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Abstract. The Renormalization Group is used to study the correlation
functions of a nonlocal hierarchical model mimicking the A(Vg)* model, dipole
gas and the like. It is shown that the infrared behaviour of the correlations is
that of the massless gaussian 1c(2) (Vo)

1. Introduction

In [1] a nonlocal hierarchical model was introduced to ;nimic the long distance
behaviour of the lattice model with Hamiltonian

H(¢)=3 [("$); + (V)]

A renormalization group (RG) transformation was defined in finite volume and
contractive properties were proved for it uniformly in volume. With the assump-
tion of existence of the thermodynamical limit, the RG was shown to drive the
model to a fixed point mimicking the massless lattice field. In this paper we extend
the analysis to correlation functions. Using the RG we prove detailed estimates of
the long distance behaviour of correlations, showing that in the infrared the model
behaves as a massless gaussian lattice field. We also establish the existence of the
thermodynamical limit of all correlations and thereby complete the analysis of [1].
In the thermodynamic limit the correlation functions will satisfy convergent
(inductive) cluster expansions, generalizations of those working in the massive case
now to a massless model. The present paper is selfcontained provided certain
results of [1] are taken as given.

Let us briefly recall the model (for motivation, see [1]). We divide the periodic
lattice Ay =7Z{~ of volume LY (LeN, odd = 3) to blocks b of volume L* 1 <k<N
centered at yL¥, ye A _, and associate a random variable Z% to the block b5™ . Let
o/ be a function supported on by with mean zero, <7(0)%0 and nonconstant in
b3\{0}. Denoting

zy=A(y—LIL™ 'Y Z1- ) (1)
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([x] is the integer part of x), we will consider the following random fields on A,
N-1 dk

b= L 2zp1y. 2
k=0

As explained in [1], ¢ plays the role of the gradient of a massless scalar field.
We define also blockspin fields ¢*, xe Ay _,

N Lew
¢’;= Z L 2 Zp-ivexys (3)
j=k
which satisfy
d
d)i = L 2¢{(L+‘11x] + Zi . (4)

o)

The free model is specified by giving a family of kernels U={U,,(x, ..., X5,)}m=1
with x ;€ 7°, satisfying the following properties:

1

1 _ . 2m
Ul 4= Sli (27)' - .;xzm) IUzm(x)'eAL(') <k, (5)
UpX g5 o X0) = Upp(Xy +d, X5, +d) = Uy (Xahys - Xngamy) » (6)
Uj,ux,x,...,x)=0. 7

Throughout the paper we denote by X the sequence (x, ..., x,,) and by x the set

{X( Xy, L(x) is the length of the shortest tree on x and possibly other
d

(continuum) points. We measure lengths in the metric [x|= ) |x,| on the torus A.
u=1
Given U we define a potential UN %~ 1(Z¥)

0

UN=*= (70 = z Z Ug’r;"—l(fc)Z’;l . Zk @®)

X2m?
m=1 x1,...,X2m€AN -k -1

where UY ¥ 1(X) is defined as the periodization of U to Ay_,_,.

The free expectation {— )Y in volume A is defined as

N—-1
<—>§=W‘1§(—)k[[0dvk(z"), )
with
dv(Z4) =" V@I T dx(ZY), (10)

where X is an even probability measure on R with compact support. It is easy to
see that (8) is well defined provided x is small enough. In [1] we called the case
U =0 the local case. L
To describe the interacting case, let V={V,,(X)}»_ satisfy (6) and
Vl.<n, (11)
V,(x,x)=0, (12)
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and again denote by V%, the periodized kernel on (4%)?™. The interaction potential
is

V@) =V(9)+ (), (13)
where
R@)=3 % 02, (14
and )
KCEDEOR IR (15)
We denote )
¢.= ﬁ by, (16)

i=1

Now the interacting expectation is defined as
(P =L(=)e T ONF /e IO, (17

In [1] the case U=0, V™¢)=> v(¢,) was called the local model. Finally, we

X
defined the RG transformation T, in finite volume using (4) to integrate out Z°:

_4
(T,VM (9= —logfexp[- V(L 2p-1,+2°)]dvo(Z2°)
+log [ exp [— V(z°)]dvo(Z°), (18)

and the next RG transformations T, in an analogous way. The main result of [1]
was the following (we denote by | /7| 4 (5) also when the sum is restricted to A, and
L(x) a tree on Ay, we also drop the subscript in T since T;’s differ only by the
volume).

