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Abstract. The geometry of supergravity is studied. New formulations of
supergravity are given. The equivalence of different approaches to supergravity
is analyzed.

Introduction

The subject of the present work is the geometrical aspect of supergravity. (We mean
the N =1 supergravity everywhere.) There are various geometrical approaches to
the supergravity theory. The most elegent one is due to V. Ogievetsky and E.
Sokatchev [1], [2]. In that approach the role of the field is played by a (4,4)-
dimensional surface in C*? (the complex superspace of the complex dimension
(4,2)). Another approach, that by Wess and Zumino, is based upon the concept of
the frame! fields in the (4,4)-dimensional superspace; the frame field in this
approach is determined up to a transformation belonging to the Lorentz group. The
equivalence between the Ogievetsky—Sokatchev approach and the Wess—Zumino
approach was established previously [2] by means of a rather cumbersome
consideration and its geometrical background is not always quite clear.

A purpose of the present investigation is to analyze the internal geometry of
(4,4)-dimensional surfaces embedded into the space C* 2. The analysis results first of
allin a simpler construction of the action functional than the Ogievetsky—Sokatchev
approach [2,3]. Namely, it was found that the action is simply expressed in terms of
the so-called Levi form for the surface. Moreover, the analysis of the geometry in the
surface provides manifest way to establish a correspondence between the
Ogievetsky—Sokatchev and Wess—Zumino methods.

Our construction is based on the theory of G-structures[4]. The meaning of this
statement is that the surface geometry is given by a frame field which is determined
not up to a local Lorentz rotation, as it was in the Wess—Zumino approach, but by
the frame field determined up to a transformation belonging to an arbitrary linear
group G. In other words, two frames EY(x) and E¥(x) are considered as
corresponding to the same geometry, if EM(x)= g5(x)E¥(x), where g5(x) is a
function taking its values in the group G. The frame fields determining the

1 We prefer the term “frame” instead of “supertetrade” and “Vielbein” used in the physics literature
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considered G-structure will be called admissible, as well as the frames which are
values of the fields at a point. In this work it is sufficient to use the simplest
geometrical characteristics of the G-structure, the so-called structure function (to be
more precise, the first structure function). The structure function may be defined as
follows.

Write the (anti) commutator [d,4, 0} in the form 15;0.. (We use the notation
0, = EM(x)0/0x™, where E¥(x) is an admissible frame field.) Then the structure
function may be defined as a part of the function t$, depending on the values of the
frame field EY at the point x, but not on the derivatives of the field. In fact, if an
admissible frame is fixed at a point x, it may be included into the frame field in
various manners; this freedom must be excluded imposing appropriate constraints
upon t$;. In other words, one should consider 5, as an element of a subspace .
Then the value of 1S, is determined by the frame itself, but not by its derivatives, and
it is identical to the structure function for the G-structure.

If a G-structure is introduced in the space, a G'-structure may be introduced in a
surface in the space, where the group G’ contains the linear transformations of the
tangent plane to the surface, which are generated by those transformations from the
group G leaving the tangent plane invariant. (Such a G'-structure is called induced.)
If the structure function of the original G-structure is known, the corresponding
constraints for the structure function of the induced structure may be found.

The described mathematical construction is applied to the investigation of the
supergravity. The induced structure is considered for a (4, 4)-dimensional surface in
C*2. The action functional in the supergravity is expressed in terms of the structure
function of the induced structure. Thus the Ogievetsky—Sokatchev formalism is
replaced with an equivalent formalism based upon the internal geometry of the
surface. In order to get a relation to the Wess—Zumino formalism, one should apply
the reduction procedure for the structure group well known in mathematics.

In the present paper we are not concerned with the application of the exposed
general construction to the non-minimal N = 1 supergravity and to the extended
supergravity. Further development of the general methods and some of their
applications will be published in a forthcoming paper by A. Rosly and the author
[5]. In particular, constraints for the second structure function of the induced
structure will be studied as well as the problem of indicating the sufficient constraints
on the structure functions, under which the G'-structure in view is induced by the
trivial G-structure. These results are applied in [5] to analyze the non-minimal
N =1 supergravity [6] and an alternative minimal supergravity [7].

The article is organized as follows. Section 2 contains the definition of the
superspace and other basic concepts of the superspace theory. This section may be of
interest by itself, since the proposed definitions are different from the conventional
ones. It is our opinion that this system of definitions is more appropriate as, on one
hand, they are closer to the relevant physical concepts and, on the other hand, they
are quite rigorous. A reader for whom the supergravity by itselfis of the most interest
may skip this section and still understand the subsequent exposition. The only thing
to hold in mind is that the mappings, surfaces and the vector fields involved may
have the Grassmann coefficients. In the terminology of Sect.2 we consider A-
mappings, A-surfaces etc. The term “transformation” always denotes an invertible
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mapping. The word “plane” is used as a synonym of “linear subspace of linear
space.” The prefix “super-” is omitted sometimes.

The expression for the supergravity action functional in terms of the Levi form
known in the complex geometry is given in Sect. 3. Section 4 presents an exposition
of the basic concepts of the theory of G-structures. Induced structures in surfaces
are defined and investigated in Sect. 5. (The induced structures have
appeared in various concrete mathematical problems; however, the presented
general definition of the induced structure is probably new.) Sections 6 and 7 contain
investigation of the supergravity by means of the methods of the G-structure theory.
These sections are written in such a manner that they may be understood with only
minimal information on G-structures, given in the Introduction. Thus at first
reading a physicist reader may omit Sect. 4 and 5.

Note that the exposition in Sect. 3—7 is not mathematically rigorous from the
formal point of view, but a reader who is interested would be able to reconstruct the
necessary proofs himself.

2. Superspaces

Let us denote by A the real Grassmann algebra having g generators &', ..., ¢, and
by A?-4 the algebra of smooth functions on R? taking values in A%. The elements of
AP% may be represented in the form
O= for (Ul uP)E ™, 1)
wheref,, , (u',...,u?)are smoothreal functions of the real variables u”, ..., u?. The
algebra A% can be considered as having p even generators u',...,u? and g odd
generators ¢!, ..., e7; the element w is even (odd) if every term in (1) contains an even
(odd) number of the generators ¢*. Any element of A7 can be represented as the sum
o =m(w) + n(w), where m(w) is a smooth real function and n(w) is a nilpotent
element of AP (i.e. n(w)N =0 for a sufficiently large N). In fact, n(w) is the sum of
terms with > 1 in (1). The algebras A7? were introduced by F. Berezin; in the
following they will be called the Berezin algebras.
It is important to note that one can substitute in (1) even elements x?,..., x? and
odd elements 6%,...,07 of an arbitrary Berezin algebra A, instead of the elements

ul,...,u?, g',..., &% The expression

Zfazl,”ar(xlw . .’xp)gai .. 0%

may be interpreted as an element of A. (In order to definef,, , (x',...,x?)one must
represent x*in the form x* = m(x®) + n(x*) and use the Taylor expansion with respect
to n(x?. The elements n(x“) are nilpotent and therefore the Taylor expansion is
finite.)

Lemma 1. [8] Ifx!,...,x? are even elements and 0*,...,0% are odd elements of an
arbitrary Berezin algebra A, one can construct a parity preserving homomorphism p of
AP into A, satisfying the conditions p(u®) = x*, p(¢*) = 0% The homomorphism is
defined by the formula

P@) = foy (X5 xP)0% 0%, 2

where w is given by (1).
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In the following we consider only the homomorphisms of the Berezin algebras
described in Lemma 1.

Let us define a A point in the (p,q)-dimensional superspace R”? as a row
(xt,...,xP, 6%,...,09, where x* are even elements and #* are odd elements of the
Berezin algebra A ; the set of all the A-points will be denoted by R% 4. (In other words,
the point in the superspace R?? has p even coordinates and g odd coordinates.) If
6 =... =01=0 we say that the A-point is even, if x! =--- = x? = 0 we say that the
A-point is odd. Instead of the term “A-point” we use the term “(p, q)-dimensional
A-vector” in some cases.

A homomorphism p of a Berezin algebra A into a Berezin algebra A’ generates a
mapping p of R%?into R%4. (The mapping p transforms (x!,...,x?, 6',...,69) into
(p(xh), ..., p(xP), p(6Y),...,p(6%).) 1t is easy to verify that p,p, = p,p, for arbitrary
homomorphisms p,:A4"'—> A", p,:A—>A'.

Suppose that for every Berezin algebra A a set &, is defined, and that for every
homomorphism p of A into A" amap p of &, into & ,.. If p,p, = p,0, for arbitrary
homomorphisms p,,p,, we say that the collection of the sets &, and maps g
determines the superspace’ & =(&,,p); the set &, will be called the set of the
A-points of &. The set & , corresponding to the algebra 4 = 4°° = R will be called
the underlying space of the superspace & and is denoted by &,.

