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Resonances for the AC-Stark Effect*

Kenji Yajima**
Department of Mathematics, Princeton University, Princeton, NJ 08544 USA

Abstract. The resonance problem for the AC-Stark effect is discussed. We
prove that all bound states of the system —(1/2)Δ + V(x) will turn into
resonances after an AC-electric field is switched on and the order of the
imaginary part of a resonance is determined by the number of the photons it
takes to ionize the bound state which is turning into the resonance if two bound
states have energy difference of the photon, there exists a state which oscillates
between the two states for a long time.

1. Introduction

Suppose that a quantum particle of mass m and charge e in a potential field V{x) is
subject to an alternating electric field μE cos ωt. Then the Schrόdinger equation for
the motion of the particle is written as

ihdu/δt = \_-{h2/2m)A + V(x) - μe Ex cos ωi]u. (1.1)

Here μ > 0 is the strength of the field, EeM3,\E\ = 1 is the direction, ω is the
frequency, h = h/2π and h is Planck's constant;

-Λ=- (d2/dx2 + d2/dx2

2 + d2/dxj).

The purpose of this paper is to study the resonances for Eq. (1.1). We shall argue that
the resonances should be defined as the poles of the resolvent of the "coupled
photon-particle Hamiltonian" —ίhd/dt — (h2/2m)A + V(x — μem~ιω~2EQOSωt)
in the second Riemann sheet and show, in particular, the following two results under
suitable conditions on V(x):

(A) For sufficiently small μ and almost all ω, all the bound states {(φj(x), — kj)}
of H = — (h2/2m)Δ + V(x) will turn into the resonances {(φj(t9x,μ),λj)} and the
imaginary part of Ay is determined as Im λj = Cj(ω)μ2n + O(μ2n+ x), Cy(co) < 0, where
n is the smallest integer such that — k2 + nhω > 0 :(φj(t,x,μ)9φj(x)) = e~iλjt/h + O(μ)
uniformly in ί^O (Theorem 3.5 and 3.6).

(B) If two bound states (φ/x), — kj) and (φf(x), — kf) of H have the energy
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difference — k2 + k2 = ± hω, then the time dependent wave function for (1.1) with
initial state φj(x) will oscillate between φj{x) and φ^x) for a long time (Theorem 3.6).
We shall employ a technique which is a synthesis of the complex scaling method of
Aguilar-Balslev-Combes ([1],[2]) and the Floquet theory ([3],[9],[21]). Here-
after we shall take the unit and coordinates such that h = m= —e=l and
E = (1,0,0) and assume 0 ^ μ ^ Ω < oo. We consider Eq. (1.1) in the Hubert space
3V = L2(M3).

Throughout the paper we assume that the potential V(x) satisfies the following
condition (An) (n = 0,l,...,oo) with sufficiently large n. Some additional assump-
tions will be made later. We write as CO(1R3) the Banach space of all continuous
functions/(x) on U3 such that/(x)->0 as |x|-»oo equipped with the norm
| |/ | | o o=sup{|/(x) | :xG[R 3}. If f(x)eC0(U3l the function f(eθx + pE) is a
C0(^3)-valued continuous function of (θ,p)eU2.

Assumption (An). (1) V(x)eC0(U3) and is a real-valued function.
(2) There exists a constant 0 < a < π/4 such that for any fixed — ω~2Ω^ρ^

ω~2Ω, the C0([R3)-valued function V(eθx + pE) of θεM1 can be extended as an
analytic function to the strip Ca = {zeC: — a < Imz < a} of the complex plane.

(3) For any fixed θeCa, the C0(R3)-valued function V(eθx + pE) of
{-ω~2Ω^p^co~2Ω) is a CM-function and (dk/dpk)V(eθx + pE) (O^k^n or
0 S k < oo in the case n = oo) is again a C0([R3)-valued analytic function of θeCa.
Typical examples of the potentials which satisfy Assumption (A^) are smeared
Coulomb or Yukawa potentials:

Although with some extra work we can accommodate some singularity for the
potential V(x) in the direction perpendicular to E, the analyticity in the E direction is
essential.

Before explaining the problem more precisely, we first make a transformation for
Eq. (1.1). Notice that if V(x) = 0, then (1.1) can be solved explicitly as

u(ί, x) - Γ(f)(exp ( - UH0) TiOy'uφ, ))(x), (1.2)

where Ho= —\Λ is the free Hamiltonian and

T(t)f(x) = exp( — iμEx sin ωt/ω

+ zμ2sin2ωt/8ω3 - iμ2t/4ω2) x f(x - μEcosωt/ω2). (1.3)

Equations (1.2) and (1.3) show that the effect of the AC-electric field on the free
particle amounts to the addition of the harmonic oscillation to the free trajectory.
Suggested by this, we define the new wave function uD(t, x) by

«(ί, )=T(ί)ιιD(ί, ).

and write Eq. (1.1) in terms of uD(t, x):

ίduD/dt = H(t, μ)uD = [ - (\)Δ + V(x -I- μω ~ 2 Ecos ωί)] uD (1.4)

(see Kitada-Yajima [14] §7). This transformation eliminates the high singularity
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of μExcosωt by introducing the oscillating potential which is more tractable. We
may apply a standard theorem (Kato [13]) to see that Eq. (1.4) generates a unitary
propagator U(t9s,μ) and the solution to the original equation (1.1) can be given as

u(t)=T(t)U(t9s9μ)T(sΓ1u(s).

Hereafter we shall discard the trivial oscillation T(ή and consider Eq. (1.4) only. We
write uD = u, H(t,μ = 0) = H and U(t,s,μ = 0) = exp( - i(t - s)H). We remark that in
the limit ω->0, Eq. (1.2) reduces to the free propagator for the DC-Stark problem
given by Avron-Herbest [24] and (1.4) to the time dependent Schrδdinger equation
for DC-Stark Hamiltonian in the moving frame:

ίdu/dt = [ - §)Δ + V(x - %

after an additional translation by \μω~2E is made at initial time.
We now explain the problem. To avoid unnecessary complexity we assume here

the potential is short range: \V(x)\ ̂  e(l + |x|)~ ι ~ε, ε > 0. When μ = 0, the solutions
to (1.4) are well understood: The spectrum σ(H) of H consists of the absolutely
continuous part σac(H) = [0, oo) and the point spectrum σp(H) = { —kj}j. The
absolutely continuous subspace Jf ac(H) for H consists of the scattering states: for
any/eJf a c ( i/) there corresponds f+eJt? such that as ±t-+ao, \\exp(—itH)f —
exp(- itH0)f+ || ->0; for each - kjeσp(H)9 the eigenfunction φj9 Hφj = - k2φp

is well-localized (see Kuroda [14] for example). If μφO, this picture is still
preserved. Considering the Floquet operator U(s + 2π/ω,s,μ), which is unitary, in
place of H, we have that σ(U{s + 2π/ω,s,μ)) = σac(U(s + 2π/ω,s,μ))vσp(U(s +
2π/ω,s,μ)); if feJ^ac(U(s-\-2π/ω,s,μ)) there corresponds f+eJ^ such that
\\U(t,s,μ)f-exp(-i(t-s)Ho)f±\\^0 as ί ^ ± c ^ ; if U(s + 2π/ω,s,μ)f =
e-i{2πlω)λf(λeUl U{t,s,μ)f = e-i{t-s)λf(t) with/(ί) periodic in ί, and U(t,s,μ)f
stays essentially in a bounded region of the configuration space for all time
(Yajima [21], Howland [9] and Kitada-Yajima [14]). We believe, however, that
these bound states are in fact absent and that after the field is switched on the
eigenvalue — kj of the unperturbed operator will disappear forming a resonance pole
λj in the unphysical sheet of the complex plane. Correspondingly, although U(t, 0, μ)
φj will be eventually free as t -> oo, it behaves like a bound state for a long time. It is
also believed from the analogy from classical mechanics, that there is a resonance
phenomenon between two states whose difference of energies is exactly equal to
nhω, exibiting the "photon property" of the electro-magnetic field (see Landau-
Lifshitz [16], also Sargent-Scully [18]). Our subject here is to provide a sound
mathematical justification to these phenomena.

