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in General Relativity
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Abstract. It is shown that, for an asymptotically flat space-time, there exists a
collection of conserved vector fields which depend on the local stress energy of
the matter and whose integrals over space-like hypersurfaces yield the total
ADM or Bondi energy-momentum of the space-time. These vector fields can
be used to prove the positivity of the ADM and Bondi energies.

1. Introduction

For an isolated system in general relativity, there are two distinct regimes where
the concept of energy is well-defined: Locally, one has the energy density of matter
fields given by the stress energy tensor Tab; while asymptotically, far from the
system, one can define a total energy of the system which is given by an energy
momentum four vector Pa. It has been a long standing problem in general
relativity to relate the asymptotically defined total energy to the energy density of
matter in the interior. The reason that this problem arises at all, and turns out to
be quite difficult to resolve, is that the asymptotic energy and the local energy are
related in a complicated nonlinear way through Einstein's field equation. This
issue is further complicated by the fact that the asymptotic energy includes
contributions from the gravitational field as well as the matter, but there is no local
energy density for the gravitational field analogous to Tab.

Actually, there are two distinct notions of "total energy-momentum" for
isolated systems. At large space-like separations from the source one can define the
Arnowitt-Deser-Misner (ADM) four momentum p^D M [1]? and at large null
separations one can define the Bondi four momentum P^ [2]. The main difference
between the two is that the Bondi momentum is dynamical while the ADM
momentum is not, i.e. the Bondi momentum is associated with an instant of
retarded time and changes according to the radiation which the source emits,
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while the ADM momentum is a fixed vector given once and for all. It is known
that the Bondi energy decreases with time in the presence of radiation [2, 3], that
is, radiation always carries away positive energy, and that under suitable
conditions, the past limit of the Bondi momentum is the ADM momentum [4].
One would like to know how both p ^ D M and P® are related to the matter in the
interior.

There exist well-known relations between local and total energy in two special
cases. The first case is when the space-time admits a time-like Killing vector field
ξa. In this case there is no radiation so P® and p ^ D M are equal and proportional to
the limiting value of the Killing vector. The constant of proportionality, i.e. total
energy E, is given by the Komar integral [5], which can be expressed as an integral
over an asymptotically flat space-like three surface Σ:

^ b- l/2TgJξ"dΣ\

where S is an asymptotic two-sphere on Σ. The second case is when the
gravitational field is weak. In this case there is e.g. an explicit expression for the
Bondi energy as a retarded integral over the stress tensor [6].

In a recent paper [7] Witten gave a proof that p ^ D M is a future-directed
timelike or null vector if the matter satisfies a local positive energy condition, the
dominant energy condition. (This theorem was first proved by Schoen and Yau

[8].)
The essence of Witten's proof is the derivation of an expression relating p ^ D M

to Tab at one time, i.e. on one asymptotically flat space-like hypersurface. The
purpose of this paper is to show that Witten's expression can be extended to yield a
more general formula relating asymptotic energy to the local stress tensor Tab.
More precisely, we show that there exist conserved vector fields pa which act like
"energy momentum densities" in the sense that

where Σ is any asymptotically flat space-like three surface and Va

0 is an asymptotic
translation at spatial infinity. Further, for other choices of pa,

where Σ is an asymptotically null surface and Va

0 is an asymptotic translation at
null infinity.

The organisation of this paper is as follows. In Sect. 2 we review Witten's
argument, obtaining his identity in the two-component spinor formalism. We then
introduce the vector fields described above as conserved vectors associated with
solutions of the Weyl neutrino equation. We next show that by choosing these
solutions to satisfy the appropriate boundary conditions, we can relate the
conserved vector fields to P^ D M and P*.

In Sect. 3 we consider the boundary conditions at null infinity in more detail
and show that solutions to the Weyl equation with these boundary conditions
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indeed exist. Applications of these vector fields to positive energy theorems and
other issues are discussed in the conclusion1.

2. The Relation between Local and Total Energy

We begin by reviewing Witten's proof of the positive energy conjecture at spatial
infinity. This will serve the dual role of familiarising the reader with our notation
and introducing Witten's expression which we will then generalise.

Let (M, gab) be a space-time with a nonsingular, asymptotically flat, space-like
three surface Σ. Suppose the dominant energy condition holds on Γ, i.e. Tabt

a is a
future directed time-like vector for any future directed time-like ta. We wish to
show, following Witten, that p ^ D M is a future directed time-like or null vector.

Let f be the unit normal to Σ, let2 hab = gab — tatb be the induced metric on Σ
and let Da = hb

aVb, where Vb is the unique torsion-free derivative operator on M
compatible with gab. Thus Da is a derivative operator on Σ, but is not in general the
covariant derivative compatible with hab.