Let us consider a set U = &,. We say that a A-point e lies over U if for every
homomorphism p of A into R the point g(e) belongs to U. The set of the A-points
lying over U will be denoted by &Y. It is easy to verify that p(€Y) = &Y, for any
homomorphism p of A into A'. Therefore the sets &Y and the maps f determines a
superspace &Y, we will say that this superspace is a subsuperspace of & over U.

The simplest example of the superspace is R”?; the underlying space of R4 is
RP. If U is a domain in R? then the subsuperspace (R”*9)V of R?4 over U is called a
(p, g)-dimensional superdomain.

A morphism 7 of the superspace & = (&, p) into the superspace &’ = (&, ') can
be defined as a collection of the maps 7, of &, into &, satisfying the condition
p't,=1,4p for an arbitrary homomorphism p of 4 into A".

The morphisms of R?4 into R?*4" can be described easily. Let us consider the
AP4-point a=(u!,...,u?, &',...,&%) of RP4 (here u’,...,uP, &',...,eP are the
generators of A47°9). From Lemma 1 one can deduce that every A-point b of R?*4 can
be represented in the form b = j(a), where p is a homomorphism of 474 into A. It
follows from this assertion that the morphism t of R?*4 into R?"4 can be completely
characterized by means of the A”9-point a’ = 1 ,.,(a) of RP"?. We see that there
exists a one-to-one correspondence between the morphisms of R”4 into RP*4" and
the AP*9-points of R?"?". Using Lemma 1 we obtain the following

Lemma 2. There exists a one-to-one correspondence between the morphisms of RP-4
into RP" and the homomorphisms of AP"9 into AP4.

The morphism 7 is an isomorphism if all 7, are one-to-one maps.

We say that the superspace G = (G 4, p) is a supergroup if all sets G , are provided

2 Using the concept of the functor, we define the superspace as a functor acting from the category of the
Berezin algebras to the category of sets
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with a group structure, and all the maps g are homomorphisms. Similar definitions
can be given for a linear superspace, the Lie superalgebras, etc.

It is useful to note that for every Z,-graded space E = E, + E, one can construct
a linear superspace, assuming that the set of the A-points & , consists of the linear
combinations ) Ae;, + Y u;f;, where 1; and p; are even (odd) elements of 4, e,€E,,
f;€E,.Ifin the Z,-graded space E = E,, + E, the operation [x, y} is determined, one
candefine naturally the corresponding operation in & ,. In the case when the axioms
of the Lie algebra are satisfied for the operation in &, we say that E is a Z,-graded
Lie algebra with respect to the operation [x,y}.

The supergroup G acts in the superspace & if for every A the group G, actsin &,
and

Po4(e) = @5 (ple))

for every homomorphism p of the Berezin algebra A into the Berezin algebra A'.
(Here ¢, denotes the transformation of & ; corresponding to ge G ,, the maps of &,
into & ,, and of G, into G ,. corresponding to p are denoted by the same symbol g.)

The coset superspace &/G (the space of orbits of G in &) is determined as a
collection of the sets & ,/G , and maps p of & ,/G , into & ,./G , induced by maps j of
&, into & 4.

The concept of the superspace is too general for our purpose. The most
interesting superspaces are supermanifolds. The superspace & =(&,,p) will be
called a (p, g)-dimensional supermanifold if there exists such a regular covering
U ={U,} of &, that any subsuperspace & of &, over U, is isomorphic to a (p, q)-
dimensional superdomain for U, e%.(We say that the collection % of the sets U, is a
regular covering of &, if every point e &, belongs to a finite number of the sets U,,
the intersection U,nU,e% for every U,e, U,e%, and for arbitrary points e,
e,e6, one can find non-intersecting sets U,, U,e% containing e; and e,,
respectively.)

A supergroup G =(G 4, p) is called the (p, g)-dimensional Lie supergroup if the
superspace G is a (p, q)-dimensional supermanifold.

One can check that the definition of the supermanifold and of the Lie supergroup
given above are equivalent to the standard ones [8].

There exist various modifications of the definition for the superspace. For
example, one can assume that the sets &, are defined only in the case when A is a
Grassmann algebra. One can impose the condition that the sets & , are topological
spaces or smooth manifolds; then the maps g must be continuous or smooth,
respectively?. For every modification of the definition of the superspace we can give
the corresponding definitions of the morphism, the supergroup, the supermanifold,
etc. It is assumed further that in the definition of the superspace A runs over the
Grassmann algebras, &, is a smooth manifold, and 6 is a smooth map. A
correspondence between the present definition of the superspace and other
definitions will be studied in a separate paper.

3 Considering the superspace as a functor, we can assume that this functor is defined on the category of
the Grassmann algebras or on the category of Z,-graded supercommutative algebras and takes values in
the category of the topological spaces, in the category of smooth manifolds, etc.
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Every element we A7>? determines a A-valued function on R%?. (If w is given by
(1) the value of this function at the point z=(x',...,x?, 0*,...,0%)eR%? can be
obtained by means of the substitution of x*,...,x?, 8%,...,0% in place of u*, ..., u?,
¢',...,¢%) Therefore a formal linear combination ) A, where LeA, w,eA”4
determines a A-valued function on R%? as well. The functions on R%4 obtained by
means of this construction will be called the A-functions. (There exists a one-to-one
correspondence between the /A-functions and the elements of the tensor product
A ® AP %) For every homomorphism p of the algebra A into the algebra A’ one can
define a map of the set of A-functions into the set of A’-functions replacing the
coefficients Z; in the linear combination ) 4w, by p(4,). One can define naturally the
concepts of even A-functions and odd A-functions.

The map ¢ of R4 into R% 4" will be called a A-map if the even coordinates (odd
coordinates) of the point ¢(z) zeR%? are even A-functions (odd A-functions,
respectively) on R%%. The set of all A-maps of R%4 into R%-?" will be denoted by
U 4(p,q|p’sq’). Every homomorphism p of an algebra A into an algebra A’ generates
amap p of % 4(p,qlp’,q’) into % ..(p,q|p’,q’). The sets % ,(p,q|p’,q’) and the maps p
determine a superspace % (p,q|p’,q’) the superspace of the maps of R?*? into R4,

It is noteworthy that a composition of the A-maps is also a A-map. (The proof of
this assertion is based essentially on the fact that A is the Grassmann algebra. Every
element 1€ A can be represented in the form m(4) + n(A), where m(4) is a real number,
and n(4) is a nilpotent element of A; we apply the Taylor expansion with respect to
the nilpotent elements. If we consider the Berezin algebras A, one can find such
A-maps that their composition is not a A-map.)

The set of invertible A-maps of R?*4 onto R4 will be denoted by #%7; this set can
be considered as an infinite-dimensional Lie group with respect to the composition
of the A-maps. The groups %#%? determine the supergroup £?4 (the supergroup of
transformations of R?%),

A linear A-map of R?? into R can be represented in the form

x"=x*M"b+ 6* M2,
0% =x*ME + *M?,

where M5, M? are even elements of 4 and M2, M” are odd elements. We say that the
linear map is regular if the rank of m(M®) equals min (p, p’) and the rank of m(M?)
equals min (¢, ¢") (i.e. these ranks have the maximal possible values). The regular A-
maps of R”?into itself are invertible; the groups GL ,(p, g, R) of the invertible linear
A-maps determine the supergroup GL(p,¢,R). A composition of the maps
determines the action of the groups GL (p, g, R) and GL (p’, ¢, R) on the superspace
RL(p,qlp’,q') of the linear regular maps of RP? into RP"Y (the A-point of
RL(p,q|p’,q’)is a regular A-map of R4 into R?"?). If p < p’,q < q’ one can define
the superspace G(p,q|p’,q)) of (p,q) planes in RF"Y as the coset space
RL(p,qlp’,q")/GL(p, g, R). One can identify this superspace with RL(p’,q’|p’ — p,
q'—q)/GL(p' —p,q' — ¢, R). (The A-point of G(p, q|p’,q’) is the (p, g)-dimensional A-
plane; it can be defined by means of the map of R”*?into R*"“ or by means of a set of
(p' — p) even and (¢’ — q) odd equations.) A straightforward generalization of the
standard definition is used to define the differential of the A-map at a A-point. This
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differential can be considered as a linear A-map. If the differentials of the A-map at
all the A-points are regular, we say that the A-map is regular. A regular A-map ¢ of
RP-%into R4, withp < p’, g < q’, determines a (p, q)-dimensional A-surface in R?"4';
the A-maps ¢, and ¢, determine the same A-surface if ¢, can be obtained from ¢,
by means of a reparametrization. (In other words, the superspace of (p,q)-
dimensional surfaces is the space of orbits of the supergroup #?:¢ acting on the
superspace of regular maps of R?? into R?+?".) Our definition of the A-surface is
local; the standard considerations permit one to get a global definition of the A-
surface. The A-map of R”? determining a (p,q)-dimensional A-surface can be
considered as a parametric equation of the A-surface. From another point of view, a
(p, 9)-dimensional A-surface in R can be determined (locally) by means of p’ — p
even and ¢’ — q odd equations f*(z) = 0, /*(z) = 0, where zeRE %', (The A-functions
(f*, £*) determine a map of R%4 into R ~74'~4; the differential of this map must be
regular at the points of the surface.) Of course, the equations f¥(z) =0, /*(z) =
where

