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On Edwards9 Model for Polymer Chains
III. Borel Summability

John Westwater

Department of Mathematics, University of Washington, Seattle, WA 98195, USA

Abstract. The basic existence theory for Edwards' model of long polymer chains
is completed.

1. Introduction

In [1] we proved an existence theorem for a probability measure on continuous
paths in space, proposed by Edwards [2] as a stochastic model for the geometric
properties of long polymer chains. This theorem was limited to sufficiently small
values of the coupling constant g, and, as noted in the introduction to [3], this
restriction is highly unsatisfactory, since the most interesting question concerning
the Edwards model is a question about its asymptotic behavior in the limit g -> oo.
In the present paper we show that the polymer measure v(g) is well defined for all
g ^ 0. In addition we show that the (renormalised) perturbation series for moments
of v(g\ although (presumably) divergent, determine the moments as their Borel
sums. This result is of interest because it shows that all information about the
model is implicitly contained in the perturbation series, and hence guarantees the
uniqueness of our construction of the model. In a final section we confirm the
expectation of Symanzik [4], that the measure v(g), g >0, and the Wiener measure
μ = v(0) are mutually singular, by showing that v{gγ) and v(g2) are disjoint for any

gί9g2 mth0Sgι<g2

Throughout this paper we rely heavily on the results of [1]. In particular the
notation of [1] will be used without further explanation.

2. Borel Summability

We adopt the notation and hypotheses of Theorem 1 [1], and consider, for a given
localised random variable ReLq(Ω, G(m), μ), for some m ^ 0, q > 1, the expectation

(1)
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with F(R,g)=limElRexpί-gS(n)BCn{gr1- (2)
n-> oo

According to [1], F(R,g) is well-defined for g positive, and sufficiently small. In
this section we will prove

Theorem 1. For some go>0, F(R,g) is well-defined for all geD = {g:Reg>0
\g\ <g0}, and is bounded and holomorphic in D. As g->0 in D, F(R,g) admits an
asymptotic expansion

F(R,g)^γaι(R)gι. (3)

//, in addition, the constants β1,β2 appearing in conditions C4, C5 of [1] satisfy

βl9β2< 2, then F(R,g) is the Borel sum of its asymptotic expansion.

Remark. For the Edwards' model βλ = §, and β 2

= f + ε w ^ t n a n ε > 0 , which
may be made arbitrarily small by choice of the Holder index q which appears in
the verification of C5 ([1] p. 169). Thus Theorem 1 implies Borel summability for
the Edwards' model.

Proof. We begin the proof of Theorem 1 with a lemma which makes explicit the
dependence of the major ant for the inductive expansion on the choice of termination
sequence J. For L > 0 an arbitrary integer, denote by JL the inductive expansion
defined by the termination sequence j(m, ή) = [L/?"+m], with p > 1 chosen as in [1]
2.7. Let B denote the truncation sequence bn = Kξn, with ξ chosen so 1 < ξ < min
(21 / 2,/)1 / 2), and K > 0 arbitrary. Write β =max(/?1,/?2,1), and choose γ>β-l.
Then we have

Lemma 1. Let R be a localized random variable, with ReLq for some q>l, and

r = max {n :neloc(R)}. Then there exist ε > 0, and M > 0, such that, for all L ^ 1,

and g satisfying \g\ ^ 1

JL{F(g,R;B)}<M\\R\\q(l-ε\g\uyϊ + ί\ (4)

Proof of Lemma 1. The proof is a recapitulation of the majorisation argument
of [1] 2.7 with certain changes which are needed to give the correct dependence
of the estimates on L.

The truncation sequence B is chosen more rapidly rising than in [1] in order
to simplify the subsequent passage from F(g,R;B) to F(g, R). The condition ξ < 2 1 / 2

implies bn+kθ~k ^bn for all n,/c^0 with θ = 2112 (cf. [1] 2.7.2, and the argument
following 2.7.37); ξ < p1/2 guarantees [1] 2.7.21.