Witten considers spinor fields aA on Σ which satisfy

DΛA,a
Λ = 0

subject to the boundary condition that asymptotically for large r,

(2.1)

(22)

where {0)ocA is a constant spinor.
The existence of solutions to this equation with this boundary condition has

recently been established [10-12].
Taking another derivative of (2.1), commuting derivatives, multiplying by

ύA,t
AA\ and integrating over Σ, Witten obtains an expression which in the present

notation is

1/2 J (DaKb) tbdSa = J [ - tAA\DbocA) φhaA) + 4πTabfK
b-] dΣ, (2.3)

S Σ

where S is the two-sphere at infinity on Σ and Ka = otAaA,.
There are two remarkable features in this identity. First, commuting de-

rivatives and integrating by parts both introduce the second fundamental form of
Γ, but these terms all cancel in the final identity. Second, the curvature terms
introduced by commuting derivatives are precisely the Einstein tensor Gab which
can then be eliminated in favour of the stress tensor Tab by virtue of Einstein's
equation. (In fact, Eq. (2.1) has also been considered by Sen and he too obtained
the identity (2.3) [13].)

Now the right hand side of (2.3) is manifestly nonnegative: the second term
because of the dominant energy condition, since f and Ka are future directed time-
like and null respectively and the first term because hab is negative definite so that

1 After this paper was completed, we became aware of work by Israel and Nester [9]. They consider
a different generalization of Witten's expression that does not involve the Weyl neutrino equation

2 We use standard spinor conventions: signature (H ) Riemann tensor defined by
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by introducing an orthonormal frame on Σ it can be expressed as the inner
product between ta and the sum of three future directed null vectors.

Witten completes his proof of the positive energy conjecture at spatial infinity
by showing that the left hand side of (2.3) is related to ^ D M

1/2 J (DaKb) tbdSa = 4 π P * D M ( 0 ) K f l , (2.4)
s

where {0)Ka = {0)ocΛ(0)(xA' is the asymptotically constant null vector which is the
limit of Ka.

Since {O)ocA was arbitrary, this shows that any null component of p^ D M is
positive so that p^ D M must be future directed.

Equations (2.3) and (2.4) yield a relation between p^ D M and Tab. This is a
remarkable result and furnishes a simple proof of the positive energy conjecture at
spatial infinity. However, it is restricted to a specific choice of three-surface Σ.
Thus one reason for seeking a generalization of this relation is to place it in a four
dimensional context which is more natural from the standpoint of general
relativity. However, a more important reason for seeking a generalization is that it
is not clear whether (2.3) can be used on an asymptotically null surface to relate P^
to Tab. The issue is the apparently difficult question of whether the solutions to (2.1)
exist with appropriate boundary conditions on an asymptotically null surface (see
appendix).

We now show how (2.3) may be generalized to yield a relation between p^ D M or
Pj and Tab. The cost of this generalization is that we lose the manifest positivity of
the right hand side, but we shall return to this point in Sect. 4.

Let aΛ be an arbitrary (smooth) spinor field on an asymptotically flat space-
time and, as before, let Ka be the future directed null vector defined by aA:

Ka = ocAaA'. (2.5)

Define a vector field pa by the following formula:

V%Kb] = 4πpa, (2.6)

i. e. pa is the "current for the Maxwell field with potential Kb." It is immediate from
(2.6) that pa is divergence free, and that the conserved quantity obtained by
integrating pa over a hypersurface Σ may be expressed as an integral over an
asymptotic two sphere S:

Jpβd2?=-!-ίFIβKwAίS". (2.7)
Σ ^ π S

Of course, since aA is arbitrary, (2.7) is a trivial identity and contains no
information about the underlying spacetime. However, as we now show, if we
impose certain conditions on the spinor field ocA, (2.7) becomes a useful relation
between local and total energy in general relativity.

The main condition we impose on the spinor field aA is that it satisfies the Weyl
neutrino equation

F i l X = 0. (2.8)
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This implies that Ka is divergence free and that V2aA-\-\RoίA = O. Expanding the
antisymmetrization in (2.6) and using these two facts yields

P" = - ht (F"α J ((7m^'}+TabK"'
where we have used Einstein's equation to equate the curvature term which arises
to the stress energy tensor Tab of the background space-time. This is in fact the only
place that Einstein's equation is used in this analysis. (Note that Tab is not the stress
energy tensor of the field ccA. All the spin 1/2 fields discussed here are test fields on
the given background space-time.) Thus, for solutions to the Weyl equation, pa is
directly related to the local stress energy of the space-time.

We now show that Witten's relation between local and total energy (2.3) is just
a special case of (2.7). First recall the Cauchy initial value formulation for the Weyl
equation [14] : Given a spinor field on a spacelike surface Σ, there exists a unique
solution to the Weyl equation in the domain of dependence of Σ9 D(Σ)3, which
agrees with the given field on Σ. In other words, the initial data is just the field itself
and there are no constraint equations.