T @) =1* @i (2) +17 @} (2), 3)
T @ =% @i (2) + 1 (22,

<11;'§f(2) n’;r(Z)j
m(2)  me(2)
is invertible, determine the same A-surface as the equations f*(z) = 0, f*(z) = 0. It is
convenient to write the equations for the surface in the form f*(z)=0, where
fX=(f* f7)and K = (k, x); then the relations (3) take the form f%(z) = [ ¥ (z)y%.(z
One can easily define the tangent A-plane to the A-surface at a A -point. If the
A-surface is determined by means of a A-map of R4 into RP"4', one can define the
tangent A-plane using the differential of this map; if the A-surface is determined by
equations one has to linearize these equations at the point under consideration. The
points of the tangent A-plane will be called the tangent A-vectors.
If the A-surface is determined by equations f¥(z) = 0, then the tangent A-vector
EM satisfies the condition

and the matrix

w0S”

The A-basis EY in the tangent A-plane will be called the tangent frame for the
A-surface. We assume that EY = (EM, EM), where EM are even vectors, EM are odd
vectors, a=1,...,p,a=1,....q

If the A-surface is defined by means of a parametric equation z¥ = p™(v) (i.e. by
means of a A-map ¢ of RP4into R?"?'), then every (p, q)-dimensional A-vector EX can
be interpreted as a tangent vector to the surface. (This vector determines an element
in the tangent plane by the relation EM = E'(8¢p™/0v")). The tangent vector E-
transformers under a reparametrization = A(v) in the standard way: EL=
EL(0L/0v*). The tangent co-vector can be defined according to the transfor-
mation law E, = (05%/0v")E, .
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Let us consider an automorphism J of the superspace R??:27 trans-
forming a A-point (x',...,x*2, 6,...,0%) into the A-point (— x2,x',..., — x2?,
x?P71 —0%0',...,—0%,0%"). Instead of the coordinates x% 6* taking values
in the real Grassmann algebra A we can characterize the point of R2P:24
by means of coordinates w' =x! +ix?,... WP =x2P"1 4+ ix?? v =0 +ih% V1=
62471 +i6*? taking values in the complex Grassman algebra. The morphism J
transforms the point with the coordinates (w',...,w?,v!,...,v9) into the point
(iw!,...,iwP,iv},...,iv?). Hence we can consider the superspace R*72¢ with the
automorphism J as a complex superspace C”?; the space C”? has the complex
dimension (p,q) (i.e. the point of C”? has p complex even and g complex odd
coordinates). In the complex Grassmann algebra an involution (4 — A) is defined,
satisfying the conditions

(AB) = BA, (1A) =74, & = ¢*
(here &* are generators of the Grassmann algebra, A is a complex number, 4 and B
are elements of the algebra). Using this involution, we define the involution in
CP? transforming any point (w!,...,w?,v!,...,v%) into (.w_l, WP ,v_").

The notions introduced above for the superspace R?>4 can be defined also for the
superspace CP-4. It is important to note that one can introduce the notions of the
complex linear A-map ¢ of CP9 into C?"7 (the real linear A-map ¢ of R??24 into
R2?":24" is a complex linear map of C?% into C?7 if pJ = J¢.) The A-map of R?P-24
into R2?" 29 can be considered as an analytic map of C?%into C?"?' if the differentials
of this map at all points are complex linear A-maps.

Later we will consider real A-surfaces in C?4. The A-surface in C”*? having a real
dimension (m, n) can be determined by means of 2p — m even equations *(z,Z) =0,
and 2g —m odd equations f*(z,Z) = 0 (f* and f* are real A-functions here).

Let us consider the complexification 474 of the algebra 474 (the elements of 474
can be represented in the form (1) where f, , (u',...,u?) are smooth complex
functions of real variables u!,...,uP). Using, as before, the Taylor expansion with
respect to the nilpotent elements, we can replace u',...,u?, ¢',...,¢% in (1) by
wh ., wP, v, vE where m(w?),..., m(wP) are real. We will say that the point
(wt,...,wP,v,...,v) of CP4is simple if m(w'),..., m(w?) are real. The set of p’ even
and ¢’ odd elements of /17*4 generates the map of C% 7 into C%¢', defined on simple
points of CP4, It is easy to check that this map is analytic.

3. Supergravity and the Complex Geometry

The action functional in the supergravity can be considered as a functional defined
on the superspace of (4,4)-dimensional surfaces in the complex superspace C*2.
This functional can be represented as a surface integral; the integrand (the action
density) is expressed in terms of the first and the second derivatives of the functions
present in the equations determining the surface. The density is invariant with
respect to analytic transformations of C*? preserving the supervolume. These
properties determine the density uniquely (up to a constant factor) [9], [3].

We will show how one can get a simple expression for the action functional of the
supergravity using some notions of the complex geometry.
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Let us denote by x?,..., x? the even coordinates in C?*% and by 0*, ..., 0 the odd
coordinates; we use also the notation z#=(x% 6%, when the even and odd
coordinates are considered simultaneously. The symbol 7= (x4, 6% will be also
used instead of z% = (x°, 0“) _The derivatives 0/dx“, 6/0x", 6/06°, 0/0%, 6/0z*, 0/0z*
will be denoted by d,, 0;, 0 04, 0,4, respectively. The (m, n)-dimensional surface Q

a va Yo a’

in C??will be descrlbed by means of 2p — meven equations f k(4 ") =0and2g—n

odd equations f*(z4,z%) =0, where f*=f* f*=f*. These equations can be
represented in the form

foet 7 =, (M

where X = (f*, %) is the map of CP1 into the real superspace R??~™24~™ The
equations of the tangent plane (tangent subspace) T,(2) to the surface Q2 at a point z
are

dz40 , f¥ + dz43,; fX =0

The plane T,(Q) is a real (m,n)-dimensional plane. The maximal complex plane
contained in T,(Q) will be denoted by C,(Q). The equations of the plane C,(Q2) are

dz48 , fX =0. ®)

(The complex plane is invariant with respect to the multiplication by i, i.e. with
respect to the automorphism J transforming (x',...,x?, 0%,..., 09 into (ix',...,ix?,
i01,...,i0%.) The maximal complex plane contained in a real plane K is described as
the intersection of the planes K and JK.) We assume that the equations (2) are
linearly independent; the complex plane C,(2) has the complex dimension (m — p,
n—q). In the case of the supergravity m=4, n=2, p=4, ¢ =2 and the complex
dimension of C,(Q2) equals (0, 2).
The Levi form for the surface € is called the expression*

iy} 3)

considered on the complex subspace C, (). (In other words, we assume that the
differentials in the Levi form are constrained by the relations (2).) The Levi form may
be considered as a Hermitean form on C,(Q) taking values in the superspace
R2P~m™247" ]t is easily seen that the expression (3) is invariant with respect to
analytical transformations z — @(z). As it was mentioned above, the surface Q may
be fixed by means of various sets of equations. The equations f%(z,z) = 0 and the
equations f¥(z, 7) = 0 determine the same surface in the case where fX =f¥'»X, yk,
being an invertible matrix. If the functions /X are replaced by fX the expression (3) is
transformed into

O = XnE + dz(+ 0, X Byn.
+ 8 X 04 £ X0 ,pnK,) dZP

Hence it is clear that under the conditions /¥ =0, dz48 , /¥ = 0 the transformation

4 The sign + (which emerges in this section) denotes that we omit inessential factors ( — 1) in the sums
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law for the forms w* is quite simple
* = w¥'nk. 5)

Thus the expression (3) is transformed according to (5) in the complex tangent
subspace C,(Q). By definition, the expression (3) in the subspace C,(£2) is the Levi
form for the surface Q. So (5) gives the rule according to which the Levi form is
changed at variations of the equations determining the surface Q.