It should be clear from the above argument that the problem is virtually
equivalent to the spectral problem for the Floquet operator U(s+ 2π/ω,s,μ)
associated with Eq. (1.4). According to the Floquet theory ([3]), the spectral
property of U(s + 2π/α>, 5, μ) can be studied by means of the operator — id/dt 4-
H(t,μ) with periodic boundary condition. Thus we introduce the new Hubert
space Jf = L 2 ( T J ® Jίf, T ω = R/(2π/ω)Z is the circle, and the selfadjoint operator
K(μ) = — id/dt + H(t, μ) there. (The Hubert space of space-time variables and the
operator — id/dt+ H(t) were first used by Howland in the quantum scattering
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theory [8].) The unitary group generated by K(μ) is given as

exp( - iσK(μ))f(ή = U(t, t - σ, μ)f(t - σ),/e Jf, - oo < σ < oo,

and the spectral equivalence of K(μ) and (7(5 + 2π/ω, 5, μ) is described as follows: If
°US is the unitary operator on JΓ defined as

(%J)(t) = U(t9 s, μ)f(t) for s < t ^ s + 2π/ω. (1.5)

and extended by periodicity elsewhere, then for all 5,

exp ( - i(2π/ω)K{μ)) = Ws{ί ® U(s + 2π/ω, 5, μ))<%*. (1.6)

Furthermore if K(μ)φ(t) = λφ(t), then φ(ή is J»f-valued continuous function and
U(tAμ)Φ(O) = e-iλtφ(t), and conversely if U(2π/ωAμ)Φo=e~iλ{2π/ω)Φo> then
φ(ί) = eίλtU{t, 0)φ0 is the eigenfunction of K(μ) with eigenvalue A (see Lemma 2.9).
Here K(μ) is unitarily equivalent to the original — id/dt — (^)A + V(x) + μExcosωt
(modulo the energy shift by — μ2/4ω2) via the transformation T(t) which is obtained
from T(t) by eliminating — itμ2/4ω2 in (1.3), and it may be interpreted as the

'photon-particle' Hamiltonian: Jf = ® ({eiωnt} ® Jtf) and <e t o

n = — oo

regarded as the (rc-photon) + (particle) state space and — id/dt the photon energy
operator. We shall take this point of view in what follows.

If μ = 0, X(μ = 0) = - id/dt + H has the spectrum σ(K(0)) = \J {n + σ{H)}
n — — oo

and all the eigenvalues of K(0) are embedded in the continuum. If μ ψ 0, we expect
these eigenvalues will dissolve into the continuum. This dissolution of the bound
states and the appearance of the resonances are best described by means of the
complex scaling technique ([1],[2]). For θeCa, we define the operators on J f

H0(θ) = e~2θH0, (1.7)

H(t, 0, μ) = H0(θ) + V{eθx + μω~2Ecos ωt), H(θ) = H(t, θ,μ = O), (1.8)

and the operators on Jf

K0{θ) =* - id/dt + H0(θ), K{θ, μ)=- id/dt + H(ί, θ, μ). (1.9)

When μ = 0, σ(K(θ,μ = 0))= Q [{nω + σp(H(θ))} u{nω + β" 2 θR + }]9 and by
n = — oo

the dilation analytic theory for H(θ\ σp(H(θ))nU = σp(H) is θ-independent (see
Prop. 2.1 and Lemma 2.7). Since the perturbation V(eθx + μω~2Ecos ωt) is K(θ, 0)-

00

compact (Lemma 2.8), the essential spectrum σQSS(K(θ, μ)) = 1J {nω + e~ 2ΘU +} is
H = — 00

independent of μ, whereas the eigenvalues — k2 of H(θ) will be shifted down into
the lower complex plane λj{μ) (Im θ>0) . These complex eigenvalues λ/μ) are
^-independent and may be computed by the perturbation series. We shall find that
Im λj{μ) = Cj(ω)μ2n + 0(μ2n + 1\ C/ω) < 0, where n is the number of photons it takes
to ionize the bound state φj{x), i.e. the smallest integer such that — k2 + nω > 0. We
call /ίj(ω)'s the resonance energies and the corresponding eigenfunction φft, x θ) the
resonance state. Suppose now that — kj and — kf are simple eigenvalues of H with
eigenfunctions φj(x) and φ^x). If — kj + kf = nω,neZ, then — kj is no longer simple



Resonances for the AC-Stark Effect 335

as an eigenvalue of K(θ, 0). It is doubly degenerated with eigenfunctions φj(x) and

e

ιnωtφj^xy According to the perturbation theory, the eigenvalue — kj will then split
into two levels and we shall find that U(t, s, μ)φj oscillates for a long time between
φj(x) and Φi(x). This exhibits the resonances between two states φj(x) and Φi{x).

If the electric field is direct, i.e. ω = 0, the resonance problem for (1.1) has been
studied by several authors. Herbst [5], Graffi-Grecchi [4], [5] and Herbst-Simon
[7] discussed it by the complex scaling technique and Yajima [22] and Jensen [11]
by the weighted space method. On the other hand if the field is alternating, the only
existing theory is the time-dependent perturbation theory by Dirac (see Langhoff-
Epstein-Karplus [17] for the review and the literature) and the mathematical
justification has been in order. We should mention here that Howland announced a
similar idea for defining the resonances for the AC-Stark problem (see [10]).

We use the following notation and conventions: U is the real line, U+ = [0, oo). Z
is the set of all integers. C is the complex plane. Ca = {zeC: —a<Imz <a},
C~ = {zeC:0< ± I m z < α } , C α

± = {ZGC:0^ ± I m z < αj.For 1 ̂  p^ oo,ί/(ίR3)is
the Banach space of p-summable functions on [R3, Jf = L2(U3). For 0 ^ s < o o ,
HS([R3) is the Sobolev space of order s. For a Banach space X, &(X) denotes the
Banach algebra of all bounded operators on X. || || stands for the norm of vectors as
well as the norm of operators in Jf or Jf\ For a closed operator T on X, σ(T), σess(T)
and σp(T) stand for the spectrum, the essential spectrum and the point spectrum.
σd(T) = σ(T)\σess(T) and p(T) = C\σ(T) is the resolvent set. D(T) is the domain of T.
# \ stands for the Fourier transform with respect to the variable t. It is a unitary
transform from L2(Ύω) to /2(Z). We shall use the terminology of Kato [12], Chapter
IX for the semi-groups of operators. The statements or formulas which contain
± should be understood as two statements or formulas, one for upper signs and the
other for lower signs.

2. Preliminaries

We collect here several preliminary results which will be needed in the following
sections. We always assume that the potential V(x) satisfies at least Assumption (̂ 41),
although some of the results hold under a weaker Assumption (^40). We first recall
the following well-known theorem of Aguilar-Combes [1].

Proposition 2.1. ([1]). The family of operators H(θ) = - §)e~ 2ΘΛ + V(eθx\ θe£a

with domain D(H(Θ)) = H2(U3) is a self adjoint holomorphic family of type (A) in Kato's
sense [72] and satisfies the following properties:

(1) σ(θ)) 2θ +

(2) σd(H(θ)) is invariant in θ:σd(H(θ)) = [j σd(H(θ')) for
0 < ±Imθ' < ±Im0

(3) σd(H(θ))nU = σp(H) and for θeC±, σd(H(θ))\Ma {zeC:+2lmθ <
± argz < 0}. σd(H(θ))\σd(H(θ)) consists at most of{0} in the extended complex plane
Cu{oo}.