Now from the definition of Da on a surface Σ with unit normal ta we have

For a solution aA of the Weyl equation

0 = VAA.v.A = DAA,a
Λ + tAA,t%xA, (2.10)

so that

fAA'r7 Γ7b- _fAA'τ\ τγ>-

Using (2.9) and (2.10) we can rewrite Eq. (2.7) as follows:

SpadΣ*= J - ^{tAA'DhaAD
hά

4π
Tabt

aKbdΣ

$ l/2(tΎaKb-taDbKa)dSb. (2.11)

Thus if we choose initial data for the Weyl equation such that DAA,ocΛ = 0 and

aΛ^(θ)aA a symptotically on Σ, then (2.11) reduces to precisely Witten's relation
(2.3). In particular, the boundary integral is equal to (a null component of) p^ D M .
By evolving this initial data we obtain a conserved vector field pa which has the
property that its integral over any asymptotically flat spacelike surface yields the
total ADM energy-momentum of the spacetime. (Actually, all that has been shown
so far is that the integral yields p ^ D M for any surface which agrees with Σ
asymptotically. Although we haven't performed a detailed analysis at spatial

3 Recall that D(Σ) is the set of all points p to the future (past) of Σ such that every past (future)
directed timelike curve from p without endpoίnt intersects Σ
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infinity, we expect that since pa falls off like r~4 at large spacelike distances, its
integral over any asymptotically flat surface - even those boosted with respect to Σ
- will again yield P^D M)

The vector field pa can therefore be interpreted as an energy-momentum
density for gravity. However one must keep in mind that pa is not uniquely
determined by the spacetime: First, one has the freedom of choosing the constant
spinor {0)aA that the initial data approaches. This choice determines which null
component of p^DM is being measured. Second, one has the freedom of choosing
the initial surface Σ. Different choices of Σ will yield different vector fields pa.
Finally, one has the freedom of constructing pa from solutions aΛ to the Weyl
equation which do not satisfy (2.1) on any spacelike surface. One need only require
that near spatial infinity aΛ = {0)aΛ + O(r~1) to ensure that the boundary integral
yields the ADM energy momentum. This follows from Nester's reformulation [15]
of Witten's argument4. Thus there is a large collection of conserved vectors pa with
the property that their integrals are related to P^D M. This nonuniqueness seems to
be the reflection in the present framework of the well-known fact that there is no
unique energy density of the gravitational field.

We have now achieved half of our initial objective Namely, we have a (four
dimensional) relation between local energy and total ADM energy at spatial
infinity. The second half of our objective is to obtain a similar relation between
local energy and total Bondi energy at null infinity.

In one respect the analysis at null infinity is slightly more complicated than
that at spatial infinity. This concerns the definition of an "asymptotically constant
spinor." Perhaps the most natural definition is to call a spinor field asymptotically
constant if its co variant derivative tends to zero. Near spatial infinity, the Riemann
tensor falls off as O(r~3), so spinors which are asymptotically constant in this sense
do exist. Near null infinity, however, in the presence of gravitational radiation, the
Riemann tensor falls off only as O(r~*). Bramson [16] has shown that under these
conditions, VmttA->0 near null infinity if and only if oίΛ~^O as well. He has thus
proposed another definition for when a spinor field is "asymptotically constant."
Essentially, he requires that the symmetrized derivative of aA rather than the full
covariant derivative should vanish at null infinity. Bramson has shown that there
always exist spinors satisfying this condition. In Sect. 3, we shall discuss this
condition in terms of the conformally rescaled space-time and show that there do
exist solutions to the Weyl equation with this asymptotic behaviour. In the
remainder of this section, we stay in the physical space-time and show that such
solutions provide us with our desired relation involving the Bondi energy.

4 Nester [15] shows that if aA = (O)otΛ + O(r~1), then

— JFabt
bdSa = i0)

8π s

where

If aA is a solution to the Weyl equation, then Fab = 2V[aKb] and Nester's boundary integral is equivalent
to the right hand side of (2.7)
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Let M, gab be asymptotically flat at null infinity, i.e., there exists (Bondi)
coordinates (u, r, 0, φ) defined outside a world tube such that the metric takes the
form:

ds2 = Idudr - r2(dθ2 + sin2 θdφ2)

+ O(r~1)drx (differentials not involving dr)

+ O(r)x (differentials not involving dr),

where the u = const surfaces are null, and r is an affine parameter on each null
geodesic generator. It is convenient to adopt the NP formalism [17]. We introduce
a null tetrad as follows. Let la = Vau. Let na be the ingoing null vector orthogonal to
the spheres of constant u and r normalised by lan

a= 1. Finally we choose complex
conjugate null vectors mα, fha normalised by mama= — 1 and tangent to the spheres
of constant u and r. Note that na is not propagated parallel along la. This tetrad
defines a spinor dyad (oA, ιA) with la= oAόA\ na=ιAΊA\ πf= OAΊA\ oAι

A = l and

Recall that the spin coefficients are defined as follows:

K = oAD oA

τ=oAAoA

σ=oAδoA

ρ=θAδθA

π = ιADιA

v = ιAAιA

= ιAδιA

= ιADoA

= ιAΔoA

= ιAδoA

where D = laVa, Δ = naVa, δ = nfVa, and δ = mΎa. For the above tetrad, τc = ε = O,
τ = π = ΰ + β, ρ = ρ, and μ = μ [18]. We will use one component of the Weyl spinor:

The Bondi energy momentum is defined in terms of the asymptotic values of r2σ
and r 3 φ 2 , denoted σ° and \p°2. For an asymptotic translation Va:

where S is an asymptotic two-sphere, and a dot denotes d/du.
The boundary condition on ocA can be expressed in terms of its components in

the spinor basis:

aA=XoA+YιΛ. (2.13)
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Bramson's condition for «Λ to be asymptotically constant is that, for large r,

X=X0(θ,φ)+X1(u,r,θ,φ),

Y=Y0(θ,φ)+Y1(u,r,θ,φ),

where Xo and Yo are linear combinations of / = 1/2 spin-weighted spherical
harmonics [19]:

^ 0 =a~ 1/2 ̂ 1/2 1/2 + b_ 1 / 2 Y1/2 _ 1 / 2 ,

y — — /Ϊ y _ k y v /
z 0 ~ αl/2il/21/2 ί;l/2il/2-l/2

for some complex constants a and Z? and Xλ —>0 as r~x and Fx —•() faster than r~1.
We can now prove the following:

Proposition 1. Let otA be a solution to the Weyl equation on a space-time M, gab which
is asymptotically flat at null infinity. If OLA satisfies (2.14) and (2.15) then

for all asymptotically null Σ\ where {0)Ka is the null vector defined by
{0)aA=X0o

A+Y0ι
A.

Proof. Fix an asymptotically null surface Σf. Choose a system of Bondi coordinates
such that Σ' asymptotically approaches a u = const null cone [3]. Define a null
basis la, na, ma, ma in terms of these coordinates as described above. Then the two-
surface bivector in (2.7) is l[anb] so that (2.7) becomes

yadr=~\s{naDK«-laAK<>)dS. (2.16)

The Weyl equation may be written

ιADaA-oΛδ(xA = 0, (2.17a)

ιΛδ(xA-oAΔ(xA = 0. (2.17b)

Using (2.17) and (2.13), the boundary term in (2.16) becomes

— j(ΫιAδotA +XoAδoίA + complex conjugate)^
8π s

which, using the definition of the spin coefficients and (2.13) again, is

^ Ϋ (2.18)

Here we have used the fact that ρ and μ are real for our tetrad. The asymptotic
values of the spin coefficients appearing in (2.18) have been found to sufficiently
high order by Exton et al. [20], in a basis in which na is propagated parallel along
la. To use their results we must perform a null rotation
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with ώ as in [20]. We then find

ί(ψ2 ) (3), (2.19)

where ό is the standard differential operator on the sphere [19]. Using these
expressions in (2.18), we see that the 0{r~x) term in the boundary integral vanishes
by virtue of (2.14) and (2.15), and the O(r~2) term yields

(2.20)

since the last term integrates to zero. Since Σ' was arbitrary, this completes the
proof.

Since pa is conserved and its integral over any asymptotically null slice yields
the Bondi energy at that time, its integral over a null surface spanning two
asymptotic two-surfaces at different retarded times must reproduce the Bondi-
Sachs mass loss formula [2,3]. We can verify this directly by computing the flux
napa. Suppose first that Tab vanishes in a neighbourhood of null infinity. Then by
(2.9),

1

4π
napa = - — ιΛιA'(DocAAocΛ, + AaADocA, - δaAδaA, - δaAδaA).

Since ocA is asymptotically constant, the first three terms on the right fall off faster
than r" 2 . For the last term, we have

-d

where we have used the asymptotic expansions of α, λ [20] and the fact that
6X0 = 0. Therefore,

^ 3 ) , (2.21)

which gives precisely the Bondi-Sachs flux for P*(0)Ka. Notice that the leading
term on the right hand side of (2.21) is non-negative, i.e. gravitational waves
always carry away positive energy from the system. If Tab does not vanish in a
neighborhood of null infinity, then there is the additional term Tabn

aKb on the right
hand side of (2.21), which is just the contribution of the matter fields to the energy
radiated away.
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3. Existence of Solutions

We begin this section with a discussion of Bramson's conditions for asymptotically
constant spinors at null infinity, and translate some of the results of the previous
section into the conformally rescaled spacetime. We then show that solutions to
the Weyl equation with Bramson's boundary conditions do, indeed, exist.