Now we turn to the supergravity. In this case the surface Q is determined by a set
of four even equations f*(z, Z) = 0. The equation of the complex tangent plane C,(Q)
is written as

dx?d, f* + d0*8,f* =0,

This equation enables one to express dx* via d6* so d0* may be considered as co-
ordinates in the complex tangent plane. (Recall that it was assumed that the equa-
tions determining the complex tangent plane are linearly independent; this is true
for a generic surface.) Of course, another choice of the coordinates is possible in the
subspace: one may take the coordinates v* related to d* by means of the relation
df* =v*R%. Then dx®=v*R% where RS and R% satisfy the condition R4d,f*+
R%0,f*=0. The vectors R{ =(R4%,R%) and R4 =(R%,R5) provide a basis in the
plane C,(Q). In terms of the coordinates v* the Levi form is written as follows

k _ 1k, Ak
" =TV,

where

62 k .
I, =Rj LR (6)

*ozAo T

This expression will be called the Levi matrix in the basis Rf.
Itis appropriate to introduce a matrix I't = I'%; 62*, where ¢* are elements of the

Pauli matrices for i =1, 2, 3, and of the unity matrix for i =0, and to consider a

quantity I =det(I'¥). Using the Levi form one can get the action for the

supergravity. If the Levi matrix is constructed with the coordinates d6* in the

complex tangent plane (i.e. R = ¢%) then the action is

det(gir:) 3|F|_1/3l;l5(fk(2,2—))dzdz“, o

where C is an arbitrary constant (see [10]).

If the Levi matrix is constructed for an arbitrary basis R¥, the expression for the
action functional is somewhat more complicated. Let us consider the forms
0¥ = dz*cX satisfying the conditions Ber (¢%) = 1 (the unimodularity) and o =, f*.
(In other words, ¢* = dz40,, f* and the forms ¢” complete the system ¢* so that a
unimodular system is obtained.) The basis R4 in C,(Q) is used to construct the
matrix W% = R{ 7% ; its determinant will be denoted by W. It is noteworthy that W is
determined completely by the functions f* and the basis R4 (i.e. W is independent of
the choice of the forms ¢”). Actually, the forms ¢* may be substituted by 6% =
0'Q% + ¢*Qj; the unimodularity is intact if det(Q%*)=1. The form g’ is trans-
formed iPto 6% =04Q%+0,/*0F, and the matrix W% is replaced by W% = W}Q*
so that W=det(Q%)- W= W.

4/

S@=c|
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At an arbitrary choice of the basis R in C,(Q) the action may be rewritten in the

form
S@Q) =C[|W*3|r|" BT 6(f 2, 2))dzdz. (8)
k

Note that the expression (7) is obtained from (8) putting
= (det (0, %)) /? do™.

First of all, we verify that (8) is determined by the surface Q, i.e. is independent of
the choice of the equations f* =0, as well as of the choice of the basis R4. If one
replaces the equations f* =0 by other equations J*=0,wheref* = 1. ¥, the matrix
I, must be replaced by I* M—nk %, hence I'=detn-T'. The matrices ¢* are
replaced by 6°=rnk¢*; in order to preserve the unimodularity, one should put
6* =(detn)"/?0*, so that W7%=(detn)'?W%, and W=dety-W. The product
[T16(f*(z, 2))is divided by det # at the substitution in view. The substitution does not

k

change the integrand in (8), as 4/3 + (— 1/3) = 1. If one would like to change the
basis, R4 = $4R4, the matrices W% and I'%,, are transformed as follows: W = S5 W,
and I, —F" S"S"

Hence W det (W ) W and I = (det (52))*. Since 4/3 + 4(— 1/3) = 0, the integrand in
(8) is not changed.

Let us show that the expression in (8) may be considered as the Lagrangian for
the supergravity. To this end one has to verify that the integrand is not changed by
any analytical transformation @(z) preserving the supervolume. Because of the
indicated above invariance of the Levi form under the analytical transformations,
the Levi matrix I'%;, constructed for the surface Q and for a basis R in C,(Q),
coincides with the Levi matrix constructed for a surface O, fixed by equations
f*(z,7)=0 and for a basis R# in the plane C,(®Q). (The functions f* and the basis
R% are related to f* and Rf as follows:

2,5 =T, 8. R = RI T
Because of the supervolume conservation, the Berezinian of the matrix 0,@ is unity,
so the unimodular system of the forms ¢* is transformed into another unimodular
system of the forms 6X at the change of the variables z — ®(z). Having this fact in
mind, one sees that W(f*, R4) = W(f*, R4). To conclude, the density of the action
functional (8) is invariant with respect to analytical transformations preserving the
supervolume, so it may be considered as the Lagrangian density for the super-
gravity. (Of course, this result may be checked also by means of a direct comparison
with other known forms of the action functional for the supergravity.)

It is remarkable that the above approach also enables one to construct a multi-
dimensional extension of the supergravity Lagrangian. Let us consider a surface Q of
the real dimension (m, n) in the complex superspace CM-N. Suppose the surface is
fixed by the equations f%(z#, %) = 0. Introducing a basis R{ in the complex tangent
subspace, one gets the Levi matrix in the form

sz
I'fo=+tRp—"— Ags

z=d(3))

R.
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The Levi matrix may be considered as the matrix of an operator acting from the ((m
— M)? +(n — N)?, 2(m — M)(n — N))-dimensional superspace into a 2M —m,2N
— n)-dimensional superspace. We restrict ourselves to the case where (m — M)? + (n
— N)>=2M —m, 2(m — M)(n — N) = 2N — n, so that the dimension of the space in
which the operator I’ is defined coincides with the dimension of the space in which it
takes its values. In this case the determinant, I', of the operator I is meaningful. In
the situation in view it is possible to extend the arguments, used for the supergravity,
to the multidimensional case and to construct an action functional defined on (m, n)-
dimensional surfaces in CMN and invariant with respect to the analytical
transformations preserving the volume. (The supergravity itself is obtained at m = 4,
n=4, M =4, N =2) The action functional looks like

S@) =C[IWPILT[]o(f*(z 2))dzdz, ©)
k

where t=[(m—n)— (M — N)]/[3(M — N)—(m—n)], p=t—1, the symbol I
stands for the Berezinian of the Levi matrix, constructed for the basis R;' in the
complex tangent subspace. As for W, it is defined as follows. We complete the system
of the forms ¢* = dz4d , f ¥ with the forms ¢2 = dz%¢9, so that a unimolar system of
the forms is obtained. Then W is the Berezinian of the matrix W¢ = R ¢9. As in the
supergravity, it is possible to verify that W is independent of the choice of the system
of the forms ¢2, while the integrand in (9) does not depend neither on the choice of
the equations for the surface €, nor on the basis R;'. Thus the functional S(Q) is
determined completely by the surface Q, so it may be considered as the action
functional. The integrand in (9) (the action density) depends on the first and second
derivatives and is not changed by analytical transformations preserving the
supervolume. By means of the methods used in [9], [3], one can see that any
functional having these properties equals that given in (9) times a constant factor. (In
the work [3] the case n=2N, m = M = N? was investigated.)

4. G-Structures

Let G denote a supergroup consisting of linear transformations of the (p,q)-
dimensional superspace R?”% (In other words, G is a subgroup of GL(p,q,R).) A
transformation matrix belonging to G will be denoted by g5&.

Two frames EY and EY on a (p, q)-dimensional surface Q will be called G-
equivalent, if EM can be obtained from EY by means of a transformation belonging
to G:

EM =gBEM. (1)
(The frame EY consists of p even vectors EM a=1,...,p, and ¢ odd vectors
EM =1,...,q. If a frame contains complex vectors, we assume that it contains also

the complex conjugated vectors.) Suppose that a set of the G-equivalent frames is
fixed at every point of Q. Then we say that these sets determine the G-structure in .
The frames belonging to these sets will be called admissible (or compatible with the
G-structure).

It is convenient to describe the G-structure in Q@ by means of the frame field
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EM(x). Two frame fields E% (x) and EY (x) determine the same G-structure if they are
related by the formula

E}(x)= ga(x) E5 (x), 2

where g8(x) is a G-valued function.
Using the frame field E¥(x), we can define the differential operators

0
oxM’
(If the surface Q is determined by a parametric equation, then x™ in (3) are
coordinated in Q and the components of EY must be calculated with the aid of the
coordinates xM. If Q is a surface in RP"% satisfying the equations /*(x) = 0, then x™
must be considered as coordinates in R?4". The frame E¥ (x) satisfies in this case the

equations EY (0 /%/0x™)=0 on the surface Q.)
Consider a function t5;(x) defined by the formula

[04, aB} = Tﬁa(x)ac 4

on the surface Q. (As usual, [0,,05} = 0,05 + 050 4, the sign + stands for both odd
indices A, B; the sign is —in all other cases.) If

E¥(x) = ¢5(x) E}'(x),

©)

04= E%(X)

~ -, O
0y4= E%W = gﬁ(x)as’

then
[5,4»53} = %SB(X)gC»
where
T4s(0) = T55(x) + (950,95 + 95095~ M)E (5)

(here 7 is connected with t via tensor transformation law). Let us denote by .7 the
space of the tensors 15 satisfying the conditions 4, = + 1§, and by .o/ the subspace
of 7 consisting of tensors having the form IS, + [ ,, where the matrix [, belongs to
the Lie superalgebra of G for a fixed B. The 7 -valued function t$,(x) determines a
function 0p(x) taking values of 7 /o/. The function ¢$,(x) will be called the
structure function for the G-structure. If we replace , by 0, = g5(x)0, then it
follows from (5) that ¢, transforms covariantly.