The introduction of complex g entails a minor modification in the estimation
of the termination factors P2, thus [1] 2.7.14 is to be replaced by

||exp { - gt(n, m)Z(n,m;B)} | |$] = ||exp {- (Reg)φ, m)X(n,m;B)} \Hn)
\r(n)

.\\exp{(lmg)t(n,m)Γ(X(n,m;B))}\\ϊ«] (5)

with r(ή) = pp(ή)c(ή). The first factor is to be estimated as in [1] (note that the
sign condition on g in [1] Lemma 7 is irrelevant, as is clear in [1] 2.7.16). The
second factor is a Gaussian integral equal to

E[exp {||Img\2t(n, m)2F[_X(n, m; β)2]r(n)2}] S exp UM 2£[X 2]r(n) 2}
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for \g\ £ 1, with A some constant. This is of the same form as the bound obtained
in [1] for the first factor, so the form of the bound obtained for (5) is unchanged,
and the argument of [1] can proceed.

We come now to the changes in [1] 2.7 needed to give the correct dependence
on L of the majorant; this dependence enters through the constant C 1 3 of [1]
2.5.28—to prove Lemma 1 it clearly suffices to show C 1 3 = 0(27), or, equivalently
(see [1] 2.5) K 4 = 0(27) and K8 = 0(ϋ). First note that in the argument following
[1] 2.7.32 the essential property of the comparison random variables Y is that
£[exp (x 171)] exist for sufficiently small x.1 Thus at this step we can use exponential
rather that Gaussian random variables, which makes it possible to replace p1/2

by p in [1] 2.5.28. We make this change, and the corresponding change in [1]
2.5.21, 2.5.25, and claim that we can then obtain K4 = 0(U), K8 = 0(U). To do this
we require a further lemma; the first part of the lemma replaces [1] Lemma 3(a) and
the second sharpens [1] Lemma 5. The proof of the lemma is a minor modification of
the proofs of the lemmas in [1] which it replaces; we omit it.

Lemma 2. Let X be a random variable with E[X~\ =0, N a positive integer,
X!,...,XN independent random variables with the same distribution as X, with
normalised sum

Suppose that for some C > 0, β ^ 1, and all p^l,

\\X\\p^Cp«.

Then (a) for any ε > 0, there exists α > 0 and K > 0 such that for any A^i

for all N ^ 1, p^ ANa.

(b) There exists K>0 such that for all N^l,p}> 1,

The use of Lemma 2 in the argument of [1] gives K4 = 0(27). To obtain K8 = O(U)
requires a further change in the argument of [1], since the constant /?8 given by
[1] Lemma 4 is not satisfactory. Instead we use [1] Lemma 4 only for p = 2 to
transfer C6' to the truncated array, and then repeat for the truncated array the
argument that C6' implies C6 ([1] 3.3 Lemma 3), using the above Lemma 2(b) in
place of [1] Lemma 5. This yields [1] 2.5.11 with the constant β8 = β + ε, for any
given ε > 0. Then the argument of [1] gives [1] 2.5.25 (modified by the replacement
of p 1 / 2 by p on the right side) with K8 =O(U), which completes the proof of
Lemma 1. •

The next lemma casts the basic estimate implying Borel summability into a

1 Here we take the opportunity to correct an error in [1]. We should have introduced independent
OO

Gaussian variables Y(n,m), n^O, m ^ l . Then [1] 21.34 holds with H(x)= [ ] K(xτ?7), K(x) =

£[exp[x |7 |]], and the argument proceeds as in [1]
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convenient form for use with our majorisation arguments. We omit the straight-
forward proof.

Lemma 3. For ε > 0 write D(ε) = {#:Reg>0,\g\ <ε). Suppose F(g) bounded and
holomorphic in D(ε) for some ε > 0, and y ^ 0. Then the following conditions on F
are equivalent

(a) As g^O in D(ε), F(g) admits an asymptotic expansion

for which

for some C > 0, all L ^ 1 and geD(ε).
(b) There exists aC>0 such that for each L ^ 1, and geD(C~1L~y\ F(g) admits

an expansion

F(g)= Σ FkJa)
k = 0

such that
(i) each term FkL(g) is holomorphic in g in D(C~1L~y), and satisfies a bound

\FKL(g)\ ^ \g\^L)BKL

with w(/c, L) an integer called the weight of the term, and Bk L ^ 0,

(ii) X BKL^C{CLT,
k:w{k,L) = w

(iii) if w(k, L) < L, then FkL{g) is a monomial in g.