We first review the definition of asymptotic flatness at null infinity in terms of a
conformal completion of the spacetime [21] :

Definition. A spacetime M, gab is asymptotically flat at null infinity if there exists a
manifold with boundary, M = MuJ>, consisting of M with boundary «/ attached
together with a smooth Lorentz metric gab and smooth scalar field Ω on M such
that:

1) o n M , gab = Ω2gab,
2) at jf,Ω = 0,ήa=VaΩφ0,ήaή

a = 0, and Vaήb = O,
3) J consists of two pieces J>+ and J>~', each S2 xIR with IR being the null

generators and on each of which ήa is complete.
This definition insures that asymptotically (M,gab) resembles Minkowski

spacetime both locally (Conditions 1 and 2) and globally (Condition 3). In Bondi
coordinates, we can choose the conformal factor to be Ω = r~x near null infinity.

To discuss the behaviour of a spinor field aA near </, we must decide how to
scale aA under conformal transformations. The Weyl neutrino equation is
conformally invariant provided one scales aA according to

&Λ = Ω~2aA, (3.1)

since in this case

VAAά
A = Ω-2VAA,*

A. (3.2)

Although this scaling has the advantage that άA satisfies a simple equation in the
unphysical spacetime, it also has a great disadvantage: If ocA is asymptotically
constant in the physical spacetime, then άA defined by (3.1) is singular on </. Since
we wish to clarify the asymptotic boundary conditions on ocA, we want a field
which is regular on J. We therefore adopt the following scaling for ocA:

άA = otA. (3.3)

With this scaling, the twistor operator is conformally invariant:

VA\A&B)=VA\A*m. (3.4)

We can now state Bramson's boundary conditions at null infinity:

Definition. A smooth solution otΛ to the Weyl equation is asymptotically constant at
null infinity if

1) άA — aA has a smooth, non-vanishing limit on «/,
2) VA.(A&m = 0onS.
Roughly speaking, the first condition says that ocA has some limit along each

null direction, and the second condition says that these limits are in fact all the
same. Bramson [16] has shown that if άA is asymptotically constant in the above
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sense, then aAaA' evaluated on / is a multiple of ήa and in fact defines a null
translation mKa in the BMS (Bondi-Metzner-Sachs) group (the asymptotic
symmetry group of null infinity [22]).

One can now see that the asymptotic boundary integral for pa (2.7) is just a
special case of the Geroch-Winicour formulation of asymptotic linkages [23].
Since Ka is divergence free in the physical spacetime, Ka satisfies the Geroch-
Winicour gauge condition for extensions of BMS generators, and the boundary
integral (2.7) is precisely the asymptotic linkage in this gauge. This provides
another way of showing that for asymptotically constant solutions, the integral of
pa is related to the Bondi four-momentum.

Although one can obtain null translations (and by linear combinations, all
translations) from solutions to the Weyl equation, in the presence of gravitational
radiation one cannot obtain other BMS generators. We will show at the end of this
section that if σ ° φ θ at some retarded time, and OLA satisfies VAA,a

A = § and admits
a smooth extension to </+, then aA is necessarily asymptotically constant.

Since pa is conserved in the physical spacetime,

Pa = Ω~2Pa (3-5)

is conserved in the unphysical spacetime, and yields the same conserved quantity
when integrated over a spacelike surface. We now show that if M, gab is
asymptotically flat and fab = Ω~2Tab has a smooth extension to J>,5 then pa has a
smooth extension to J as well. Using the fact that aA is a smooth solution to the
Weyl equation in the physical spacetime, we can rewrite (2.9) in the form:

In this form it is clear that under (3.3), pa is conformally invariant. Replacing the

fields on the right hand side by the conformally scaled fields and using (3.4) yields

1

Since VM,{MQLA) vanishes on </,

VM^Ω-'IWΛ) (3.8)

is smooth on J. Therefore

is smooth on «/. In particular, pan
a is well defined on J and yields precisely the flux

of the i0)Ka = όcA(xA'\j; component of the Bondi energy-momentum. By taking linear
combinations of different pjs one can obtain the flux of any component of P®.

We now turn to the question of whether there exist solutions to the Weyl
equation which are asymptotically constant in the above sense.

5 This is a condition on the asymptotic behaviour of the physical stress energy which admits a large
class of physically interesting examples
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Proposition 2. Let M, gab be a spacetime (with spin structure) which is asymptotically
flat at null infinity. Let Σ' be an asymptotically null surface in M. Then there exist
solutions to the Weyl equation in the domain of dependence of Σ', D{Σ'\ which are
asymptotically constant.

Outline of Proof The idea of the proof is to choose a spinor (0)aA which satisfies the
boundary conditions, and then solve ^AAr^1)(χΛ — ~ ^AA^0^ f° r a spinor (1V* that
has the appropriate fall-off behaviour so that <xA = {O)oiA + {1)(xA is an asymptotically
constant solution to the Weyl equation.

We introduce a Bondi coordinate system in a neighbourhood of J>+ such that
Σ' intersects / + i n a u — const cross-section. Let oA, ιA be a spinor basis adapted
to these coordinates, as described earlier. We first re-express the boundary
conditions and the asymptotic form of the Weyl equation in terms of the
components X and Y of a spinor ocA =X oA -f YιA.