A gauge field (w3),, taking values in the Lie algebra ¢ of the group G can be
considered as the connection in the G-structure. The torsion TS, for this connection

is given by

T4s =14+ 05+ 05,
where w4, = E}(09),,- The structure function ¢ can be considered as a part of the
torsion which does not depend on the choice of the connection.

One can say also that the structure function is a part of t$, which depends on the
values of the vectors E¥(x), but is independent of their derivatives. Let us consider
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the complement % to the linear subspace .«/ in the space 4. The natural map of
onto J o/ generates a one-to-one correspondence between 4 and 7 /.«/. Hence we
may consider the structure function as a $-valued function.

The map of the surface Q2 onto itselfis called an automorphism of the G-structure
ifit transforms every admissible frame into an admissible one. The transformation of
any surface into another one, at which admissible frames are transformed into
admissible frames, is called the G-structure isomorphism.

Let us consider a few examples. If a Riemannian metrics is introduced in a p-
dimensional surface, it is natural to consider orthonormalized frames as admissible.
An orthonormal frame is defined up to a transformation from the group O(p), so the
surface in view is provided with the O(p)-structure. Inversely, if the O(p)-structure is
given, a Riemannian metrics is determined. Automorphisms of the O(p)-structure
are transformations conserving the Riemannian metrics (isometrices). The struc-
ture function for the O(p)-structure vanishes. (An orthonormal frame at a point x may
always be included into the orthonormal frame field, for which 5, vanishes at the
point x. In other words, in this case .« = 7, so that ¥ =0.)

Now suppose .# = C™, the complex space. Let an admissible frame in C™ be the
frame containing the vectors E¥ of a complex basis in the space C™ and their
complex conjugated vectors EX. The admissible frames are determined up to a non-
degenerate complex linear transformation. So selecting such frames we introduce
the GL (m, C)-structure in the space C™. Evidentally, analytical transformations of
the space C™ are automorphisms of this GL (m, C)-structure. Note that it is not in
every case that the frame of complex vectors and their conjugates is the most suitable;
sometimes it is useful to consider systems where some vectors, or even all of them, are
represented by their real and imaginary parts.

The above example admits an evident generalization. First of all, the complex
space C™" may be replaced with a complex superspace C™". The supergroup of
analytical transformations of the space C™" may be considered as the automor-
phism group of the GL (m, n, C)-structure in C™".

If the class of the admissible frames in C™" is restricted by means of the
additional constraint Ber (E¥) = 1, the frames are determined up to a complex linear
transformation preserving the supervolume; the transformation group will be
denoted by SL (m, n, C). The automorphisms of the SL (m, n, C) structure in C™" are
the supervolume preserving analytical transformations.

In general, if G is a subgroup of the supergroup GL (p, g, R) then the G-structure
may be introduced in the space R? by means of the frame field E%(x) = 6% (The
admissible frames for this structure are the frames of the type g%, which are matrix
elements of a matrix geG.) The G-structure isomorphic to the structure described
here for the space R™? is called the trivial G-structure. The term “the flat G-
structure” is used instead of “the trivial G-structure” more often in the mathematical
literature. We prefer our version of the terminology, since the geometry of the flat
superspace is described in terms of a non-trivial G-structure. The automorphisms of
the trivial G-structure in R”*? are transformations with the Jacobi matrix belonging
to the group G.

The described GL (m, n, C)-structure and SL (m, n, C)-structure in C™" = R2m2»
are the trivial G-structures.
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5. Induced Structure

Let G=GL(p',q', R) be a matrix group. The group G acts naturally in the set of
(p, q)-dimensional subspaces of the space R?"?. Let us fix a (p,q)-dimensional
subspace E; with no loss of the generality one can assume that this subspace is
spanned by the first p even vectors and g odd vectors belonging to the standard basis
in R?"9". Let G be a subgroup of G containing the transformations under which the
subspace E is invariant. The elements of G generate transformations of E, the
corresponding transformation group for the subspace will be denoted by G'.
Identifying E with R”? one has G’ = GL(p, g, R). The subspaces that are obtained
from the fixed subspace E by means of transformations belonging to the group G will
be called regular. Let us consider a (p’,q’)-dimensional manifold provided with
G-structure. A surface Q < . of the dimension (p, g) will be called regular if all the
tangent planes are regular. (Indication to an admissible frame in the tangent plane to
M enables one to identify this plane with R?"?. So a tangent plane to Q may be
identified with a (p,q)-dimensional subspace of the space R?*?. Whether this
subspace is regular is independent of the choice of the admissible frame.)

The frame in a regular surface Q will be called admissible if it may be continued
up to an admissible frame in the manifold .#. To be more precise, if even vectors
ris...»r, and odd vectors s,,...,s, form a basis in the tangent subspace of Q this
basis is called an admissible frame if there are such even vectors ¥pi1s--->1, and odd
vectors s, ,,...,S, that the vectors ry,...,r,,s,,...,s, form an admissible frame in
. 1t is easily seen that two admissible frames in Q are related by a transformation
belonging to the group G'. Thus the defined concept of the admissible frame in
provides the regular surface Q with a G'-structure.

Some examples illustrating the introduced notions are presented below. If /# is a
Riemannian manifold (i.e. G = O(p’)) then G' = O(p) and all the surfaces are regular.
The induced O(p)-structure is generated by the Riemannian metrics defined in the
surface Q = .4 as usual.

If 4 is a m-dimensional complex space C™, then the GL (m, C)-structure is
introduced in it naturally. For a generic surface Q = .# of a real dimension p, a
G'-structure is induced naturally, where G’ is a group described as follows. Consider
a subspace E of C™ determined by the k, equations

Imx™ ktl =0, .  Imx™"=0,

where xM =uM 4 iv™ (1 £ M < m) are coordinates in C™", and k,=2m — p. The
group G contains complex linear transformations of the space C™, under which E is
invariant. Clearly, these transformations are

X" =alx’, (1)
x4 =blxs + cdxe,
where 1 <d, e<p—m, p—m<r, s<m and the matrix elements a are real.
The group G’ is described as the group of the transformations of the subspace E
written as (1). It is suitable to describe a point of E by means of k, = 2m — p real

coordinates xP~™*! ... x™ and of m=ky,=p—m complex -coordinates
x!,...,xP~™. Suppose a subapace E'<E is fixed by means of the equations
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xP7m*l =...=x™=0(. The coordinates x*,...,x?"™in E’ are complex, so it may be
considered as a complex space. Elements of G’ are linear transformations of the
space E transforming E’ into itself, which are complex linear transformations in E’.

The G'-structure in a surface embedded into a complex space, as it was described
above, is called the CR (Cauchy—Riemann)-structure. The admissible frames for this
structure are as follows. In every tangent subspace to the surface Q a complex
tangent subspace is indicated; in the general case its dimension is p — m. A frame is
called admissible if it contains vectors forming a complex basis in the complex
tangent subspace and the complex conjugated vectors (other vectors of the frame are
arbitrary).

It is assumed that in the space R*™=C™ a basis is chosen, containing the
complex vectors 0/0x*, a=1,...,p — m, the complex conjugated vectors d/0x® and
real vectors d/0u” and 0/0v", r =p —m+ 1,...,m. Then the complex vectors, their
conjugates and the first k, = 2p — mreal vectors of this basis form a basis in the space
E, its real dimension being p. Here and in the subsequent discussion of this example
we shall assume that the indices a, b, ¢ run from 1 up to p — m, the indicesr, s, t, k run
from p —m+ 1 up to m, and the index M runs from 1 up to m.