(4) The eigenfunction φ(x) ofH with eigenvalue — k2 < 0 is dilation analytic, i.e.
the J^-valuedfunction φθ = e3θ/2φ(eθx) ofθeU can be extended to Cα as an ^-valued
analytic function. φθ is the eigenfunction of H(θ) with the same eigenvalue.
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(5) λeσd(H(Θ))nU is a semi-simple eigenvalue of H(θ).
For p > 0, we write as LP{U3) + Lf (IR3) the set of all functions W such that for

any small ε > 0 there are two functions Wγ and W2 which satisfy W{x) = W^x) +
W2(x\ WxeU, W2eLco and || W2\\aa<ε.

Lemma 2.2. Let WeLp(U3) + Lε°°([R
3) withp>3. Then for any θeC±, W(HO(Θ)-

λ + 0 " 1 (ΛelR) is a compact operator in 3tf and

lim ||W(Ho(θ)-A + 0 " Ί l = 0 . (2.1)

Proof Since || (H0(θ) — λ + i) x || ^ 1 for any λeIR, and 0eC*, a simple approxi-
mation argument shows that it suffices to show the lemma for WeLp(U3) with
support which has a finite measure. Then the operator W(HO(Θ) — λ + i)"1

= e2θW(H0 - e2θ(λ + OΓ 1 has an L2-integral kernal e2θW(x) exp((2elθ(λ ± i))1/2x
\x - y\)/2π\x - y\ with Re{2e2θ(λ + i)f12 < 0 and is of Hubert-Schmidt class. By the
resolvent equation, we have

\\W(H0(θ)-λTiΓ1\\2=\\W(H0(θ)-λTiΓ\H0(θ)-λ±ίΓ1W*\\

= e4Reθ\2lrne2θ(λ ± i)\~' \\ W{(H0 - e2θ(λ ± i))'1 - (Ho - e2\λ + ί))'1} W*\\ (2.2)

Since ||.4(H0 -z)~1B\\ ^ 0 as |z|->co with Imz^O for any Λ(x) and
B{x)eΠ{U3)nLs(U3) with l ^ r < 3 < s (cf. Ginibre-Moulin [28], Prop. 3.1, for
example), the right hand side of (2.2) converges to zero as λ -• + oo. This proves (2.1).

D

Since V{t,x,θ9μ)= V{eθx + μω~2Ecosωt) is a C0(R3)-valued analytic function
of θeCa, H(t9 θ, μ) = H0(θ) + V(t, x, 0, μ) also satisfies Prop. 2.1 for any fixed t and μ.
The following two lemmas guarantee the existence of the propagator U(t9 s, θ, μ) for
the evolution equation

t = H{t,θ,μ)u. (2.3)

We write
S(θ)f(x) = e3θ/2f(eθx), θeU1 (2.4)

and
\p\ύω-2}. (2.5)

We use Kato's terminology for the semi-groups (Kato [12], Chapter IX).

Lemma 2.3. (1) For any fixed teR, θeC± and 0 ^ μ ^ Ω, ± iH(t, θ, μ) + M
domain H2(U3) is maximal accretive and ±iH(t,θ,μ) generates a C0-semi-group
exp(+ iσH(t,θ,μ)\ σ^O on J^:

\(±ίH(t,θ,μ)-zy1\\ ^ |Re(z + M ) Γ , R e z < M ;

I exp( + iσH(t, θ, μ) || g exp(Mσ). ( * j

*, exp( + iσH(ί, #, μ)) is α holomorphic semi-group of type Jf(2θ — δ,yδ) with
any δ>0 and some yδ > 0.

(2) For any fixed z with Rez< — M, (±iH(t,θ,μ) — z)~γ is differentiable in
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1 x 10,Ω^, continuous in(t,θ,μ)eU1 x C* x [0,Ω] and is analytic inθeC~ as
a ^(Jf7)-valued function.

(3) The ^{J^yvalued function exp( + iσH(t, 0,μ)) is strongly continuous in
(σ, t, 0, μ)eR+ x U x C* x [0, ί2] and is analytic in θeC±. For Θ'eU and 0eCfl

±,

S(θ') exp (+ iσH(t, 0, μ))S(θ')"'= exp(+ iσH(t, θ + θ',μ)). (2.7)

Proof. We prove the lemma for upper signs. The other case can be proved
similarly. Clearly iH0(θ) is maximal accretive for 0eCα

+ and if θφ U it is a generator of
a holomorphic semi-group of type J»f (20,0). Phillips' theorem for the perturbation
of semi-groups ([12], pp. 495-497) then implies the statement (1) for ίH(t, 0, μ). Prop.
2.1 with V(t, x, 0, μ) replacing V(eθx) implies the analyticity of (iH{t, 0, μ) - z)~1 in
0eCα

+. The continuity in (ί, 0, μ) and the differentiability in (ί, μ) are obvious from
Assumption (Ax). It follows from the property (2) and the strong convergence
of the semi-group ([12], Chap. IX. Theorem 2.18), exp ( - iσH(t,θ,μ)) is strongly
continuous in all variables. Equation (2.7) follows from the equation
Sφf)H{uθ,μ)Sφfy1 =H{uθ + θ\μ). Finally we prove the analyticity of
exp ( - ίσH(t, 0, μ)) in θeC* for 0 < δ < Im# < a with any fixed δ > 0. We take a
contour Γ = {exp(i(π - δ)/2)λ - L, λ ̂  0} u {exp( - i(π - δ)β)λ - L, λ ̂  0} with
sufficiently large L ̂  0 and write

exip(-iσH(t,θ,μ)) = ~$e-σz(iH(t,θ,μ)-zyidz. (2.8)
Zτιι f

By Lemma 2.2, (H(t, 0,μ) -z)'1= (H0(θ) - z)-\l + V(eθx + μω~2Ecosωί)
(H0(θ) — z ) " 1 ) " 1 is uniformly bounded on an ε-neighbourhood Γε of Γ. Hence
dn/dθn{iH(t, 0, μ) — z)~λ is also uniformly bounded on Γ and the analyticity follows
from (2.8). •

Lemma 2.4. Let θeC^ and 0^ μ^Ω. Then Eq. (2.3) generates a unique propagator
{U(t, s, 0, μ): ± t ̂  ± s] such that:

(1) U(s,s,θ,μ) = ί, U(t,r9θ,μ) U(r,s,θ,μ) = U(t,s,θ,μ)for±t^±r^±s;
(2) U(t, s9 0, μ)H2(K3) c H2(R3); ι//eH2(R3), (7(ί, s, 0, μ)/ίs differentiate in (ί, 5)

, 5,0, μ)/ = H(ί, 0, μ) l/(ί, 5,0, μ)f; (2.9)

, 5,0, μ)/ = I7(ί, 5,0, μ)tf(s, 0, μ)/ (2.10)

| |(7(ί, S ,0,μ) | |^exp(M|ί-s |). (2.11)

(3) U(t + 2π/ω, s + 2π/ω, 0, μ) = l/(t, s, 0, μ).
(4) For Θ'eU1,

1. (2.12)

(5) U(t,s,θ,μ) is strongly continuous in (ί,s,0,μ) for ±t^±s, θeC* and
0 ^ μ ̂  ί2. For any fixed ± t ̂  ± s, 0 ̂  μ ̂  Ω, it is analytic in θeC^.

(6) For θeU, {U(t,s,θ,μ): (t,s)eU2} is a unitary propagator.