Proposition 1. Let V* be of the form (13) with |V¥ 4<n. For A large enough, k and y
small enough, uniformly in k, TV* can be written as

TVE=VE ' 4 TVF ! (19)

with
TV ! <on,  6<1 (20)

and
|IC—C'|=Zon. (21)

& and o do not depend on C.

Remark. The ¥ in Proposition 1 does not have to be a periodization of any ¥, only
VN is.
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Let us now turn to the results of the present paper. The first result deals with
the thermodynamical limit.

Theorem 1. Let |I~/|A<11 and let A, n and k be as in Proposition 1. Let V=(c, 17).
(A) There is an infinite volume state {— ), such that

(pDPn— {bodv (22)
for each x=(x,, ...,x).

(B) Textends to the thermodynamic limit, i.e. there is a TV (¢, TV) such that for
all X

<¢i>¥VN—) {b)rvs (23)
TV, <6n, |/ —clSom. (24)
(C) Let |V —V|,~0, ¢,~c as n—oo. Then

=Dy =Dy, V=(V) (25)

in the sense of uniform convergence of correlations, that is, for all m
m m
< 1_[ ¢Xi> - < n ¢Xi>
i=1 V(n) i=1 14

Thus the RG drives our interacting model to the line of fixed points.
The following result deals with the long distance behaviour of two point
function showing that it agrees with that of the free model.

uniformly in {x;}{-,.

Theorem 2. Let V be as in Theorem 1. Then

(A) Y, ¢y, >Pn=0forall N,
(B) K by dvl Sl +x, —x,17¢,
© 5 Kupl =0

Remark. (C) shows that (B) is the best polynomial bound. Recall that ¢ is the
analogue of V¢, ¢ a scalar field. (A)-(B) are the properties of (Vo Ve > in
massless free theory.

Finally, we show how the RG can be used to study general truncated
expectations. We derive convergent inductive expansions for them, which could be
used to study their long distance behaviour. Since this behaviour is not particular-
ly illuminating even in the free case we will not tackle that problem here.

2. The Free Model

Let us first show why our results are true in the free case. For this we need the
following result proven in [1] using a high temperature cluster expansion. For
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later use, we state it in the interacting case. Let |4 4 <# and define the expectation
(== N1 —e Vv (ZH). (1)
Then
Proposition 2. Let D, A be large enough and x,n small enough. Then uniformly in k
K Za,5 3 Za STISTIM, ! ] €200+ 2w

j=1

exp[—3AL(u;;...;u4,)], 2

where M, are the numbers of the sequences uy, ...,u, equal up to permutations and
L(uy;...;u,) the length of the shortest graph on the points of U - and possibly other
points connected with respect to the groups u;.

To establish the thermodynamic limit of the free model we use (2) to write

m N [N/2] -iZn- m
(o) = % 17" (fla) +r
i=1 0 nienhm=0 i=

d
Z L 2Z‘mzc"fdv (Z™)+Ry. (3)
The thermodynamic limit for the [zjidv,’s is standard, given the cluster
expansion of [1]. Moreover
m N
(i)
i=1 0

uniformly in N. Hence the existence of the N— oo limit follows by the dominated
convergence theorem, since Ry—0.
For Theorem 2 note that since

<c" for all u;

—1

(b, s, 00 = Z L™Me/([L™ "%, - LIL™* 'x,])

. JZ{([L xz] — L[L L lxz]) <Z[L—k— 1x1]Z;chk~ 1:%2]>k’ (4)
part A follows because .« has zero mean. For part B we use Proposition 2 to get
KZE 1oy 2 r il Sce™ =l ()

so that
Ko pudlSe T L7 exp[—aL ™ x; = x,]
k=0
Sc[1+x;—x,[174. ©)