The first boundary condition (together with the fact that ocA is a solution to the
Weyl equation) is equivalent to the statement that for large r

X-*XQ(u,θ,φ), (3.10a)

Y-^Y0(u,θ,φ). (3.10b)

The second condition, as Bramson has shown (Eq. (4.11) of [16]) is equivalent to

όY o -X o = 0, (3.11a)

y 0 = o , (3.iib)

OY0 = 0, (3.11c)

and

rlimr(Y-Yo)==0, (3.1 Id)

where ' = d/du. Of course (3.11a) and (3.11b) imply thatX 0 = 0 as well. The general
solution to (3.11a-c) is given by (2.15). (This is why that equation was imposed in
the previous section.)

The Weyl equation in the NP formalism (2.17) with OLA expanded in terms of X
and Y becomes

DX-ρX= -δY + o>Y-πY, (3.12a)

δX + βX-τX= -A Y + yY-μY, (3.12b)

where we have used the fact that the spin coefficient ε vanishes for this tetrad.
Applying the necessary null rotation to the formulae of [20] we find that (3.12a, b)
become

- ^ + -X + 0(r~3)X= -6Y- \σ°όY+O(r-3)Y (3.13a)
or r r rz

- -6X + O(r~2)X= - Ϋ+ ? + - Y+O(r~2)Y. (3.13b)
r or r
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Let Xo and Yo be defined by (2.15) and let

wxA = (X0o
A + Y0ι

A)f(r), (3.14)

where / is a smooth function of r satisfying f(r)=l for r>Rx and /(r) = 0 for
r<R2, where Rλ >R2 and both Rt lie in the domain of the Bondi coordinates. The
spinor {0)aΛ clearly satisfies the boundary conditions (3.10) and (3.11) required for
asymptotic constancy. Since {0)aΛ is independent of r (for r > Rt\ the behavior of
VAA,

(0)(χA for large r is the same as that of the spin coefficients in (3.12). These spin
coefficients all admit expansions in powers of r " 1 [20]. Substituting (0)aΛ into
(3.13) one finds that the power series expansion of VAA>

{O)oίA begins at order r"2 for
the coefficient of oA and order r~3 for the coefficient of ιA:

VAA,
(0)aA = P(r-2)oA + P(r-3)ιA, (3.15)

where P(r~n) denotes a power series in r~1 beginning with a term of order r~n.
We now pass to the unphysical spacetime. Since oA is parallel propagated

along la in the physical spacetime, όA = oA is parallel propagated in the unphysical
spacetime, and hence is smooth (and non-vanishing) o n / . Since gab = Ω2gab is
smooth on the boundary, έAB = ΩεAB is smooth and hence iA = ΩιA will be smooth
on J+ as well. Therefore

δA=°Λ^A = ΩlA (3.16)

defines a smooth spinor basis in a neighbourhood of null infinity.
From Eqs. (3.15), (3.16) and the fact that Ω = r~1 near J+\ one can show that

QA^-Ω^VAA,^aA (3.17)

admits a smooth extension to J>+. Choose any spinor field on Σ' with compact
support. Let {1)άA be the solution in D(Σf) (where the closure is taken in M) to the
equation

ΪΛΛ W & Λ = UΛ- (3.18)

with this initial data. Since (3.18) is a hyperbolic equation with smooth coefficients
and smooth source, it admits [14] solutions {1)OLA which are smooth on J>+. [The
fact that J^ is a boundary to the spacetime is irrevelant here since one can always
extend the spacetime and ρA, beyond J+ and solve (3.18) in the extended
spacetime.]

Returning to the physical spacetime, let

(3.19)

Re-expressing {1)ocA in terms of the physical spinor basis yields

{ί)aA = O(r-ι) oA + O(r~2)ιA. (3.20)

Now define α̂ 4 = ( 0 ) α^ + ( 1 )α j 4. From (3.14) and (3.20) aA is asymptotically constant.
Furthermore

VAA^A^VAA^aA+VAA,^aA. (3.21)
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But since the Weyl equation is conformally invariant under (3.19)

VAA,,= - VAA,
{0)aΛ. (3.22)

Therefore VAAocA = O. This completes the proof.
We conclude this section by proving a partial converse to Proposition 2. That

is, in the presence of gravitational radiation, σ° Φ 0, all solutions to the Weyl
equation which admit a smooth extension to null infinity are asymptotically
constant.

Proposition 3. Let M, gab be a spacetime which is asymptotically flat at null infinity
and has σ° φ θ on at least one cross-section C of J>+. Let aA be a smooth solution to
the Weyl equation in a neighbourhood of J>+ such that όtA = aA admits a smooth
extension to J?+. Then VA^AάB) = 0 on J>+.