Proof. The existence and the uniqueness of the propagator U(t, s, 0, μ) which
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satisfies (1) and (2) are direct consequences of Lemma 2.3 and Kato's theorem
([13]). (3) is a consequence of the uniqueness of the propagator and the periodicity
of the Hamiltonian H(t, 0, μ). We prove (4) and (5) for θeC+ and 0 S s ^ t < T < oo.
The other case can be proved similarly. For integers n ^ 1 we set
Hn(t, θ, μ) = H(kT/n9 0, μ) for kT/n ^ t < (k + l)Γ/n, fc = 0,1,..., n - 1
Un(t, s, θ, μ) = e x p ( - i(t - s)H{kT/n, 0, μ)) if kT/n^s <t<,{k+ l)T/n and
Un(t9s, θ, μ) = exp ( - i(t - lT/n)H(lT/n, 0, μ)) exp( - i{T/n)H({l - l)T/n, θ, μ)) . . . .
exp(-i(T/n)H((k + l)T/n,θ,μ))exp(- i((fc + l)T/w - s)H(kT/n,θ,μ)) if fcT/n ^
s < (fc + l)T/n ^ /T/n < ί < (/ + l)T/n. Then it is easy to see by Lemma 2.3 that
for θ'eU

Un(t9s9θ + θ',μ) = S(θ')Un{t9s,θ,μ)S(θγ; (2.13)

Un(t9s,θ,μ) is strongly continuous in (t,s,0,μ), analytic in θeCα

+ and ||L/n(ί,s,
θ,μ)|| gexp((ί — 5)M). Moreover for any /e#2([R3), there are constants M and
C > 0 such that

ί s θ μ ) - t / ( ί s θ μ ) ) / | |

Since the right hand side of (2.14) converges to zero as n, m -> oo uniformly in (ί, s, 0,
μ) on every compact subset, we have statement (5). By taking the limit n -> oo in
(2.13), we have Eq. (2.12). (See Tanabe [20], Chapter 4.4 for the details.) Statement (6)
is obvious. D

Using the propagator {U(t, s9 0, μ)} constructed in Lemma 2.4 for θe C * and 0 <;
μ ^ Ω , we define a one parameter family of operators {%{σ9 θ,μ): ± σ ^0} on

by

%{σ9θ,μ)f{t) = U{t9t-σ9θ9μ)f{t - σ), / e J f . (2.15)

Lemma 2.5. Fί?r θeC^, feί {*( ± σ, 0, μ): σ ^ 0} ^e de/iw^d ^^ (2.75) and K(θ9 μ) ̂ β
the maximal operator defined by (1.9). Then

(1) {ύll{± σ, 0, μ): σ ^ 0} is α C0-semί-group on Jf and

l |Φ(±σ,0,μ)ll^exp(M|σ|). (2.16)

(2) ± iK(0, μ) + M is maximal accretive and

* ( ± σ, θ,μ) = exp(T iσK(θ9μ)). (2.17)

(3) For 0GR, {<%{σ,θ,μ): - oo < σ < oo} is a unitary group and K(θ,μ) is self-

adjoint.

Proof. The first statement is obvious from Lemma 2.4. We prove the second for
upper signs. Since iK0(θ) is clearly maximal accretive and V(t, x, θ, μ) is bounded, the
maximal operator iK(θ9 μ) = iK0(θ) + iV(t9 x9 θ, μ) is the closed extension of iK(θ9 μ)
defined on 2 = C 1 (T ω ,^)nC(T ω ,// 2 ([R 3 )) and iK(θ,μ) + M is maximal accretive.
Since 9 is invariant under {<%(σ9θ9μ)} by Lemma 2.4,9 is a core for its generator for
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@9 i(d/dσ)<%{σ9θ,μ)f\σ=0 = K(θ9μ)f by (2.10). Thus we have (2.17). Statement (3)
follows from Lemma 2.4, (6) and Stone's theorem. •

For the unperturbed operator K0(θ) = ( - id/dt) <g)1 + H ® H0(θ) we clearly have,
for imθφO, D(K0(θ)) = L2(Jω)®H2(M3)nH1(Jω)®L2(M3).

Lemma 2.6. (I) Let O^μ^Ω be fixed. For θeC^, K(θ, μ) is a holomorphic family of
operators of type (A) with the common domain

(2) For ΘEC± and θ'eU,

The spectra for unperturbed operators Xo(0) and K(θ,μ = 0) are easy to locate.

Lemma 2.7. Let θe£a. Then
oo

/ 1 \ rrίlζ (f)\\ /T ( J{ ίf)W i I /VI f •> 4 - Z? ~ ^ # [Π) + \

n ~ — oo

(2) σ(K(θ,0)) = σeJK(θ,0))uσd(K{θ,0)) and

σd(K(θ,0))= U {nω + σd(H(θ))}.
n~ ~ oo

Proof. By Fourier transform Ko(0) is unitarily equivalent to the multiplication
operator by nω + e~2θξ2 on the space /2(Z)®L2([R3). This implies statement (1).

oo

Similarly regarding 12(Z)®L2(U3) = © L2{U3), we see that K(0,O) is unitarily
n = — oo

equivalent to φ (nω + H(θ)). Since (H(θ) - z)~1 = (Ho(0) -z)-\\ + V(eθx) x
« = — oo

(H0(θ) — z ) " 1 ) " 1 for zφσ(H(θ)\ Lemma 2.1 and 2.2 imply the second statement.
D

To locate the essential spectrum of K(θ, μ\ we need the following lemma. We
write the multiplication operator on Jf by V(eθx + μω ' 2 E cos ωt) as

Lemma 2.8. Let O^μ^Ω and θeC^1. Then the following statements hold:
(1) For any zφσ(K0(θ)\ f^(θ,μ)(K0(θ) - z)~x is a compact operator on Jf.
(2) For ± Im z > 0, Ψ~(θ, μ)(K0(θ) — z)~* is analytic in ΘEC^, norm continuous in

θe£± and || 'r{θ9μ)(KQ(θ) - z)" 11| ->0 as Im z->±oo.

(3) Iffejf satisfies/+ τr(θ, i u)(Xo(θ)-^)" 1 /=0 wiίΛ z^σ(K0(θ)), ίΛen z is an
eigenvalue ofK(θ,μ) with the eigenfunction (K0(θ) — z)~1f

Proof We prove the lemma for upper signs. The other case is similar.
(1) Since τΓ(0, μ)(Ko(0) - z ) " 1 is analytic in zep(K0(θ)) it suffices to show

ir(θ,μ)(K0(θ)± i)~ι is compact. We prove—case only. Let us write W(x,θ)
= sup {\V(eθx + μω~2E cosωt)\:teU} and denote the multiplication operator by
W{x9θ) in X as τT(0). Clearly P (̂ ,0)eLp([R3) + L,00 ((R3) for any 0 < p < oo and
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/ oo \

TT(0)(K O (0) - 0"* = &t Ί Θ W{x, Θ)(H0{Θ) + nω-iy1 p % , where we regar-
\n = - oo /

ded /2(Z)® ^f = φ J^. Hence by Lemma 2.2, if(θ)(K0(θ) -i)'1 is compact on
n = ~ oo

Jf which in turn implies the compactness of ir(θ,μ)(K0(θ) — i)~1 =

(2) Except for the norm continuity of f (0, μ)(K0(θ) — z) x at the boundary [R of
C*, the statement is clear by Assumption (Ao). For proving the norm continuity, it
suffices to show it for(Ko(0) - z)~x V (0,μ),0eC ~,Imz < 0. Let θoeM and suppose
0eC~ approaches 0O. Then for I m z < 0 , we can check by an elementary
computation that

is uniformly bounded in 0 and for /eCw(Tω,C;?([R3)), (K0(θ) - z)-1(Ko(0o) - z)f
- > / strongly as 0->0o. Thus (Xo(0) -z)~1(K0(θ0) - z) approaches the identity
operator strongly. Since (KO(0O) — z)~x i^{θ,μ) is a compact operator and is norm
continuous by statement (1) and Assumption (Ao), we see that

(Xo(0) - z)-1 r(θ,μ) = (K0(θ) - z)-1 (XO(0O) - z) (Xo(0o) - z)-' r(θ,μ)

approaches (K0(θ0) — z)~1ir{Θ0,μ) in norm as Θ-+θ0.
(3) Statement (3) is obvious. D

As the last topic of this section, we discuss the relation of the eigenvalues of
K(θ,μ) and U{s + 2π/ω,s,0,μ). We assume 0eC* here for simplicity.