To prove part C for the free model, consider first the local case, i.e. U=0. Then

(ZEZky =0 if E—} + [{—] Thus, letting N be such that x;ebg* and x, such that
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x,¢bY" we get from (4)
(Dodol= L0020

Li—
d(N—-1) %(0)2}

ag—1)

((L" — 1) (x)+.4(0))

L [ Z%dx(Z), (7)

where j is the smallest integer such that x,eb) and x=[L~Y~Yx,]. Since .« by
definition is nonconstant in by with /(0)+0 and zero mean
2 (L= 1)/(x) + £(0)] Z £].£(0)]. ®)
xebf

_ &
Take now L™ V2 < L whence

N> e o4(0) N/z
§l<¢x1¢xz>0'—2 Ld

Y [Z%dx(2). ©)

1; N, +2
Upon taking N to infinity we get C.

For the nonlocal case, U =0, we get instead of (7)

<¢x1¢x2>N z L™ Me/([L™ x1] LIL™* 'x x )et([L™ xz] LIL™*" lxz])

.<Z[L"“1x1]Z[L‘k‘1xz]>N +L" v l)d&{(o)d(x)<(ZFL—Jxl])2>I(;’
+ Z L™ A0 UZf, - 15,)™ 0 - (10)
k=j

Now, since y, =[L 7" 'x,J*+[L7* x,]=y, for 0Sk<j—2, we get

(Z* 7k SN = — j AIZE 7 UMZDY (11)

Y1 yz y177y2?

where on the right hand side we replace U* in (1.10) by AU*. Using Proposition 2
and (1.5) we easily bound (11) by

KZ3,Z3,>5| S crexpl —ely, — p,l1, (12)
and thus the first term A on the right hand side of (10) is bounded by
ASCr[1+]x,—x,]179<CrL™07 14, (13)
since |x; —x,| 2L/ = IM) =107 if j>N,+1.
Similarly one shows that uniformly in k
[K(Z3)*>8 = [ Z2dx(2)| = Cxe. (14)
Thus combining (10), (13), and (14) we get for x small enough (9) with ¢ replaced by

% (say) and Theorem 2 is proved in the free case.

We will now proceed with establishing the renormalization group transfor-
mation properties of the correlation functions.
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3. RG Transformations for Correlation Functions

Let F be a function of ¢. We define the first RG-transformation of F, S;F by
computing

(FyPn=<Fe V" )8 e VN =(KFe "y, >0 1 /Ke " o8 !
=<M<8_VN>\:N> - /<<e—VN>VN>1(\)I—1

<e_VN>vN 0
= (S, P, ()
where
d d
<F (L_ 2Pl + z?) v tote 1+z-°)>w
<e—VN(L‘%¢['L-1.,+z.0)>

(S, F) (@)=

VN

and we denoted
(=D=] —dvy. (3)

The successive transformations S, are defined similarly by replacing N in (2) by
N—k+1, ¢! by ¢* and z° by 27 1. So

<F>5N=<Sk"'SIF I;,:..k.Tlv- (4)

4. The Local Model

As a motivation to the general case we will establish Theorem 2 in a local model
defined by U=0 and

M= 2 vo,). (1)

xXeAN

From (1.1), (1.10), and (3.2) we see that T, preserves locality

(TVM) (9= AZ t(9), (2
with
to(¢) = ——logjexp[— > v(L_Eq,‘)-i—&/(x)Z) dx(Z)
xeb}
+log f exp [— Y v(&f(x)Z)] dx(Z). (3)

Since ¢ is bounded we will consider ¢ as a transformation on C(— f, ), where e
stands for even and f is large enough. Let us write

(@) =3cd* + ), (4)
to() =3¢ + (), )
with
d*v d*v

W(O):W(O):O' (6)
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An analogue of Proposition 1, proven in a simple manner in [1] is

Proposition 3. There are 0<d <1 and a>0 such that for 0 <y small enough

% =n Y
implies that
% <o ®)
and
[ —cl=on. &)
Let us consider S, first on a localized F:
F(@)=f(9,).
Let y,=[L™"y]. Then, from (2) S, ...S,F is localized at y,:
Sy SiF=f(¢5,) (10)

and

)e - § vn(L _g¢+ .f/(x)Z)