Remark 1. (b) impl ie s F b o u n d e d a n d h o l o m o r p h i c in D(ε) w i t h ε = C 1 .

Remark 2. (ii) is e q u i v a l e n t t o t h e ex i s tence of a m a j o r i s a t i o n

with h(z) = Σ hnzn> nn = Q f° r a ^ n> holomorphic in the neighbourhood of z = 0.

Remark 3. According to a theorem of Nevanlinna (see Sokal [5]), if y rg 1 (a)
implies that the asymptotic series for F is Borel summable to F\ if y < 1 the Borel
transform is an entire function.

We have

(6)
with

F 1 fe ;β)= \im Cn(g B)Cn{gy\ (7)

an entire function of the form exp {ag + bg2} ([1] Lemma 2), and

g;ByK (8)
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Thus the proof of Theorem 1 will be complete if we show that F(g) = F2(R,g; B)
satisfies condition (b) of Lemma 3.

Write T = £ [X(n)-X(n;B)l (9)
« = 0

and, for m ̂  0,
ΓM = £[T|G(m)]. (10)

With the truncation sequence B specified in Lemma 1, it is easy to check

Lemma 4. There exist constants C > 0, and τ < 1, such that, for all p ̂  1, m ^ 0,

(a) \\T\\p£Cp1+y, (11)

(b) ||T-£[T|G(m)]||^CτV+y. (12)

For any integer L > 0, define functions eL fu) of a real variable u for integral j ^ 0

L - l

L>j(M) - exp { - u] - X eLj(u), j = L,

so that exp{ —w}= Σ ^LJ(M) ^S t n e expansion of exp{ — u) as a Taylor
; = o

polynomial of degree L — 1 plus a remainder.
Denote by G ( - 1) the trivial σ-algebra, so that T_x =E\T\G{- 1)] = £ [ T ] .

We will show that the expansions

+ Σ Σ •MF(0,K[eLjTO-e i >7;_ 1 )])} (13)
m = 0 j = 0

satisfy (b) of Lemma 3.
(bi), (biii) are evidently satisfied, the weight of a term in (13) being defined to

be j plus its weight as a term in the inductive expansion. For the verification of
(bii) we need one further lemma, whose simple proof we omit.

Lemma 5. Let Γ ^ 0 be a random variable satisfying the bounds (11), (12). Then
for any sTzl there exist K > 0, ε > 0 such that for all L ̂  0, m g: 0, Reg ^ 0,

Σ \WagTm)-eagTm-Ms<Kτm{\-s\g\U)-'- (14)
j = o

Now Lemma 1 gives for (13) a majorant

00 00

+ Σ Σ
m = 0 j = 0



4 6 4 J. Westwater

Here v is chosen so 1 <v<q, and we suppose \g\ ^ 1. We write υ~ι =q~x + s~ι,
and use Holder's inequality and (14) to majorise (15) by

\R\\qKM(l-ε\g\U)~2 Σ τm(l -ε\g\U)-max{r>m\ (16)
m = 0

(16) may be majorised by the right side of (4) by an appropriate redefinition of
M, ε. The proof of Theorem 1 is complete. •

3. Construction of the Polymer Measure for Large Values of the Coupling Constant

We retain the notation and hypotheses of Theorem [1]. The construction of [1]
gives, for sufficiently small positive values of the coupling constant g, 0 ̂  g < g, a
martingale {fm(g\m^0} relative to the increasing sequence of σ-algebras G(m\
m ^ 0, such that, for some p > 1, K > 0, p > 1, and all m ̂  0,

(a) /Mfo)^0,

From (b), (c) we have, by interpolation, for any ί, 0 < t < 1,

ll/»llq(ί)^ll/»II^^Pmί, (1)
with

Now let N ^ 1 be an integer and define probability measures α(JV,#), v(N,g),

for 0 S Q < 2N/2g, by

(2)

1 ) ] . (3)d(x(N,g) Z(N,g)