If the surface Q is given by k, =2m — p real equations f*(x)=0, then the
admissible frame contains the complex vectors® 0, = EM§/0x™, satisfying the
equation

E) oy f*= @

the complex conjugated vectors 0;= EM 6/8x and arbitrary tangent real vectors
0,=EMo/oxM + EM(/0xM, i.e. the vectors satisfying the relation

EMof*/oxM + EMo f*jox™ = 0. 3)
It is suitable to impose another constraint upon the arbitrary tangent vectors,
0 k
EM ai = idk. @)

Let us consider the structure function for the CR-structure in . The
commutator of the vector fields 8, = EM(x, x)0/0x™ and 0, = E}(x, X)9/0x™ belongs
also to the complex tangent plane (i.e. the field satisfies (2)). This means that in the
decomposition

[040,] =130, + ffzbéé + 1540, ®)

the coefficients 7, and 7, vanish. Thus one gets a constraint on the structure
function for the induced CR-structure.
Next we investigate the part of the structure function related to the commutator

0 - 0 —v{ 0 0
(5,05) = B B )ax EM(a_MEM>ax_M ©)

5 The vector field EM(x) and the corresponding differential operator E(x)d/0x™ are often identified
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Writing [d,,0;] in the form
0 0 0 0
[aaaab] - TabEc Ox aAM + rabEiua M +Tab(EII'Wa—M+ E'Ma M) (7)

and assuming that the relation (4) holds, it is easy to find the correspondence
between the coefficients 77; and the Levi form. Actually, applying the operator J,, to
the equality (2) one gets

2 k
MEM _FM M
B B g = B aME oxM’

On the other hand, it follows from (6), (7) that

0 0 0 0

abEc Ox M+TabE;Ma M _EM(a MEM)@X (8)
Applying the operator equality (8) to the function f* and taking (2), (4) into account
we obtain

aka
itk = EMEM _— -~ peTEE

©

The right hand side is identical to the Levi form (see Sect. 3).

The parts of the function © which were not considered here do not contribute to
the structure function of the CR-structure. In other words, we may assume that the
structure function takes its values in the space ¥ = .7, determined by the vanishing
of all the components of the function t, except ,, 1%, t";, and their complex
conjugates. Thus for an arbitrary structure with the considered group (i.e. the CR-
structure) one may assume that the structure function takes its values in the
described space €. If the CR-structure is generated by the induction from the trivial
GL (m, C)-structure, then the constraints 75, = 0 and 7}, = 0 are imposed.

It is seen that in the example in view the structure function of the induced
structure is not arbitrary. Now we will show the constraints specific for the structure
function of the induced structure in the general case.

Let Q be a (p, q)-dimensional surface in the space R4, provided with the trivial
G-structure. Suppose, as in the previous discussion, that the surface is regular, i.e.
that the tangent plane in any point of the surface Q is obtained by means of a
transformation, belonging to the group G, from the (p, g)-dimensional subspace
E = RP"9 spanned by the first vectors of the basis in R?*4". An admissible frame 1n the
surface Q2 may be continued up to an admissible frame in the trivial G-structure. The
admissible frames in the trivial G-structure are EY = g%, where g% are elements of a
matrix geG. Respectively, an admissible frame for the surface Q is E¥ = g}'(here and
in the following the indices R, S run through the first p values in the even sector, and
first g values in the odd sector). Of course, it is supposed that the vectors E¥ are
tangent to the surface.

Let us consider the field E¥(x) of the admissible frames in the surface Q and
continue it to the field E¥ (x) of the admissible frames for the trivial G-structure. (The
indices A4, B, C run through the whole set of p’ even and ¢’ odd values.) The structure
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function for the trivial G-structure vanishes, so
C
(04,08} = 500
where 1, is an element of .«7, i.e.
c __C C
Tap = lap T[54,

where 1S, belongs to the Lie algebra ¢ of the group G at any fixed B.

On the other hand the commutator [0z, ds} of two vector tangent fields to the
surface Q is again a tangent vector field. Hence 1S, =0, if A and A’ are in the first
group of the indices while C is in the last group of the indices (we mean that 7§, = 0if
A=R, A’ =R’ and Cis above p in the even case and above g in the odd case). Thus

[aRa aR/} = 'E;Sm'as’

and it is possible to find IS, in such a way that for a fixed R’ the matrix [ belongs
to the Lie algebra ¥,

Tree = lrre £ lxg and [Rp  Ilgp = 0.

(Here D is in the last group of the indices.)

The obtained information on the function t5,. leads to constraints on the
structure function of the induced G'-structure in the surface Q.

A natural question arises: is it possible to state that the G’-structure with a
structure function satisfying the above constraints is realized in a surface embedded
into the space with the trivial G-structure? In general, the answer is negative. It
results, in particular, from the fact that besides the constraints on the structure
function considered above (the first structure function), one may obtain also similar
constraints for the socalled second structure function (these constraints generalize
the Gauss—Codazzi theorem of the Riemannian geometry). However, a condition
may be indicated under which the constraints for the first structure function are
sufficient already for the possibility to embed the G’-structure into the trivial G-
structure. (Namely, one should impose the condition that a certain subspace of the
total matrix space would be involutive.) The aspects in view are considered in some
detail in a work by A. Rosly and the author [5]. In the case of the minimal N =1
supergravity it is possible to avoid application of the general results of [5], by
exploiting a special method (see Sect. 6).

6. Supergravity and G -Structures

As it was mentioned above, in the supergravity the role of fields is played by (4, 4)-
dimensional surfaces Q in the complex space C*2, while the action functional is
invariant under the group L of analytical transformations conserving the super-
volume. The group L may be considered as the automorphism group of the trivial
SL (4,2, C)-structure in C* 2. According to the general methods of Section 5, this
SL (4,2, C)-structure induces the SCR-structure® in any surface Q. By SCR we

6 Omitting the requirement of the super-volume conservation, one has a structure known in
mathematics as the Cauchy—Riemann structure, denoted also the CR-structure. This fact suggests the
notation for the structure in view, the SCR-structure, i.e. the special Cauchy—Riemann structure
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denote here the group containing the transformations like the following one
g = A2,
V= ALED + A%V, (1)

where Ay = (A—g), det (A4;) = det (A4j). Here &% a =1, 2, 3, 4 are real even coordinates
and v*(7), o« = 1, 2 are complex odd coordinates in the (4,4)-dimensional real space.
Writing down an arbitrary linear transformation in this superspace as follows:

o= E AL+ VP AL+ P AY,
Ve = E AT+ PG+ 43,
one may fix the SCR group by means of the conditions
A;=0, A3=0, 2
det (49) = det (43). 3)

For elements of the Lie algebra corresponding to the SCR group, these conditions
are substituted by

=0, 1r=0 )
=1 ()

We assume that the surface Q is generic. Therefore, in particular, the equations’
dz40 ,f* = 0, specifying the tangent complex plane, are linearly independent at any
point of the surface, so the tangent complex plane C,(€) is (0, 2)-dimensional.

Let us describe the SCR-structure in Q directly. We consider as admissible frame
field in Q a field containing two odd vector fields 8, = EM/0z™, « =1, 2, forming a
complex basis in the tangent complex plane C,(€2), two complex conjugated fields
0, = EM3/0zM, four tangent real vectors 9, = EM0/oz™ + EM3/0zM. A single condition
to be imposed for the even vectors J, is that the Berezinian of the complex matrix
EY = (EM, EM) be unity. (The requirement that , and d, are tangent to Q are written as
0,/*=0,0,*=0.)Itis easily verified that the described tangent frame to the surface
Q is determined up to a transformation belonging to the SCR group; thus our
definition of the admissible frame does fix the SCR-structure in Q. The definition in
view is invariant, evidently, with respect to the transformation belonging to the
group L. (If the surface Q' is obtained from Q by means of an analytical
transformation, the tangent complex plane is transformed again into a tangent
complex plane. Using this remark and the super-volume conservation for any
element of L, one gets the proof that any admissible frame in Q is transformed into an
admissible frame in Q')

An example of the construction is the induced SCR-structure in a surface in C*2,
corresponding to the plane geometry. The surface is given by the equation

Im x“ = 0*(c“),;07. ©6)

7 Asin Sect. 3, the complex coordinates in C*? are denoted by z* = (x 6%); the surface is given by four
real equations f¥(z,z) =0
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(As in Sect. 3, ¢’s here are the Pauli matrices.) The induced SCR-structure in the
surface may be given by the frame field containing the vector fields

9, = 8/00" + 2iat;0%9/ox,
0,=0/0x"+ 0/0%°.

Note that for the SCR-structure in the surface (6) the described operators d, coincide
with the so-called spinor covariant derivatives.

A subgroup of the supergroup L, containing the elements transforming the
surface (6) into itself, is isomorphic to the super Poincaré group. Hence, in particular,
the SCR-structure in (6) is invariant with respect to the super Poincaré group. (This
fact is intimately related to the commutativity of the spinor derivatives and of the
super-translations.)