_a
ﬁ.+1(¢)=5i2“ﬁ(¢)"=‘fﬁ,<ll 2o+ Ay, 1)Z dx(Z)

'{5 exp

where v, =t"v. We often suppress the y-dependence of s below.
We will consider s,, given by (11), as a transformation on C*(— 8, ). We deal
separately with the even and odd functions, C#, C§. Let fe C¢. We write

df

-1

d
-, (L_ 2¢+ Jz/(x)Z) ax(z)| (11)

@) =up+1(4), dTV‘(O):O k=0,1,2. (12)
For even g,
=a+fd*+5(¢),
dk;(fb) o+ po*+g(e) 13)
W(0)=0, k=0,1,2,3.
We need
Lemma 1. (a) Let f€ Cg, ve C# be such that for k=3,4
dk"' 4~
Hlsn. [ son. (14

There exist >0, ny>0 such that for 0<n<n,

d
(Svf)(¢)=L‘ 2w+ f(9)), (15)
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where
k71
lu—pl=cn, ra son, k=34 (16)
for some 0 <o <1.
(b) Let g, ve C2 with
d4— 4~
34 ST e = (17)
There are €>0, n,,>0 such that for n<n,
($29)(@)=o' + L[> +7($)], (18)
where
lo/ —o—(y)*B | 2dx | < cn
with
dx(z)=A""lexp|— %Zd(x)zzz dx(Z) (19)
and
a*g
d¢4 =dén, 0O<o<l. (20)
Proof. (a) From (11) we get
_4 [ _4 |
(s3/)P)=L *pdp+ <Hﬂ(y)z +f (L 2¢+&¢(y)2)>¢, (21)
_4
where (—), is in A" exp[— ZE(L 2¢+4X/'(x)Z> dx(z).
Hence
‘=p+ <£(&f( )Z)> - < )Z); (%(X)Z)>T (22)
K K d¢ Y $¢=0 xebo y ¢ ¢=0 ’
and
47! B _dk—1) & . dmly . dely o d»ly  \T

x jebo

for k=3,4, where ¢,=L""*¢+.9/(x)Z and {I;} run through the partitions of
¢ d f

0

{1, ....k}, with I, possibly empty. Since f(¢ =% v) (v — ¢)*dy, the p=1 term
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gives n by (14), the p=2, I, =0 gives 0(y¢), and the rest of the terms are 0(n?). Thus
dkfl
de*
for ¢, n small, k=3,4. The claim for u follows similarly.

(b) We get from (11)
(s29) (§) =+ L™ p¢p>

_dk—1)

=L ? (g+cne+en®)<on (24)

_4 _4
+<2L 2ﬁd(y)¢Z+ﬂ(y)2ﬁZz+é<L 2¢+,<z¢(y)Z>>¢. (25)

Noting that {Z*),_,= | Z*dy+0(en), we can proceed as in (a) []
Consider now the two point function (¢ ¢, >. If F=f'f? with f*localized at

% + [% then

X

S, F=s¥fls¥2f2, (26)

In fact, we may iterate (26). Let b} be the smallest block containing x, and x,.
Then

{De @) =SSP 1)s (27)
where
Fo1=8,, S f! (28)

and we suppressed the [%]s

Let v now satisfy the assumptions of Lemma 1. Taking é <1 suitably we can
apply Proposition 3 and Lemma 1 to obtain

. (
S =L 2 iy eyt Tl 100)] (29)
where
W—1|<cn, (30)
dk
d(;; . (31)

Next we compute, denoting [L ™" 1x,] by y;:

Sfm R )@ =LV DL~ 1? > + <u1u2ﬂ'(y1)~<f(yz)22
_d a N
+u' L 2%(y2)¢2+u1(14 2¢+M(y1)Z)fz<L 2¢+&¢(yz)Z)

+(1e2)+ 177 >¢ oy 1} =L Vo+ L™Bp* +5(4)]. (32)
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Similarly as in Lemma 1 we get

a=[L(y,)L(y,)+0n)] [ Z*dx,, (33)
p=1+0@), (34)
a5
dTﬁ <coiy. (35)

. d*y ; o .
Now, since W;ﬁ: <ed’y, we can apply Lemma 1 and Proposition 3 to iterate (32).