In (2), ζ(v)^ denotes the map induced by ζ(v): Ω^>Ω on measures; in (3), Z(N,g)
denotes the normalisation factor EαiNtg)[ε\p(— gS{N - 1))]. Note that formally

dv(g) _ 1
~ ~ — e x p — g
dμ Z \_ m = 0

and that, for any N ^ 1,

= Π CM*M>
i eΓ(IV)

so that, again formally,

JLJ ne=T(N

Σ Σ
m = 0veT(N)
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v(ΛΓ, g) is thus a candidate for an extension of v{g) to the interval [0,2N/2g).
The construction of v(iV, g) from α(N, g) via (3) requires some comment since

the random variable X (and so also S(N — 1)) is not universally defined, but in
the first instance only relative to the probability measure μ. In order to define X
as a random variable relative to the probability measure α(JV, g\ we begin with the
series

X= Σ ( £ [ X | G ( m ) ] - £ [ X | G ( m - l ) ] ) . (4)

The summands in (4) are well-defined relative to cι(N,g) since, for each m ^ 1,
a(N,g)\G(m) <ξ μ\G{m). Moreover

= Ei\ElX\G(m)-]-E\_X\G{m-l)-\\2 Π C^rίU^
vsT(N)

S \\ElX\G(mn-ElX\G(m-\n\\2

2rexplt2N\og(Kpm)l (5)

by Holder's inequality, and (1). In (5) r denotes the Holder index conjugate to q(ΐ).
We choose t. sufficiently small that τ = τ 2exp[ί2N logp] < 1, with τ 2 the constant
in (2.1.2) [1], so that (5) is bounded by Cτm, for some C > 0, and conclude that (4)
converges in L2(Ω,a(N,g)). The random variable X defined by (4) is non-negative,
since the partial sums E[_X\ G(m)~\ of (4) are non-negative. In the same way we may
define, for any veT, X(v) as a non-negative random variable relative to ot(N,g), so
that the construction of v(N9g) via (3) is well-defined.

To verify that v(iV, g) is indeed an extension of v(g\ we begin with the case
N = 1. By choosing g smaller if necessary, we may arrange that, for any localised
and bounded random variable R, the expectations £ v ( g ) [R], £v(1>g)[jR] are analytic
in g for 0 g g < g, and admit asymptotic series as g -* 0 + from which they may
be recovered by the Borel summation method. The formal identity of v(g\ v(l,g)
noted above guarantees the identity of the asymptotic series, and hence of their
Borel sums, so that

for any localised and bounded R; this implies v(g) = v(l,g).
Next for any N S; 1 and 0 ^ g < g2N'2, we have

ot(N,g)= Π C(vUv(g2-N'2β
veT(N)

= Π ζ(v\W,g2->"2)-]
veT(N)

< Π ζ(v
veT(N)



466 J. Westwater

with
da(N,g)

da(N+l,g)
veT(N)

so that v(N + l,g) and v(N,g) are both absolutely continuous with respect to
<x(N + 1,#); the identity v(N + l,g) = v(N,g) is then established by checking that

l,0) dv(N,g)

da{N+Ug)

We may now write v(iV, g) = v(g), so that v(#) is defined for all gltOAn 3.2 [1] we
have shown that, for sufficiently small g, the measure v(g) induces a measure on
the space of continuous paths x: [0,1] -> U3 with x(0) = 0 via the Ciesielski map
3.2.5 [1]. Since the above construction oΐv(g) for large values of g gives v(g) < α(iV, g)
for any JV g; 1, and since the product measure oc(N,g) induces a measure on the
space of continuous paths for all sufficiently large N by the result of 3.2 [1], it
follows that v(g) induces a measure on the space of continuous paths for all g^O.

We have seen in Sect. 2 that, for sufficiently small g, v(g) is analytic in g in the
sense that, for any bounded localised random variable R, Ev(g)[K] is analytic in
g, 0 <g <g, and is uniquely determined by its asymptotic expansion as g->0 + ,
i.e. by the perturbation series. The following Theorem 2 completes this result by
showing that Evig)[K] is analytic in g for all g > 0. This rules out, as expected, any
"'phase transition" for a finite value of g9 and establishes the uniqueness of v(g)
in the strongest possible sense.

Theorem 2. There exists a constant D>0 such that, for any bounded localised
random variable R, £V(^[R] admits a meromorphic extension to the open set
U = {#:Reg > 0, \lmg\ < D(l + Reg)"1} with poles (if any) independent of R.