Now we turn to a consideration of the structure function of an arbitrary SCR-
structure, with no preliminary assumption that the structure is obtained by
induction. The quantities

TZB’ T;ﬂ’ T;B’ ‘CZB - T:B (7)
may be considered as components of the structure function for the SCR-structure; in
other words, these quantities depend only on a value of the frame field at the point,
but not on the derivatives.

As it was seen in Sect. 4, in order to verify this statement it is sufficient to see that
the expressions (7) vanish in a space .o/ composed of elements represented as

the = lac + 15., where for any C the element l5. belongs to the Lie algebra of the
SCR-group. For example, in this space the combination tg; — 7;; may be written as

‘CZ/;—TZI;=1‘;B—IE‘,— Zﬁ—lﬁaz
=1l — ;=0

(The relations (4), and then (5), were exploited.)
It is remarkable that all the components of the structure function are expressed
in terms of the components (7). (In other words, any linear function in the space 7,
vanishing in .o/, may be represented as a linear combination of the expressions (7).)
The considered SCR-structure in the surface 2 = C*2 is induced by the trivial
SL (4, 2, C)-structure in C*2, so that constraints on the structure function do arise.
Applying the reasoning of Sect. 5, we get

T, =0, %,=0, 0;—1%=0. (®)

The first two constraints are evident: their meaning is that the (anti) commutator of
two vector fields, belonging to the tangent complex plane lies in the same plane.

Thus only the components 15 of the structure function are nontrivial for the
induced SCR-structure. The considerations of Sect. 5 show that this part of the
structure function may be identified with the Levi form. A more accurate statement
is as follows. As it was mentioned already, the SCR group acts in the coset space
T |/, where the structure function takes its values. It stems from the assertion just
formulated that the structure function for the induced SCR-structure in the general
case takes its values in a single orbit of the group action. This fact may be verified
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directly, or one may use the following arguments. It is known (see [12], [9]) that a
vicinity of a point in a generic surface may be reduced to the form

Im x* = 0%64,0" + ... ©9)

(higher-order terms are omitted) by means of a transformation belonging to the
group L. The omitted terms do not effect the structure function at the point x =0,
0 =0, so the structure function of the surface (9) coincides at this point with the
structure function of the surface (6), corresponding to the flat geometry. Thus we see
that the structure function for an arbitrary generic surface at any point is obtained
from the structure of the surface (6) at the point x=0, 6 =0, applying a
transformation belonging to the SCR group. This fact means that in the general case
the values of the structure function all belong to a single orbit.

The SCR-structure function over the surface (6) may be easily calculated with the
admissible frame field in the surface, as constructed above. The relation {0,, 6;} =
2igy;0, shows that ty; = 2iog; for the surface in view. The statement that for a
generic surface the structure function takes its values in a single orbit is equivalent to
the following fact. For any point z it is possible to represent 74(z) as 2idja5; C1C3,
where Aj is a real matrix, and Cj is a complex matrix, and they satisfy the relation
AjCE =67, det(Aj) = det(Af) = det (Cj) ™! #0.

The expression for the supergravity action functional over a (4, 4) surface Q in
C*? may be written in the form

S=C[|I|"*Pav, (10)

where I' = det(I'y), and the matrix I'y = t3; o2, The symbol dV means the volume
element for the surface, corresponding to the frame field fixing the induced SCR-
structure in Q. (By definition, the tangent frame at a point ze( is a basis for the
tangent subspace at this point, so it specifies the volume element in the tangent
subspace.)

Note first of all, that the expression (10) is independent of the choice of an
admissible frame field. In fact, the transformation law for t;; under local

transformations belonging to the SCR group is
2= A3t} CiCY,
where
A3 Cl = 5%, det(A5) = det (45) = det (C) ™" #0.

Hence |I'| = |T'| |det(A4%)| 3. Having in mind the transformation law for the volume
element, when a new admissible frame is introduced,

dV=|det (4)|-|det (4%)|~2dV=|det (A2)| "1 dV,

we see that the integrand in (10) does not depend on the choice of the admissible
frame.

In order to prove the expression (10) one may use the relation between t5; and
the Levi form, given in Sect. 5. This relation enables one to identify (10) with the
expression (3.8) of Sect. 3 for the supergravity action functional. It is simpler,
however, to ascertain that the expression (10) is invariant under the group L, and to
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observe that the structure function is expressed in terms of the first and second
derivatives of the functions present in the surface equations. As in Sect. 3, this
enables one to use the uniqueness of the action satisfying the indicated requirements,
asit was proven in [3]. (The invariance of the expression (1) with respect to the group
L is a consequence of the mentioned L-invariance of the induced SCR-structure.)

It is remarkable that the expression (10) is determined completely in terms of the
internal geometry of the surface Q2 (to be more precise, by the SCR-structure in Q).
This remark leads us to a new formulation of the minimal supergravity. In this
formulation the major object is the frame field in the (4,4)-dimensional region,
determined up to transformations belonging to the SCR group (i.e. the SCR-
structure in the region). It is assumed that the SCR-structure function satisfies the
conditions (8). This approach leads directly to the action functional given by (10).

Let us consider a relation between the present formulation and that by
Ogievetsky and Sokatchev. Let a (4, 4)-dimensional surface Q in C*2 be given by a
parametric equation (i.e. by means of a mapping of some (4, 4)-dimensional region
into C*2). Then the SCR-structure is defined naturally in this region. Thus a field in
the Ogievetsky—Sokatchev formalism corresponds to a field in the present
approach; evidently the action functionals in both cases do coincide.

To complete the proof of the equivalence between the Ogievetsky-Sokatchev
formalism and the present formalism, it is sufficient to show that any SCR-structure
in a (4, 4)-dimensional domain satisfying the constraints (8) on the structure function
may be obtained by means of the induction from the trivial SL (4, 2, C)-structure in
C*2. We shall show that this statement is true indeed (at least, locally). It is
appropriate to base the proof upon the following remark. Let V(z) be an analytical
function defined in C*2, or in a domain of C*2. We establish a SL(4, 2, C)-structure
in the space C*2, assuming that the frame E¥ 0/0 z™ is admissible, if the vectors E¥
form a complex basis in the space C*? and satisfy the condition Ber (E¥) = V(2). (As
always, we assume that the conjugated vectors E¥ belong to the basis together with
EM) The trivial SL (4,2, C)-structure considered before corresponds to the case
V(z) = 1. Note that, at least locally, the new SL (4,2, C) structure is equivalent to the
trivial one. (This stems from the fact that in a vicinity of any point z, such an
analytical transformation ®(z) can be found that V(z) = Ber (0&4/0z%).) Thus if the
geometry in the (4, 4)-dimensional surface is induced by a new SL (4, 2, C) structure,
then (at least, locally) the isomorphic geometry is induced in another surface by the
trivial SL (4, 2, C)-structure®.

Let us consider the SCR-structure in a (4, 4)-dimensional domain, satisfying the
constraints (8) for the structure function. We shall assume that the admissible frames
for this structure contain complex odd vector fields V, = eY 0/d(", their conjugated

8 Itis noteworthy that the presented consideration enables one to modify somewhat the Orievetsky—
Sokatchev formulation. Actually, one may assume that the basic objects are the (4, 4)-dimensional surface
in C*2 and an analytical function ¥(z) in C*2. Then one can suppose that the action is invariant under
arbitrary (not only the super-volume conserving) analytical transformations; and at an analytical
transformation @(z) the function V(z) is multiplied by Ber (6®*/0z®). The reduction of the modified
formulation to that by Ogievetsky and Sokatchev is performed by imposing the gauge condition ¥(z) = 1.
The modified formulation was used in a number of papers [6], [11]; the reduction of the supergravity
field to the normal form was investigated within this framework in [11]
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partners V,, and real even vector fields V, = e d/0(" (the symbol {¥ means real
coordinates in the domain). A particular consequence of (8) is

(Voo Vi) =104V, (11)
(Vi Vi} =139, (12)

Consider now the equation
Vip=0, (13)

where ¢ is a complex function. The relations (12) show that the Frobenius theorem is
applicable to Eq. (13) (to be more accurate, a super-extension of the theorem [13]).
In view of this theorem, (13) has, locally, four independent even and two independent
odd solutions. Let us denote the solutions x%{) and 6%(), where { is a point in the
domain. The functions x% 6* determine an embedding z*({) = (x“({), 6%()) of the
domain in view into C*2; this embedding is fixed up to an analytical transformation.
(If A4(z) is an analytical transformation of the space C*2, then if one has a solution
21 = (x4, 0% of Eq. (13), one can get another solution by setting z"4(¢) = A14(z({)).)