Let x,eb} ™! so that y, =0. Then we get
(o b.,> =LVt (0).(y,) [1+0(n)] [ Z*dx
+ ]:f L™ o/(00B, | Z2dx+ L™~ D0@N~Lp), (36)
=
where
1B,—1l|=cn foralln. (37)
Now (36) yields [{¢, ¢, > SCL ¥ < C'[1+(lx, —x,|)]~ ¢ which is B of Theorem 2.

(36) is up to O(y) terms (7) and we can proceed as there to establish the claim C of
Theorem 2. []

5. The Nonlocal Model — Localized Expectations

As in the local case we will start with localized F :s, when studying S, F of (3.2). For
this purpose let F be given by its Taylor series at ¢=0:

1
Fg)= Y — ¥ F(&éx (1)
m=0 M: xegm
where
F (x4, '”7Xm)=Fm(x1t(l)’ s X)) - (2

We say that F is localized at point s, with constants o, D if for all m.

|F,,(%)| < Dor"m! (3)

1
Y exp [Z AL(sUx)
Let now SYF be the RG transform of F:

<F(L_%¢[,__ 1 +z) exp [— V(L_ %QS[L- gt Z)]>
SYF(¢)= ) 4

<expl— V(L_%(ﬁ[L-L] +Z) >v
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where for generality we drop all the indices, i.e. N is general asis k (in S;), and vis a
measure involving U satifying (1.5)=(1.7). As an analogue of Lemma 1 in the local
case we prove

Lemma 2. Let F satisfy (3) and let |V|,<n. There exist A,, ao(A) such that for
AZ Ay, a=0g(A) and n=o

Z ISYF (%) exp [— %L([L_ LsTux)

d

P2 e L 257Y, m=1
< D" (501) m!-!L_dé_z’ =2 (_5)
for some 0 <6< 1. Moreover,
d
SY(Cy+F)=CL 2y 1+ F (©)
and if n<ao?, then
SV(C¢SZ+F)=CL_"(¢[L_1S])2~|—F”, (7)
where F', F" satisfy (5).
Proof. Differentiating (4) with respect to ¢ we obtain
_dm m—|Io|
(SYF), (=L 2 Y Yo=Y
IoC{l,....,m} k=0 (I
5|10|F 5|11|V 5|1k|V T
DY <5 PRI > (8)
VL™ tyi)=x; ¢3710 q')%A ¢)—'1k

where )" is the sum over partitions of {1, ...,m}\I, into sets I + The set I, may be
5

empty. ¢y, = [[ ¢, and (—>T is the truncated expectation in

iel

(=y=N"1[ = " Odv(z). 9)
Now
Sl
5 (D= 2 ((me—|IhH~" > F (V10 025, (10)
¢izo mo 2 |Iol V15 e Vg = 1101)

and similarly for V. Using (1.1) we write

mo — |Io| mo — | Io|
= [1 ALwi—Lu) [ Zs=AF 0z, (11)
i=1

v
i=1

where

u,=[L""v]. (12)



Renormalization Group II 481

Inserting to (8) we obtain

md
S"F,®=L 2 Y (1Y ¥
Io k21 (I} (m) RILTIFI=%
mjz |1+ 1
k ~
[ JZ{(U‘pu ]Fmo(yIO:U l—[V y l_))
w | —1)! j=

<H > _Z Y Ylmy—m))!

= mozm W[L-1F]=% T

“F (3, 0) <z =F)(X) + FAR). (13)

The reader is invited to compare (13) with (5.18) of [1]. The estimation proceeds
now analogously as there. Consider first the second term F. Let H(X)

1
:exp[L AL( ux)

1 - _
7 AL([L™ 's]uX)

F)(X) (and H'® respectively) and H,(X)

=exp F(X).