Proof. Fix a truncation sequence B as in Sect. 2, and denote by v(g;B) the measure
constructed using the truncated random variables X(n;B\ and by T the tail of
the interaction energy, given by (2.9), so that v(g) <ξ v(g;B), with

dv(g) exp(-gT)

dv(g;B) Ev(g;B)[?xp(-gT)y

For any integer N ^ 1 define the measure

(6)

veT(N)

and the positive random variables

TN = 2-"i2 Σ C(v)*ίn (8)
veT(N)

KN = S(N-l)+TN. (9)

Then from (3), (6), and the fact that v(N,g) = v(g\ it follows that v(g) 4 a(N, g B),
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with
dv(g) ^ Qxp(-gKN)

gK)ϊda(N,g;B) EaiNtg;)

Fix q > 1. From the proof of Theorem 1 [1] and the additional remarks on
the extension to complex values of g in Sect. 2, we have the following information
concerning the measures v(g;B): There exists g0 > 0, C > 0 such that for 0 ̂  g ^ g0,
and any m ^ 0, v{g ;B)\ G(m) <ξ μ, with a Radon-Nikodym derivative fm(g;B)eLq(Ω, μ)
which admits a holomorphic extension (as a function of g with values in L?) to
{g:\g\^g0} satisfying

\\fm(g;B)\\q£Cm. (11)

Note also that \\fm{g\B)\\1 = 1 for 0 ^ # ^ # 0 .
Now choose g1,0<g1<^g0, and consider the functions hm(θ) = fm(g1[l +

cosh(0)]). They are holomorphic in the strip O^RQΘ ^θo(θo=ch~ί(gog~1 - 1))
with values in Lq(Ω, μ\ and satisfy

\\hm(θ)\\q^Cm,

| | U ) l l i ,

By complex interpolation it follows that, for any ί,0 S t ^ 1,

\\hm(θ)\\qit)^Cmt

9 (12)

for θ in the strip 0 ̂  ReO g ίθ 0. Here <̂ (ί) is given by

qiή-^Γ'+il-ήq-1.

(12) is equivalent to

\\fMB)\\φ)ύCm\ (13)

for f̂ in the closed region K(t) bounded by the ellipse E(t) with foci at 0,2gί and
minor axis gί sinh(ίθ0). We denote by I{ή the interior of K(t).

The representation (10) of v(g) gives a representation of £ v ( 5 )[K] as a quotient

We will show that the numerator and denominator of (14) are holomorphic in a
certain open set VNi independent of R, so that £v(^[jR] is meromorphic in

V= U VN. (15)

We will then show that V contains the set U = U(D) of the theorem statement for
some D ̂  0, and the proof of Theorem 2 will be complete.

Evidently it suffices to consider (for arbitrary R) the numerator of (14), the
denominator being obtained as a special case for R = 1. Recall that R is localised,
i.e. ReG(r) for some r ^ 0. We consider the expansion

(16)
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with

UN,g;B)JM^p^l = E\ π ζ{vrUmig2-^,mG{m)
UlX \_veT{N)

O u r earl ier e s t imates give for s o m e K > 0, a n d all A / " ^ l , p ^ l , m ^ 0 a b o u n d

\\KN - E[KN\G(mn \\p S K(N + l)p1+hm. (18)

In (18) τ < 1, and y is as in Sect. 2 (cf. Lemma 4). Now set tN = to2~N with ί0 > 0
sufficiently small that

τ C ί 0 < l . (19)

Thus using Holder's inequality with index q(tN), the fact that KN^0, and (13),
(17), (18), (19) it is easy to check that the terms of (16) are holomorphic in

VN = {g:Reg>0,2-N'2geI(tN)},

and that the series converges uniformly on VN, so that its sum Ea{N)g;B)

[Kexp( — gKN)~\ is holomorphic in VN.
Set V— (I VN. Given g^g1 we may choose N so \gγ <^ 2~N/2g g gv Then

2~NI2geI{tN), and its distance from dI(tN) = E(tN) is ^ CtN for some C > 0. Thus
the distance from g to- dV is at least C2N/2tN = Ct02~N/2^Cίg~ί, with
Cx = CtQg{l~x. For some ε > 0, Kx contains {gf .O < Reg < ^rl5 |Im^| <ε}. Hence V
contains U(D) for D = min {c, Cj}. D