Lemma 2.9. Let θe£+ and O ^ μ ^ Ω . Suppose that K{θ,μ)f=λf. Then f=
f(t) is an 3tf-valued continuous function and f(t) = eίλ{t~s) U(t,s,θ,μ)f(s). In parti-
cular, U{s + 2π/ω,s,θ,μ)f(s) = e-iλ{2π/ω)f(s). Conversely if U(s+2π/ω,s,θ,μ)φ =

e-i{2n/ω)λφ^ then f{t) = em-s)U(t,s,θ,μ)φeD(K{θ,μ)) and K{θ,μ)f=λf.

Proof If K{θ, μ)f= λf we have exp ( - iσK(θ, μ))f{t) = U(t, t-σ,θ9 μ)f(t - σ) =
e~iλσf(t) for all σ > 0, or U(t + σ, ί, 0, μ)f(t) = e~iλσ f(t + σ) for all σ > 0 and a.e.t.
Thus by Fubini's theorem and the strong continuity of the propagator, f(ή is
continuous and the first statement holds. For proving the converse it suffices to note
that for all σ ^ 0 and ίeT ω ,

D

3. Theorems

Using the lemmas obtained in the previous section, we first show the following
spectral properties of K(θ,μ).

Theorem 3.1. Let Assumption (Ax) be satisfied. Then for O ^ μ ^ Ω , {K(θ,μ),
0eCfl

±} is a holomorphic family of operators on C/f of type (A) with the common domain
L2(ΊΓJ ®H2(U3) nH\Jω) ®L2(U3) and for ±lm z > 0 , (K(θ,μ)-zΓ1 is a
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valued strongly continuous function ofθeC^. Furthermore the following statements
hold for anyO^μ^Ω and ±

(l)σess(K(θ,μ))= U {nω + e
n = — oo

\
oo

(J {nω + e~2(fU+} with possible
n= — oo

accumulation points in {nω:neZ}. Any λeσd{K(θ,μ)) is an eigenvalue ofK(θ,μ) with

finite algebraic multiplicity.

(3) σd(K(θ,μ)) is invariant in θeC^ as long as it is free from σess(K(θ,μ))

(4) σd(K(θ,μ))nR = σp(K(θ = 0,μ))andλeσd(K(θ,μ))nUis a semi-simple eigen-
value of K(θ, μ) with finite multiplicity.

Proof. We prove the theorem for upper signs. The holomorphy oϊK(θ,μ) is proved
in Lemma 2.6. By Lemma 2.8, (2) and the resolvent equation, we have that if Im z > 0
is sufficiently large then zep(K(θ9μ)) and

(K(θ,μ)-zyi=(K0(θ)-z)-ί-(K(θiμ)-zy1r(θ,μ)(K0(θ)-z)-1

ί θ)-z)-1y1. (3.1)

By the first equation of (3.1) and Lemma 2.8, (1), (K(θ,μ) - z)~1 - (K0(θ) - z)'1 is
compact. It follows then by WeyΓs theorem and Lemma 2.7, (1), σess(K(θ9μ)) =

00

(J {nω -f e~2θM+}. On the other hand by the analytic Fredholm theory
n= - oo

(Steinberg [19]) and Lemma 2.8, (l)-(3), the last expression (3.1) extends as a
meromorphic function of z to ρ(K0(θ)) with a discrete set of poles at the eigenvalues
of K(θ,μ) and that the residues at the poles are all of finite type. This proves that

00

σd(K(θ,μ)) is a discrete set of the complement of (J {nω + e~2θU + } and
n= — oo

λeσd(K(θ9μ)) is an eigenvalue of K(θ,μ) with finite algebraic multiplicity. Since for
θ'eM,K(θ + θ',μ) is unitarily equivalent to K(θ,μ) by Lemma 2.6, (2), and the
eigenvalues of K(θ + θ',μ) are analytic functions of θfl/k with some integer k by the
analytic perturbation theory ([12]), σd(K(θ9μ)) is ̂ -invariant and its possible limit
points are a subset of {nω:neZ}. Moreover, since K(θ9μ) is selfadjoint for θeU and
i^(θ,μ)(K0{θ) - z)'1 is norm continuous in θeC+ for Im z > 0 by Lemma 2.8, (2),
for any ΘEC^ (K(θ,μ) — z)~ι cannot have a pole for Im z > 0. Thus σd(K(θ,μ)) is
confined in the closed lower half plane and this completes the proof of statements (2)
and (3). Since the proof of statement (4) is virtually the same as that of Lemma II, 2 of
Aguilar-Combes [1], we omit it here. D

Now we make the information about σd(K(θ,μ)) more precise using the
perturbation series. Under Assumption (A^.vte have

V(t9x,θ,μ) = V(eθ x) + μω~ 2 cosωt{dV /dx^e9 x) + W2(t,x,θ9μ)

2(θ9μ)9 (3.2)

where μ-1\\W2(θiμ)\\m^)^0 as μ^O. We write W1(θ9μ) = μT1(θ)+W2(θ,μ).
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Theorem 3.2. Let Assumption (AJ be satisfied, θeC^ and let AeC 1 be an
eigenvalue of H(θ) with {algebraic) multiplicity mo(λ).

(1) Suppose that λ + rijCύJ = 1,...,/, are the eigenvalues ofH(β) which differ from λ
by integral multiples ofω and m/2) are their multiplicities. Then for sufficiently small

Ogμ, there exist exactly ]Γ mj(λ) = N(λ) eigenvalues λx{μ\. ..,λN(μ) of K(θ9μ)
j = o

(counting the multiplicities) such that λj(μ)-+λ as μ-+0.
(2) Suppose that Λ<0, mo(λ) = ί and 1 = 0 in (1) and that H(θ)φθ = λφθ,φθ

being the eigenfunction which satisfies Prop. 2.19 (4). Then λ1{μ) = λ + o{μ) and the
corresponding eigenfunction φθ(t,x,μ) of K(θ,μ) can be chosen as

φθ(t,x,μ) = φθ(χ)-2-1ω-2μ{e-iωt®(H(θ)-λ-ωΓ1(dV/dx1)(eθx)φθ(x)
+ eiωt <g>(i/(0) -λ + ωΓ1(dV/dx1)(eθx)φθ(x)} + o(μ)9 (3.3)

where o(μ) stands for an 2tf-valued continuous function /θ(£, x, μ) such that
\\f(t, ,μ)\\jr = o{μ) as μ-»0 uniformly in teJω.