Then using Proposition 2
md Cmo—m

ZIH(Z) |<L 2 Z

[H,,,(¥, D)l
mogm(mo—'m) y,0 ¢

exp|— Z(L(suyu_v)— L(LL™'sJOlL™'yD)|. (14)
Some straightforward tree estimates (see Lemma 2 in [1]) bound
L(sugug)—L(Hu[L-l }_)]) >0. (15)

Thus by assumption (3)
md o Cmo—m

LHP®ISL 2 Y Dam°m0'~D(L o Y Ca)’(mM)

mo=m (Mo —m)! £=0

=D<L—%oc)mm!(1—Coc)‘"“1. (16)

For the first term in (13) we get by Proposition 2

cmi— |1

_md L2 k
ZlHinl)()_C)léL 2 Z Z Z Z IHmo(yIO?EO)l l:—lllw()_clj’v) 1;[ |I I)'nM'

Lo, k {1} {m;}¥,{v,}

A
.exp[%L([L—1s]u[L‘ll,])—|—DZL(gj)— %ZL(y,juyj)— —Z—L(u1 sosu)|, (17)
J J

1
where we denoted by I7V(>‘c)EeL AL f/(J‘c). Now, it was shown in [1] (Lemmas 2—-4)
that one can obtain from the last two terms in the exponent in (17) enough decay
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to control the y, 7 sums in (17) in terms of the estimates (2) and V], <#:
k
22 Hy 51 0o)l TT Wi, 5) [T M, Lexp[...]
¥ @) j=1
k k
< no CmsMilpamomy ! [T n™im, 1k + 1)1 e“4%, (18)
j= i=1
and thus, since y=o:

md  m—|Io|

LIHE JEDL 2y Y Mkt Y

Io k=1 1,53, {m,}
k cmi~ 11| md m m\m=no
n( m; oc’”f) <L 2D Y ( ) Y. ek +1)!
j=0 —D! no=0 \No/ k=1
k m;—nj
Y (k,)xM Y 1 ™ vaamj
(nl,...,m:l);gnlj=m—no Hn ] tmy;zn, + 135 j= O(m n)'

gDm!(L"%a)m Y ecAky n( 3 (aC)mr"1< ,)) (19)

no, k {nj} j \mj>n;
Using
[ m — — 1/2
g (Cos "J(n’)=(1—Coc) LTl -1 S Call2eC (20)
m;>n; j
Eq. (19) gives
d \m k+1
- —=(m—ny—1
HP(X)|<D !(L 2 ) Caky 2 (m "o ) Cat/2m
;] (X)) <Dm o 'Eke o i1 )€

_d \m _4
éDm!(L Zoc) moceC“'/zméDm!<L 20() ol /2eCeom (21)

for a,(A) sufficiently small. Equations (16) and (21) yield (5). For (6) and (7) note

that F'(F") involve k=1 terms in (8) and the extra #’s can be used to compensate
for the lack of o in CH(Cohep).

6. The Nonlocal Model, Two-Point Function

Consider now the two-point function <¢x1q.’)xz ~. Use the notation
(=g == DT, (1)
<(Fe—V”"‘)< 2¢"£" itz )>
<F>zkE(Sk+1F)(¢k+l): > (2

<exp{— VN_k(L— -tz )>

_k=TkVN, (3)
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and
Fl¢%)=9,,. )
Then
(e by =<F1:F,
_<<F0>ZO: <F >ZO>¢1 +<<F Fg>Z0>¢1
=<F'{;F3>¢n+t,zo <<F{;F€>Zl>¢l+1, (5)
where
Fi=(FI™Y) =8, P =87 "1, ©)
By Lemma 2
_4 -
F11=L 2¢[1L‘1x,]+F11(¢1)’ (7)
with
A
YIFLR) et < Dy™m! (8)