Use the notations d,, d;, d, for the vector fields obtained at the mapping { — z({)

ar rar

from the vector fields V,,V;, V,. It follows from V; z({) = 0, and from the relations
0:F (z,2) = V,F(2(0), ()

that J, = EM9/0z™. The real vector fields 9, are written as 0, = EM0/0z™ +
EMp/oz™. The vector fields @,, d;, 0, form the tangent frame for a surface
obtained by embedding of the domain considered into C*2. They determined the
SCR-structure in the surface Q. The fields 0, = EM8/0z™ belong, evidently, to the
tangent complex subspace to the surface Q. Hence, the frame 0,, ;, 9, is admissible
for the CR-structure induced in Q by the trivial GL (4, 2, C)-structure in C*2. Let us
define a function v in the surface Q:

o(z) = Ber (EY),

where E¥ = (EM, EM). Note that the function v(z) is independent of the choice of the
frame fields fixing the SCR-structure. It may be verified that the function 1(z) satisfies
the Cauchy—Riemann equations; to be more precise, at any point of the surface the
differential of the function v(z) is an analytical linear function in the tangent complex
subspace. This statement can be written as the relation d;v =0. Verifying the
Cauchy—Riemann condition for the function v(z) we shall assume that at the point of
interest the tangent subspace is given by the equation Im x* = 0, while the frame field
in the vicinity of the point is

0, =0/0x" + 0/0x* + eMdjozM + EM o /oM,
, = 0/00 + /oM,
where €M, ¢¥ vanish at the point in view. (With no loss of generality, we can take this
assumption, since the function v(z) is independent of the choice of the frame, and the

condition ;v = 0 is invariant with respect of transformations belonging to the group
L.) At the imposed restrictions, it is easily verified in an infinitely small vicinity of
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the point in view one has v(z) =1+ ¢ — ¢} + ..., so at the point itself
5[,12 = 5,;82 — (%SZ = — T+ 153 =0.

In view of the Cauchy—Riemann conditions, the function v(z) may be continued
up to a function V(z) which is analytical in a neighbourhood of the surface Q. (The
relevant theorem is well known in the theory of functions of several complex
variables.) It is easily seen that the SCR-structure in the surface Q, given by the frame
0, 0,0, is induced by the SL (4, 2, C)-structure in a neighbourhood of the surface Q,
constructed by means of the function V(2).

This completes the proof of the statement that the SCR-structure with the
described constraints on the structure function is (locally) isomorphic to the SCR-
structure induced in a (4, 4)-dimensional surface by the trivial SL(4, 2, C)-structure in
C*2. Simultaneously, the proof is completed of the fact that the Ogievetsky—
Sokatchev formalism is equivalent to the approach to the supergravity based upon
the SCR-structure.

7. Equivalence of Different Approaches

Note first of all that the formulation of the supergravity presented in the preceding
section might be given without the concept of the G-structure. Actually, the basic
object to be considered must be the frame field in the (4, 4)-dimensional region,
consisting of complex odd vector fields d,,0, and real even vector fields 0,. The
condition (6.8) is imposed for the frame field. The action functional is given by (6.10).
The condition (6.8) and the action (6.10) are invariant with respect to local
transformations belonging to the group SCR. In other words, they are invariant

under substitutions of the frame field given by the formulae
0, = Ao, + AP0, + A3},
0, = A30,, 1)
det (4%) = det (4).

(It is because of this fact that one can investigate the SCR-structure instead of the
frame field.)

New formulations of the supergravity can be obtained by introduction of gauge
conditions. For instance, let the gauge condition for the frame field in view be

;= 2i0;. )

The arguments presented in Sec. 6 result in the statement that in the generic case the
gauge condition (2) may be satisfied by application of the local SCR transformations
(1). With the gauge condition (2) the action is extremely simple,

S=Cfdv, 3)

where dV, as before, is the volume element corresponding to the considered frame
field. The symmetry group is contracted after the gauge condition (2) is imposed. In
fact, the new symmetry group contains those transformations of the form (1) which
do not break the gauge condition (2). It is easily seen that the transformation (1)
satisfies this requirement provided that det(43) = 1 (i.e. the matrix 47 is an element of
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the group SL (2, C)), while the matrix A§ corresponds to the Lorentz transformation
related to the matrix Aj. In other words, the considered theory is invariant under
local TL-transformations, where TL is the transformation group for the real vector
£* and the complex two-component spinor v* generated by the Lorentz transfor-
mations and by the transformations of the form & — &+ A%y + A%5% v* — V%
Clearly, the basic object in this formulation is, in fact, the frame field determined up
to a local TL-transformation. Thus the formulation is based on the TL-structure
concept.

Note that the described transition from the SCR-structure to the TL-structure is
just the reduction procedure familiar in the theory of G-structures [4]. (If the G-
structure function takes its values in an orbit generated by the action of the group G
in the space 7 /.o, then the G-structure may be reduced to the H-structure, where H
is an isotropy subgroup of G. For the case in question, we have G = SCR, H =TL.)

The formulations of the supergravity given here may be somewhat modified.
Namely, it is reasonable to consider as the basic concepts not the SCR-structure or
the TL-structure, but these structures supplied with connections. Constraints
should be introduced for the torsion of the connections in the case of the SCR-
structures

Tiy=0,T=0,T%— T =0. 4
The constrains in the case of the TL-structures are
Tl =0, Ty =0, Ty —Tiy=0, (5)

T4 = 2ia%;.

As before, the action is given by (6.10) in the case of the SCR-structures, and by (3) in
the case of the TL-structures. Thus in both cases the action is independent of the
choice of the connection. The equivalence between the modified formulations and
the original formulations is a consequence of the interpretation, given in Sect. 4,
according to which the structure function is a part of the torsion independent of the
choice of the connection. Actually, this interpretation suggests that the torsion for
any connection in the SCR-structure, satisfying the conditions (6.8) for the structure
function, is subject to the constraints (4). On the other hand, if in the SCR-structure
there is a connection subject to the constraints (4), the conditions (6-8) holds for the
SCR-structure function. The same statement is true also for the TL-structures.
Now we are in the position to prove the equivalence between the formalisms
described above for the supergravity (in particular, the Ogievetsky—Sokatchev
formalism) and the Wess—Zumino formalism. To this end, we shall start from the
formulation based on the TL-structures and connections in these structures. We put

an additional gauge condition
R =0. ©)

(Recall that having the connection (wj),, one can determine the covariant derivative
9 , acting on any vector X as follows

D, XC=0,X+ XBw$,.
Here, as always, 0, = EY 0, ®$, = EM(w%),,. The relation

(24,251 XP=T5%:XP + X°RE,
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determines the torsion tensor TS, and the curvature tensor R4 ;.. Note that using
(5), the relation (6) may be rewritten as

{2, 9} =2i05D.. 7

In order to prove that the condition (7) is admissible, we note a relation which
holds for arbitrary connection in the TL-structure satisfying the conditions (5). The
relation is

(DD} =2i0;D, + 1D, (8)
+ Tz‘;@); + R,
Instead of the TL-structure in view, we shall consider a new TL-structure and an

associated connection, assuming that the covariant derivatives &, are not changed,
and the covariant derivatives &, are replaced by

~ 1 3 —
£Zaz —Zazﬂ{@w@ﬁ}‘ (9)

(The definition of the vector covariant derivative in terms of the spinor derivatives
was used in [2].) It is noteworthy that having determined the operators &, one also
gets a definition of the new vector fields J,. It follows from (8) that

i I
J,=0,— Zaﬁ’j(rzlg d,+ 13;0;).

The meaning of this relation is that the frame field 8,, J;, J, is obtained from the field

a’ a’ Ta
d,,0;,0, by means of a TL-transformation. The resulting conclusion is that the
replacement of the covariant derivatives 9,, 9;,9, by the covariant derivatives
D D;, 97,, enables one to satisfy the gauge conditions (6) while the action functional
remains intact.

If the transformation (1) conserves not only the gauge condition (5), but also the
gauge condition (6), it is the local Lorentz transformation. Therefore after the
condition (6) is introduced we have a G-structure corresponding to the Lorentz
group. (To be more precise, the group SL(2, C) is considered as the transformation
group for the superspace R*#, and the coordinates in this space are considered as a
real four-dimensional vector and a complex two-component spinor.) However, in
general, the connections considered take their values not in the Lie algebra of the
Lorentz group, but in the Lie algebra of the group TL. To establish the equivalence
of the present approach to the Wess—Zumino formalism, one should introduce an
additional gauge condition for the connections wf’, 4 =0.Itis remarkable that in view
of the constraint (9) it is sufficient to require that the connection coefficients in the
covariant derivatives 2, belong to the Lie algebra of the Lorentz group. (In other
words, the condition w}, = 0 is sufficient.)
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