(3) Suppose that λ < 09mQ(λ) = 1, / = 1 with nx = ± 1 and mγ(λ) = 1 in (1) and that
HWφ^ = λ φ{

θ

1], H(θ)φ{

θ

2) = {λ ± ω)φ{

θ

2\ where φ{

θ

j) satisfies Prop. 2.1, (4). Then the
eigenvalues λj(μ) are given as

λj(μ) = λ-(- iy2-1ω-2μ(φ{1\(dV/dx1)(x)φ{2))^ + o(μ\(j = 1,2). (3.4)

If(φ{1\ (dV/dxx)φ{2)) =/= 0, the corresponding eίgenfunctions φ{

θ

j)(t,x,μ) are chosen as

(3.5)

where O(μ) stands for an Jf'-valued continuous function f{

θ

j)(t,x,μ) such that

\\fθj)(t,',μ)\\ M = O(μ) as μ->0 uniformly in teJω.

Proof Let us write as ek(t) = eίhωt and the projection to the space spanned by ek(t) in
L 2(TJ as Qh9 k = 0, ± 1,.... R(z, θ, μ) = {K(θ, μ)-z)-\

/ 00 \

(1) Since K(θ,0) = ^~1( @{nω + H(θ)} ψ v it follows from Lemma 2.1 and
V-oo /

2.2 that λ is an eigenvalue of K(θ,μ) with multiplicity N. Hence by (3.2) and the
bounded perturbation theory ([12], Chapt. Ill), we have statement (1).

(2) We set P0(θ)u = {u,φe)φθ, ueJf and ΦΘ(Q) = ΦJίt,x,0)=(ω/2π)ll2e0®φθ(x).
We write the reduced resolvent of K(0,O) at z = λ as Rθ{λ):

kψ° (3.6)

Using the second resolvent equation for R(z,θ,μ) twice and then the first resolvent
equation for R(z,θ,0), we have

R(z, θ,μ) = R(z, θ,0) - μR(z9 θ,0) T± (θ)R(z9θ,0)
(z - i)R{z9θ90)){W2(θ9μ)

0Ώ (3.7)

Following the standard argument ([12], Chapt. II), we see that there is a small circle
Γδ = {z:\z-λ\ =δ} such that for sufficiently small | μ | ^ ε , K(θ,μ) has only one
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eigenvalue ^(μ) in \z-λ\<2δ; \λγ{μ) -λ\ < δ/2 and ||K(z,0,μ)|| for zeΓδ is

uniformly bounded. Then

Ri2\z, θ, μ) = (1 + (z - i) R(z, θ, O))(W2(Θ, μ)

- W1(θ,μ)R(z,θ,μ)W1(θ,μ}) x R(z,θ,Q)
satisfies

sup {\\R^(z,θ,μ)\\,zGΓδ} = o(μ) eiS μ-^0 (3.8)

and the eigenfunction Φθ(μ) = Φθ(t,x,μ) of K(θ,μ) with eigenvalue λ^μ) may be
chosen as

Iπi Γό

ίΓ1 J Ri2)(z,θ,μ)Φθ(0)dz. (3.9)

Since K(i,θ,0) is a bounded operator from Jf into i ί ^ T J ®L2([R3) by Lemma 2.6,
(3.8), (3.9) and Sobolev's embedding theorem show that

sup || Φθ(t,-9μ) - Φθ(t,',0) - μ(Rθ(λ) T1(β)Φ,(O))(ί, )|| ^ = o(μ) (3.10)
t

as μ-̂ >0. Equations (3.10) and (3.6) imply (3.3). For the eigenvalue λ^μ) we apply
Kato [12], Theorem VIII. 2.6 to obtain

), Φθ(0)) + o(μ). (3.11)

Since the second summand in (3.11) obviously vanishes λ1(μ) = λJt o(μ).
(3) We prove the case n1 = 1 only. Since m(λ) = 1, λ is an isolated semi-simple

eigenvalue of Kψ,0) of multiplicity two with the eigenfunctions eo(ί)® <^υ(x)
and e_1(t) (x)φ^2)(x). By statement (1), there are two eigenvalues 21(μ) and A2(μ) of
K(θ,μ), which approach /I as μ->0. We write the total eigenprojection to these
eigenvalues as P(θ,μ). Having in mind the standard reduction procedure for
degenerate perturbation theory ([12], Chapt. II, §3), we set

). (3.12)

By the resolvent equation, we may write as

) + (2πiμ)-1 j(z - λ)R(z,θ,0)
r

{W2(θ,μ)-W1{θ,μ)R(z,θ90)Wί(θ,μ)}R{z,θ,μ)dz9 (3.13)

where Γ is a small circle around z = λ. As in the proof of (2), the second term in the

right of (3.13), which we write as K(2)(0, μ), satisfies

K ( 2 ) ( 0 , μ ) | | = o ( l ) a s μ ^ O . (3.14)

The unperturbed operator K(1)(#,0) = P(0,0)^(0)^(0,0) of the reduced operator
K{1\θ,μ) has in P(θ,0).Jf the matrix representation with respect to the basis
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Thus Pψ,O) 7^(0^(0,0) has the eigenvalues λ± = ± (l/2ω2)(0 (1), (δK/flxJψ^O with
the corresponding eigenfunctions Φ±(θ) = (%)(eo(t) ®^iυ(x) ± e_ i(ί) ® <^2)(x))
Therefore the eigenvalues λ^μ) and /I2(μ) of K(0,μ) are given by (3.4) and the
corresponding eigenfunctions φ(

o

j)(t,x,μ) are given as

O"* J (K(1)(0,0) - z) - ̂ ^2\θ9μ){K^\θ9 μ) - z)"" ^

(3.16)

where Γ ; is a small circle around λ + . Since (X(1)(^,0) — z ) " 1 is clearly a
^(JΓ, C(Tω,Jf ))-valued analytic function of ZGΓ^ , (3.14) and (3.15) imply (3.5). •

If we assume a higher smoothness Assumption (A^), we may compute the
eigenvalues of K(θ, μ) up to any order of μ > 0 and the problem of proving
Im λj(μ) =/= 0 can be reduced to explicit evaluation of certain integrals. We write for
integers n > 0,

n

V(t,x,θ,μ)= X μk(ω

= fμkTk(θ)+Wn+1(θ,μ), (3.17)
k = 0

where || Wn+ί(θ,μ)\\ =0{μn + 1) as jW-̂ O. We assume for simplicity

Assumption (S). All negative eigenvalues of H = — (̂ )zl + F(x) are simple.
We remark that for generic potentials Assumption (S) is satisfied and that under

Assumption (S) except for a countable set of ω, N(λ) = 1 for all λ eσp(H) since σp(H) is
a discrete set. We fix λeσp(H) and write as

Tk = Tk(θ), Sk = Rθ(λ)k for k = 1,2,... 5 0 = - P(θ90) = - |Φ,(0)><Φβ-(0)|,

S = S! ;R(nω, /1,0) = (if(0) - A - ηω)-\n = 1,2,...,

where we used the notation of the proof of Theorem 3.2, (3). By Kato [12], Chapt. II,

the perturbation series for the eigenvalue λx(μ) is given by

λ.iμ) = λ + Ctμ + C2μ
2 + + Ctμ

ι + O(μI+ x), / = 1,2,... , (3.18)

with

Ct=i{-Z^- Σ tr TvιSkι...TVpSkr. (3.19)TvιSk
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Since one of Skj in (3.19) must equal to - P{θ,0) and

-UTvιSkι...TvP(θ,O)TVjtl...TVpSkp

= -(TV}tίSkj^...TVpSkpTvr..TVjΦβ(0),<ϊe(0))χ, (3-20)

we can rewrite the sum (3.19) as

C*= £ ( - ! ) " Σ (TVιSTυ2...STVpΦβ(0),Φ-θ(0))^

+ (terms with more than one Skj = -P(θ,0)). (3.21)

By (3.6) we have for v2 4- •- +vp = np, kι,...kp-1φ0

R(2(L 4- ••• + / ) ω - nnω,λ,θ)kiQΌ2(θ)R(2(L 4- ••• 4- L)ω

- (np- υ2)ω, λ , θf2... R(2lpω- υpω, λ, θ ) p ~ 1 QVp(θ)φθ. (3.22)