Remark. By using Jensen's inequality to obtain a crude lower bound for the
denominator of (14), we can determine explicitly an open set W containing the
positive real axis in which Ev{g)[_K] is holomorphic for any bounded, localised JR.
We find for some A, C > 0

4. Disjointness of the Measures v(g)

We adopt the notation of 3.1 [1]. Let λuλ2 be positive measures satisfying 3.1.10
[1], so that the random variables J(A 1 ) ,J(Λ 2 ) are well-defined, and have finite
variance. Then

c(ξι,ζ2)C(ξ2,ξ2)-c(ζι,ξ2)
2

> Γ dλάξj dλ2(ξ2)

2Y'2

Thus the random variables X(v) which appear in the construction of the polymer
measure (3.2 [1]) satisfy the following condition:
CΊ. For any υι,v2eT,X(vι) and X(v2) are positively correlated.

The purpose of this section is to show that the polymer measures for different
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values of the coupling constant g are pairwise disjoint. This result follows from
the above remark and Theorem 3 below.

Theorem 3. Retain the notation and hypothesis of Theorem 1 [7], and suppose
also that Cl holds. Then for any g1,g2 ^ 0 , with gλ φg2, the measures v(gι),v(g2)
are disjoint.

Proof Note first that if, for some N^l, v(2~Ngί) and v(2~Ng2) are disjoint, then
the product measures αtJV,^), oc(N,g2) of Sect. 2 are disjoint, and hence
Λΰι)<oί(N,gx) and v(g2) <α(iV,g2) are disjoint. It therefore suffices to prove
Theorem 3 for gl9g2e[O,g\ with g the constant appearing in Theorem 1 [1].

Next notice that the proof given in [1] that S(n) is approximately Gaussian
for large n remains valid if gS(n) is replaced by

S(n)= Σ Φn)X(m),
m = 0

with (g(m), m ίg 0} an arbitrary sequence of real numbers chosen from [0,g). More
precisely, we obtain, by the expansion and majorisation method of [1], for
Zn = £'[exp( —5(«))] upper and lower bounds

K.C^Z^K^ (1)

uniform in n, and in the sequence {g(m), m §: 0}. (In (1), Ku K2 are constants > 0,
and Cn = exp {- E[£(n)] + \Var \β{n)~\} is the value which Zn would have if S(n)
were Gaussian.)

To show v(gι), v(g2) disjoint it suffices to find, for any given ε > 0, a set E such
that

^ε, v(g2)(Ec)^s. (2)

We will show that

is such a set, if the integer k and real number η are properly chosen.
For some C > 0, and all integers n, k with n ̂  k we have

kVar [X] ^ Var [S(fc)] ^ Cov [S(w)S(fc)] ^ C/c, (3)

C7 being used to obtain the first two inequalities. Hence

H(k)= lim

exists as the limit of a bounded increasing sequence, and H(k)-> oo as fe-> oo.
For definiteness suppose g1>g2, and choose /? so 0 <β <gx -g2. For any

integer π we have

vπ(tf!)(£) ^ jexp |j8(S(ίc) - ιj)] d v ^ J , (4)

vn(g2)(E<) g jexp [ - 0(S(fc) -«?)] Λnfe2) (5)

Using the definition 2.1.4 [1] of vn, the right side of (4) may be written in the form
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with A,B = {g(m\ m ^ 0} the sequences given by

A:g(m) = g1-β, O^m^/c

g(m) = gί, m>k

B :g(m) = gί for all m

We may therefore use (1) to obtain an upper bound for the right side of (4). With
the choice of η fixed by

(6)

and the help of the middle inequality of (3), this leads in the limit n -• oo to

v(gi)(E) ^ K2Kϊ1 exp [ - \β{Qι -g2- β)H(k)l (7)

Proceeding in the same way from (5) we find that the right side of (7) is also an
upper bound for v{g2)(Ec). Since H(k)-+ oo as fc-> oo, it remains only to choose k
sufficiently large to obtain (2), and hence to complete the proof of Theorem 3. •
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with the proof of Theorem 2.
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