X

Since |[V¥ ™|, <6n, we can iterate

4 .
Fi=L 2¢p-n +Fi(d"), )
with
4 —nx,Ju —(n— 1
Y@t Y <pr T Ty
n—1 —-ni
2§ mTlexp M C(né)V S CL “2(ns"” ty"mlst T, (10)
=1

where C is independent on n. Let x, b}y ' $x,ebp. Hence [L™"x,]=0.
Then

FiFy=L""¢2+F, (1)
where
5= A —-n —nd n—1\m
Y IF(R) exp| T LLL ™", JUx)[ S CL™"(2n5" *y'm! (12)
Indeed, consider e.g.
(FiFD,0=Cu0= Y Pl (f) o). (13)

Iiul={1,...,m}
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Then
LL(sux)
Z (Xle Z Z n |Hl|Il Xl
X 11 I Xy, Xy, i=1
m!
“exp (L(sux) L(sux; )— Lsux )|ISC Y
! 2 nytna= mnllnzl
>0
L™"né" YY" In, ) SCL™™(2n8" ' y"m! (14)
where n'/2 <o =<w,(A). The other 2 terms have similar bounds
Since (F; F5 )4 =<(F1F%),, we may iterate (5)

n—1
Py, =SSy 1 (FTFNO)+ Y KKFFSD 50 geen

(15)
£=0 .
For the first term we apply (7) of Lemma 2. Denoting
Sy S,y FIF=GM,
we get
GY(p)=L"Mp> + GM(9), (16)
with (m=2)

A
Y IGM(F)| eLL(x) < CL™M42nsM ~ymm 1ot =M
where C is uniform in M. Thus

(17)
N-1 - © N
GM0)=C Y, L™M(0)*{(Z2M")?*) Z Y 2 (@m)TIGR(R) 2Dy, (18)
M=n M=nm=1 %
where
(= op= AT —expl = VN M) ] dvy(ZM). (19)
Using Proposition 2, (18) and proceeding as in Sect. 5 one gets
N—-1

GMO)= Y, L™Me(0)*([ Z%dx+0(n)). (20)
M=n
For the second term in (15) we compute again, denoting
CF{3F5y, by KAg'™Y):
_md m+2=|I1] = |12
K(&=L > )

Iy,I,C{1,...,m} k=2
I1nI2=0

Dy o

[L % (o) ” ')') Fﬁml(y117ul)Fé’m2(y129 UZ)
15)=% {7, -

~E[f/m yl,v)<lf[ §>-

2

(I%=s my=T,+ 1)

(21)
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As in Lemma 1, we convert the F’s to H’s and Vs to W’s and gain an exponential
A 2 k
exp[— Z( > L([L“fxi]Ul)I,uyi) + Z L(y;,v)
i=1 i
k
+LL(IL 0,055 [L7 ) - Z (22)

Let m>0. As explained in the proof of Lemma 2, we may extract from (22) an
exp{—eA|[L ™ x,1—[L ™ ’x,]|}e** factor, together with enough tree structure to
bound the y and v; sums:

md =11
_ne cmi 141l
IKLXIsL 2 T
; Il%k {I.)Z(r;n,} Il (m;—11))!
k
.eACkk!CL—fd(nél—1)m1+mz"2ml Im,! 1‘[3 (ngf)mjmj[
j=
-exp[ —eAL™’|x; —x,[], (23)

where we used (9) and (10). We may now proceed as in Lemma 2. Noticing that if
m, =m, =1, k must be =3 since m>0, there is always an n'/* factor to kill e*€. We
get

(m—2)/2
YIKAR)ISCn 2L exp[ —eAL ™ |x, — x,|] (24)
Let m=0. Then
K6= Z o Z F1m, 2m2(l72) <291>Zu2>/
=L" ""<zx,‘, 2, F+ K, (25)

where we used (9) and denoted x,,=[L “x,]. K‘ involves terms of 0(y) and will
easily be shown to satisfy K4 < Cn'/* L™ %exp[ —eAL™’|x, — x,[]. For the first term
we have

(25,325,08 = A Xy — Lxp 1) (Xp,— LXp 4 1) <25

X¢1? Txe2

i Z5, o0 (26)

Xe+112 T X412

For /<n—1
KZ4,, s Z%, . DI S0(pe At xim (27)

and for /=n—-1 x,,,;,=s and
(Zy 4 zy 0 = Z%dx +0(). (28)
Combining (21)—(28) we obtain

n—1

T CFEFDY = % KA e =L AL )