Lemma 3.3. Ifυ1 + -'+υpis odd, then

(TVιSki TV2... Skp _ t T,p <DΘ(O), Φg(O)) = 0. (3.23)

Proo/. If none of kj = 0, (3.23) immediately follows from (3.22) since 2 ^ 4- 4- lp)
- {vγ 4- 4- vp) never vanishes. The case when some of kj = 0 is reduced to the case
where none of kj = 0. •

Lemma 3.4. Let n be the smallest integer such that λ + nω>0 and υx 4- 4- vp ^
2n. Suppose that there exist no 1 S i ύ P such t n a t v I + ' ' ' + vi = n = υi+1 + ' ' ' + V

P-
Then

lm(Tvl Skl TΌ2.. .Skp_JVpΦM ΦM) = 0. (3.24)

Proof. Under the condition of the lemma, for some j,v1 4- ••• 4- Vj < n and vJ+2 +
••• Λ-vp <n. Then

{τυχsklτV2...skp_jVpΦθ^\ΦM)
= (5fcj +, . \p_ t TVp Φθ(0\ T* SI... SI Γ* Φ,(0)). (3.25)

By (3.22) and Lemma 2.1 this is an analytic function of θeCa which is independent of
Reθ and hence is independent of θeCa. Setting θ = 0 and appealing to the fact that
R(kω, λ, 0) is a real operator for k < n, we have the lemma. Π

Lemma 3.3 implies that C, = 0 for odd/s and Lemma 3.4 implies that Im C2j = 0 for
j<n,n = n(λ, ω) being the smallest integer such that λ 4- nω > 0. Equations (3.22)
and (3.24) also imply that the second summand of (3.21) is real and moreover

ImC2 n = - lm(R(nω, λ, θ)φ(n, ω, A, θ\ φ(n,ω, k, B))*, (3,26)
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φ(n, ω, λ, θ) = (2ω ~ 2f £ ( - 1)" £ 6»i ( W ™ - »i ω, A, θ)QVi(θ)
p = 1 ϋ i + . . . + f p = π

...β1!l>_1(0)Λ(ι>J,αU,0)βOp(eWfl. (3.27)

By Lemma 2.1 the inner product in (3.26) is independent of θeCa and mimicking
B. Simon's computation [27], we have

Im C2n = — Im lim(R(nω, λ ± iε, θ)φ(n9 ω, λ, 0), φ(n9 ω, A, 0))
ε|0

= + π(dE{λ + nω)/dλφ(n, ω, λ, 0), φ(n, ω, λ, 0)), (3.28)

where {£(/)} is the spectral resolution of H. Note that, again by Lemma 2.1,
regarded as a function of ω, the last expression of

2iπ((dE{λ + nω)/dλ)φ(n, ω, /, 0), φ{n, ω, λ, 0))

= ((H - λ - nω - ft)'1 -(H-λ-nω + i0)~ ̂ φin.ω/λ, 0),

φ(n,ω9λ,0))

= ((H(0) - Λ - n ω ) " 1 φ(n, ω, Λ, 0), φ(π, ω, λ9 0))

- ((7/(0) -λ- nωyιφ{n, ω, 2,0), </>(w, ω, X, 0)), /I + nω$σp(H), (3.29)

can be analytically extended from each of the real intervals ( — oo, — λ/n), ( — λ/n,
— λ/{n — l))9...,( — λ/2, — λ\( — λ,co) to a complex domain: from (— oo, — λ/n) to
{z:|arg(/l + nz)|>|2Im0|}, from {-λ/k,-λ/k-1) to {z:|arg(A + kz)\ < |2Im0|
and |arg(λ + (fc-l)z) |>|2Imθ|}(k = 2,...,w), (-λ,oo) to {z:|arg(2 + jz)\ <
|2Im0|}. Each of these branch can vanish only on a countable set of ω's unless it
vanishes identically where it is defined. Remark that the branch from (— oo, — λ/n)
vanishes identically except on its poles. Thus we have proved the following theorem.

Theorem 3.5. Let V(x) satisfy Assumption (A^) and (S\ θeC^λ <0bean eigenvalue
of H and for n = \,2,...φ(n,ω,λ,θ) be the function defined by (3.27). Then the
eigenvalue λx(μ) of K(θ,μ) has a perturbation expansion

λx(μ9ω)=λ + C2(λ,ω)μ2 + C4(λ,ω)μ4 + + C2n(λ,ω)μ2n + O(μ2n + 1) (3.30)

up to any order. Suppose further that each branch of

In(λ, ω) = + π((dE(λ + nω)/dλ)φ{n9 ω, λ, 0), φ(n9 ω, λ9 0))

does not vanish identically for ω > — λ/n, π = 1,2,.... Then for all but a countable set
ofω>0

r i m C 2 j (λ9ώ) = 0forj = l9...9no-l9

2no(λ,ω) = IJλ,ω)$ΰ. (3.31)

Here n0 — no(λ, ω) is the smallest integer such that λ + nω > 0.
Finally we would like to study the implications of Theorem 3.2 and Theorem 3.5

for the original 'propagator U(t9 s, μ). For this purpose we assume the following
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Assumption ( S M ) i There exists a point θoeC^ such that

for all(ί,x)e[R4, O ^ μ ^ Ω .
We write as A(θ, μ) and B(θ, μ) the multiplication operators by | V(t, x, θ, μ)\1/2 and
V(t,x,θ,μ)\V(t,x,θ,μ)\~1/2 respectively. By the proof of Lemma 3.3 of Yajima
[21] it follows under Assumption (SM) that the operator-valued function
Q(z,θ09μ) = A(θ0, μ){K0(θ0) - z)'1 B(θ0, μ) has the following properties:

1) δ(z> θo,μ) is a compact operator-valued analytic function of zep(KQ(θ0)).
2) || Q(z,θo,μ)\\ ^ 0 as Im z-> ± oo (according to θQeC±).
3) ^(Jf")-valued function Q(λ±iε, θQ,μ) has a continuous boundary value

Q(λ±i0,θo,μ) as ε4θ.
4) exp( — Ίnωt)Q(z, 0O, μ)exp(iwωί) = Q(z + wω, θ0, μ).

We further assume

Assumption (R). F o r ^ e C ^ of Assumption ( S M ^ ^ l + Q(0 ± i O , ^ , ^ ) ) " 1 exists in
for all small O^μ.

Theorem 3.6. Let Assumptions {A^X (SM)± and (R) be satisfied and λ < 0 be an
eigenvalue of H.

1) Suppose λ is as in Theorem 3.2, (2) and Hφ = λφ. Then as μ -> 0, (U(t, s, μ)φ, φ)
= e~iλl{m~s) + O(μ) uniformly in±t> ±s.

2) Suppose λ is as in Theorem3.2, (3) and Hφ{1) = λφ{1\ Hφ{2) = (λ± ω)φ{2\ Then
as μ-^0

( 2 )) = K β " i λ ( 1 ) ( μ ) ( ί " s ) - β " i Λ ( 2 ) ^ ) ( t " s ) } β

uniformly in ±t> ± s.
For proving the theorem we admit the following lemma for a moment.

Lemma 3.7. Let Assumptions (SM)1 and (R) be satisfied. Then there exists a
constant C > 0 such that

|| U(t, s, θ0, μ) || S C for ± s < ± ί. (3.32)

Proof of Theorem 3.6. We prove the theorem only for upper signs with 5 = 0. We
write θ0 = θ.