Proof We introduce Bondi coordinates in which the cross-section C is given by
u = 0. Since 6LA is smooth on </ + , it can be expanded in a power series (plus
remainder) in Ω. Using the transformation of the spinor basis (3.16) this implies
that aA can be expanded in the following power series in Ω = 1/r:

a.A=XoΛ+YιΛ

9

with

Since aA is a solution to the Weyl equation, it must satisfy (3.13a, b). Taking the
limit of these equations as r-*oo and using the above expansions yields

X x = 0 , (3.23a)

(3.13a)=>< όYo-Xo = 0, (3.23b)

δY_1-σ°δY0=0, (3.23c)

Equation (3.23a) shows that the first condition in the definition of asymptotic
constancy is indeed equivalent to (3.10). Equations (3.23b) and (3.24a) are precisely
(3.11a,b). These two equations imply XQ^O. Taking the u derivative of (3.24b)
yields Ϋ_ 1=0. Taking two u derivatives of (3.23c) now yields σ°$Yo = 0. Since
σ°Φ0 when u = 0, we conclude that for u = 0

δY = 0 . (3.25)

But since Y0 = 0, (3.25) holds for all u.

Substituting (3.25) back into (3.23c) yields 6Y_1=0 which implies that

Y_!=0 (3.26)

(since Y_ x has spin weight + 1/2). But (3.25) and (3.26) are precisely (3.11c, d). Since
(3.11a-d) are satisfied, VA>iAάB) = 0 on J + .
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By a slight modification of this proof one can show that the condition of the
existence of a cross-section with gravitational radiation (σ φ 0) can be replaced by
the existence of a cross-section with no news (σ° = 0), and the result will still hold.
As mentioned earlier, Proposition 3 shows that there do not exist solutions ocA of
the Weyl equation such that OLA = OLA approach asymptotic symmetries (BMS
generators) other than translations.

4. Conclusion

In this paper we have considered asymptotically constant solutions ocΛ to the Weyl
neutrino equation on an asymptotically flat spacetime. We have shown that
associated with these solutions there exist a collection of conserved vector fields pa.
These vector fields depend explicitly on the local stress energy of the matter and
have the property that their integrals over spacelike surfaces yield the total ADM
or Bondi four-momentum of the spacetime.

This relation between local and total energy in general relativity becomes more
useful when one has a statement about the sign of the energy integral. That is, a
statement about when pa is a future directed timelike or null vector. Witten has
given a specific prescription for choosing pa to be future directed on an
asymptotically flat surface Σ. Namely, choose asymptotically constant initial data
for the Weyl equation which satisfies (2.1) on Σ. However, it is clear that this is not
the only choice of initial data for which pa will be future directed. Thus we have a
generalization of Witten's proof of the positivity of the ADM energy. Recently, it
has been shown [24] that this generalization can be used to prove the positivity of
the Bondi energy. In other words, one can choose asymptotically constant initial
data (not satisfying 2.1) on an asymptotically null surface Σ' such that pa is future
directed on Σ'.

In order to interpret pa as an "energy-momentum density" for a gravitating
system, one would like pa to be future directed everywhere in the spacetime - not
just on one spacelike surface. We are thus led to the following conjecture:

Conjecture. Let M, gab be asymptotically flat, satisfy the dominant energy con-
dition, and have a Cauchy surface Σ. Let aA be the solution to the Weyl equation
whose initial data, on Σ, satisfies (2.1) and (2.2). Then aA is asymptotically constant
at null infinity and pa [defined by (2.6)] is future directed everywhere in M.

Even if this conjecture is true, the vector pa will presumably not be unique,
since changing the Cauchy surface Σ is likely to change pa. Nevertheless, the mere
existence of such a pa would yield a simple and unified framework for discussing
energy in general relativity. For not only would it immediately prove the positivity
of the ADM and Bondi energy, it would also prove the decrease of the Bondi
energy, and the equality of the past limit of the Bondi energy and the ADM energy.

To the best of our knowledge, this conjecture is open. One small piece of
evidence in support of the conjecture comes from the weak field limit. One can
show that for perturbations of Minkowski spacetime which satisfy the energy
condition, pa is, to leading order, future directed everywhere in M.

Of course even if the conjecture turns out to be false, the fact that one can find
solutions to the Weyl equation such that pa is future directed on spacelike surfaces



444 G. T. Horowitz and P. Tod

makes these vectors a useful tool for discussing the relation between local and total
energy.

In addition to questions about the total ADM or Bondi energy of a spacetime,
these vector fields may play a role in obtaining quasi-local definitions of energy-
momentum in general relativity. For example, given a spacelike 2-sphere 5, one
can solve Eq. (2.1) on the maximal surface Σ spanning S (providing Σ exists). Then
evolve this initial data via the Weyl equation. One thus obtains a conserved vector
field pa in the domain of dependence of Σ whose integral is positive and related to
the total energy inside S. The main problem, however, is to determine what
boundary conditions to impose on Eq. (2.1). For finite two-spheres in curved
spacetime, constant spinors are not well defined.

