/δx ̂ (5(0, R)x)φ(θ)9 (dV/dxJ(S(θ, R)x)φ(θ)cos2ωty

), (5.12)

whence, by the 0-independence of the inner product implied by the exterior
dilation analyticity, performing the integration over ί and repeating Simon's
standard computation ([7, Sect. XII. 6] see also [12] for further details), we obtain

lmλ(μ) = - π(μ/ω2)2(d/dξKE(ξ)(dV/dx,)(x)φ(xl

with suitably small ε>0, which also implies Im(/l(μ)<0 for almost every ω and μ
suitably small. Π
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