1) By Lemma 2.9 and Theorem 3.2, (2) we have

l/(ί,0, Θ,μ)(φθ(x) + <Mx,μ)) = e-^HΦeto + Ψβ(t>x>μ))>

where || \j/θ( ,μ) \\ #, — O(μ) and || \I/Θ(t, , μ) || ^ = O(μ) uniformly in ί. Therefore

(U(t,O,μ)Φ,Φ) = (U(t,O, θ,μ)φβ, φe) = (e-iλιW'φβ,φ9) + 0(μ) = e""'<">'

uniformly in t. Here we used Lemma 2.4 to obtain the first equality; and Lemma 3.7
to obtain the uniformity in t of O(μ) in the second equation.
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2) By Lemma 2.9, Theorem 3.2, (3), and Lemma 3.7

t/(ί,0, 0,μ)(^1 }(x) + φ<2)(x)) = e - i A ( 1 ) ^ ^ M + e_ χ ®φ?\x)) +O(μ),

U(tΛ θ9μ)(φW{x) - φtfKx)) = e-ίλ(2)^(φ£\x) -e_, ®φ?Kx))+O(μ), (3.33)

where O(μ) stands for functions fj(t, x, μ) such that sup \\fj(t, .μ)\\ =O(μ) as μ-»0.

Thus solving (3.33) for U{t,0,θ,μ)φi

θ

1\x) and taking the inner products with φ^ix)

and φf\x\ we have

(U(t, 0, θ, μ)φi

θ

1)(xl φPix)) = \{e 'iλ(l><">' + e " i λ ( 2 ) w ) + O(μ).

and

(U{t, 0,β, μ j ^ ^ ί x λ ^ ^ x ) ) - \{e ~ λ i i ) w - e-iλί2)W) e'iωt + O(μ).

Since the inner products in the left hand side are independent of θ by
Lemma 2.4, we have statement (2) of the theorem.

Proof of Lemma 2.7. We prove the lemma for upper signs with 5 = 0 only. We write
θ = θ0 and prove that

0,μ)l l^# for σ^O, O^μ^Ω. (3.34)

Once (3.34) is proved, we obtain (3.32) as follows: For any/eJf , we set f[t) =
t/(ί,O,0,μ)/for 0 ^ t ^ 2π/ω and extend it elsewhere periodically. Then by (3.34) and
Lemma 2.5

2π/ω

2π/ω

J || υ{t,t-σ,θ,μ)J{t-σ)\\2^dt
o

) ! !/ ! ! 2 ^. (3.35)

Equation (3.35) and Lemma 2.5 imply (3.32). For proving (3.34) we use the smooth
operator technique of Kato [26]. By the properties (l)-(4) above and the argument
in the proof of Theorem 3.1, {1 + Q{z,θ,μ))~1 is a meromorphic function of
zep(K0(θ)) with possible poles at the eigenvalues of K(θ, μ) which are confined in the
closed lower half plane; for zep(K(θ,μ)),

(K(θ,μ)-zΓ1=(K0(θ)-zΓί

-(K0(θ)-zrίB(θ,μ)(l + Q(z,θ,μ)rιA(θ,μ)(K0(θ)-z)-1.
(3.36)

00

Let us write the real poles of (1 + β(z, θ9μ))~ 1 as - ]Γ (z - λj)~xQ(θ,μ,λj\ and the

00

corresponding one for (K(θ, μ) - z)"1 as - ^ (z - λj)~1P{θ,μ,λj). Then by pro-
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perty (4), Pn(θ, μ) = £ P(θ, μ, λ}) satisfies
nω ̂  λj <(n+ l)ω

Pn{θiμ) = ein(atPQ{θ,μ)e-i^\ (3.37)

and by Theorem 3.2

IIΛ>(M)ll<oo (3.38)

since H has only finite number of eigenvalues. Writing (1+ 6(z,0,μ))c~
1 =

00

(l + Q(z,θ,μ)Γ1 + Y4(z-λϊ)-1Q(θ,μ,λJ), we have by Assumption (JR) that

(1 + Q(z, θ, μ))~1 has continuous boundary values from the upper half plane and that

||(1 + β(z,0,μ))"11| ^ d < oo,zeC + ,0^μ^Ω. (3.39)

We also note that as shown in the appendix,

sup ] \\A(θ9μ)(K0{θ)"λ-iη)-1f\\2

jrdλ^C\\f\\2

X9 (3.40)

sup f \\B(θ,μr(K0(θ)~λ-iηyί*f\\2

yrdλ^C\\f\\%. (3.41)
^ 0

Now by the semi-group theory we have for η > M,

(exp(-iσK(θ,μ))f,^ = _ J - J e - ' ^ + '"\(K(Θ,μ)-λ-iη)"x/,β)dλ. (3.42)
2 π I -oo

Plugging (3.36) into the right of (3.42) and using (3.39)-(3.41), we can see that

(exp( - iσK(θ, μ))f, g)x = (exp( - iσK0(θ))f, g)x

+ £ Σ e-' λ>(P(θ,μ,λj)f,g)
n = - oo nω ^ Aj ̂  (n + l ) ω

—lim J e-i

2711 lίlO - oo

(3.43)

By (3.37)—(3.41) the right hand side is majorized in modules by a constant times

I. This completes the proof of the lemma. •

Appendix

Here we prove (3.40) and (3.41). We use the following elementary lemma.

Lemma A.I. For any O^φ^ π/2,

1 2

dx^C\\f{y)\2dy, (A.I)
/2π o

where the constant C> 0 is independent ofφ andfeL2(O, oo).

Proof. By the density argument, we need to prove (A.I) only for /eC^(0,oo).
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We have for 0 < φ 5Ξ π/4,

1 ? _,
ί 2π o

dx

~ie2lφ ^?
2 π o

f(y)dy] e~^f{y)dy

2π o

2 \ l / 2 / o o \ l / 2

ί\f(y)\2dy]
0

by a change of variable x -> eiφx and PlanchareΓs formula. It suffices to show (A.I)
for π/4 g </> <Ξ π/2. For these 0, we have

ί
1

2π o

and

dx =

y-ίl2dy

f(y)f(z)

^ί <co.J

o \eίφy - e'iφ | J (y2 -2(cos2φ)y + I) 1/2

Thus by Hardy-Littlewood-Polya [25] we have (A.I). •

Lemma A.2. Let H be a selfadjoint operator and A be on H-smooth operator (Kato

[26]), i.e. J \\Aexp(- itH)u\\2 dt ^\\A\\2

H\\u\\2. Then for any 0 ̂  ±φ g π/2,
±00

± j | | / lexp( — iteιφH)u\\2M>dt ̂  C| | w| |^,
o

where the constant C > 0 is independent ofO^ ± φ rg π/2 α^i ueJtif.

Proof. Let E(/l) be the spectral resolution for H. By Kato's criterion for smoothness,
AE(λ)u is absolutely continuous and dAE(λ)u/dλ = ύ(λ) is an JfWalues square
integrable function with j | |u(λ) | | 2dλ <^C\\A\\l?\\u\\2. Since

A exp( " ί ί e ^ λ ύ(λ)dλ,

the lemma follows from a vector-valued version of Lemma A.I. D

Now we can prove (3.40) and (3.41). We prove (3.40) only. Let us write as M the
multiplication operator by (1 + | x \ 2 ) ~ ( 1 + ε ) / 2. It is well-known that M is //0-smooth
operator ([28]). By the Fourier inversion formula, Assumption (SM) and Lemma
A.2,

\A(θ,μ)(K0(Θ)~λ-iη)~1fΊl
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SC^dσ Y\\Me-iσe-2θH°f(t-σ)\\lrdt
o o

= c] dσ'X \\Me-'°e'lβH<>f(t)\\^dt
0 0

Here we used the periodicity of/to obtain the equality in the fourth step.
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