Is it possible that a similar expression exists relating local and total angular
momentum in general relativity? One possible approach is suggested by the
appearance of the twistor equation at null infinity in Sect. 3. Streubel [23] has
shown that total angular momentum can be related to two index spinors φAB

which satisfy the twistor equation at null infinity. It thus seems possible that there
exists an analogous relation for angular momentum based on two index spinors.

As we noted in Sect. 2, there is a curious formal similarity between energy in
general relativity and charge in electrodynamics: the vector pa is just the charge-
current vector of the Maxwell field with potential Λa = oίAάA,. Can this similarity be
exploited to further simplify questions in general relativity?

Another way of interpreting the vector pa is in terms of an infinitesimal change
in the spacetime connection. One can easily show that if Tab vanishes, then for any
vector field ξa:

In other words, pa represents the first order change in Va in the direction Ka.
We believe that the results obtained here shed some light on the origin of

Witten's remarkable relation between local and total energy. Of course the deeper
mystery still remains: Why is there such a close connection between spinors and
gravitational energy?
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Appendix

In this appendix, we consider whether Witten's identity can be used directly to
relate P® to Tah. The crucial question is whether there exist solutions to Eq. (2.1) on
an asymptotically null surface Σ', subject to the boundary conditions (2.14) and
(2.15).

It appears to be difficult to show that solutions to this equation exist. The
existence theorems which work for the spatial infinity case [10-12] only apply to
surfaces Σ which are asymptotically Euclidean. This is certainly not the case for Σ'
since asymptotically the metric becomes degenerate. This means that (2.1), while
being elliptic everywhere in Σ' fails to be elliptic at the boundary, which is precisely
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where the data (2.14) and (2.15) is given. Also, the four-dimensional curvature
represented by the Riemann tensor falls off only as 0{r~*) near J+ in the presence
of outgoing radiation.

One indication that solutions do exist is provided by seeking an asymptotic
solution expanded in powers of r" 1 . Accordingly we shall now expand (2.1)
explicitly in Bondi coordinates using the expansions of [20] for the spin
coefficients which appear and show that, order by order, solutions do exist.

The behaviour of the coefficients of the differential operators which appear in
the resulting equations depends on the rate at which Σ' becomes null. For
definiteness, we shall suppose that Σ' is asymptotically like a hyperboloid in
Minkowski space, i.e. Σ' is given by the equation

where

f=-+O(r~3). (A.2)

r

The unit normal to Σ' takes the form

f = Ala + Bna (A.3)

with AB= 1/2.

Taking components of (2.1)

oA'DAΛ,κ
Λ = 0, (A.5)

ιA'DAA,a
Λ = 0, (A. 6)

with aA =X oΛ + YιA, we obtain

δX+(β-τ/2)X-A2DY+l/2AY+(μ-y/2)Y=0. (A.8)

The operators 1/2D — B2Δ and A2D— 1/2A are related to I —I , i.e. differentiation

with respect to r in the surface. With the choice (A.2) for / we find

) | : + 0 ( r - 4 ) , (A.9)

2 d

"dr

If we substitute these and the spin coefficients from [20] (after performing the
appropriate null rotation) into (A.7) and (A.8), there results

dX 1

dr r

+ \σ°6Y- ~σ°σ°6Y+ \όσ°Y=0(r-4), (A.ll)

1 „ dY 1
-όX + r2(l/2 + O(r~2)) —- +-Y=O(r~2). (A. 12)
r or r
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The problem is now to see if asymptotic solutions to these equations exist with the
boundary conditions for large r [cf. (3.10) and (3.11)]:

X->X0(θ,φ),

Y->Yo(θ,φ),

where

όYo-Xo = 0, (A. 13a)

ό70 = 0, (A. 13b)

and

r(Y-Yo)-*0. (A.13c)

First consider (A. 12). The boundary condition (A. 13c) follows immediately from
this equation. Furthermore, (A. 13a,b) imply that 6X0+Y0 = 0. Imposing this
condition, one sees from (A. 12) that the stronger condition

dY
r3 — ->0 (A.14)

or

must hold. Now consider (A.ll). The boundary condition (A. 13b) follows from the
order r " 1 part of this equation. The order r~2 part of (A.ll) determines the next
order term in the expansion of X. The order r~3 part of (A.ll), however, is
different. Because of (A. 14), this order contains no free functions. Hence this is
where a contradiction is likely to arise. However, one can see immediately that the

r
- 3 part of (A.ll) is just σ°σ° times (A. 13a). Hence no contradiction occurs.

Therefore, at least asymptotically, there exist solutions to (2.1) on an asymptoti-
cally null surface Σ' with the correct boundary conditions. Whether these solutions
can be extended to yield a nonsingular solution everywhere on Σ' is, of course, still
an open question.
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