£=0

A([L™" 1 x,0) (f Z2dx +0(n) + 00 L~ "~ 14, (29)
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Combining (15), (20), and (29) we finally get

(s, @y, =L7"00n) + L™~ Ve (0) ./ ([L™"" " x, D] Z2dx+0(n))
+ 2 L™ .5/(0)* [ Z2dx+0(y)]. (30)

We may now proceed as in Sect. 2 to establish the claim. []

7. The Thermodynamic Limit

We will now use Lemma 2 to establish Theorem 1. Let {F{}i_, be a family of
functionals of ¢ localized at points z; respectively. Using the notation (6.1) and (6.2)
it is easy to establish that

ey -5 3 (e,
EZZ<ﬁ F},.>T, (1)

kI3 \j=1 b1

where we defined
F}JE<H F?>T . )
iel, Zo
The basic idea will be to show that the F }J’s are localized whence we can use
induction in s and the properties of S¥ established in Lemma 2 to iterate (1). Thus
we start with
Lemma 3. Let {F/}_, satisfy

. A
S IFySexp 7 Liz,0n)| <D )
and let |V|,<n=a. Then the function

i)

zZ
satisfies

2L0L 1210

SIF,(R)e

for all j. C(£, A) is independent of {z;}}_,.

<C(, AT Djmla. (5)

Proof. As before we compute

_md m—Y|L| 1
F &=L * ¥ Y ¥ —Ta
Uy K0 ghfie e, Z L vws 7 (my— D!
¢tk

/ ~
ATEL 00 T 7 0n,5) <) (6)
j=1 j=¢+1
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where I, j=1.../ may be empty. As in Lemma 2

md

<L 2

LI, x)lexp[ LEL 'z ]un)| =

(I} K, {mj) 3, {0}

C"’J [7;1
Yo, e LG, 0) [T W, 5) [TM, !
A A +k
- exp ——ZLzuy,,uu I Y L(y;,vp)) (7)
j=f+1

_ 3L([L*lz_;lj; LI )

+7 L([ }u[L y]) +DY L((L™! ])},

where )

H, (0=} (lexp| £ LEL™2,10x)]. ®)

Denoting [JL~!] by X, [L™'7] by @, [L~'Z] by w and using Lemma 2 of [1] to
estimate the trees we get

exp[...]<exp|— A(lij—a) ( Y Llwjuxou;)
Jj=1

£+k
+ > L()_c,juyj))+A(fz+k)+—L(wju>_c)+DZL(g])

j=¢+1

A Al +k A
—~L(u1;~-;uz+k)]§e><p( (2 )—iL(w)

Ag 0

<Z Lwjuxou)+ ) L()_cl,uztj)>+DZL(u,~)
2L j=f+1 !
A/ +k

—Z—LL(yl;...;ym)éexp[ (; )—As”L(v_v)

z
—Ae"L(uy)— Ag" Y |w,—u jil},
i=1

where # denotes a sequence j;...j,, 1 <j,<m;—|I[;]. Now
[IM, exp[...]1< Y]] N,!explright hand side of (9)], (10)
s

where N are the multiplicities of the j;s. Let #'=(j,, ..., j,) and #2=(j,, .., j,4 1)
Then

L(u;)g%L(uz;J‘l"%L(ujz), (11)
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and by Lemma 3 of [1]
Ag”
e—TL(u/i) 1—[N, 1 éck-\‘-é’ze—AsL:(u]i)’

7 running through trees on #* and no other points. But

[INS=]T(N,+ N2 S| NLIN22N TN < CRH/ TTNEIN2L,

Combining (9)~13) we obtain
[1M,texp[...]

¢
scAkro [e“AEL(‘-”)ZZeXp[~A8 (Lt(ﬁ;,)—l- Y Iuji—w,.lm
F ot i

i=1

.Zze—Aé‘LT(ﬁ}rz).
F?
Using
Z T=m;—I|I}
Ji
and
e—AsL(»_v) sup Z e—As[Lt(ﬁanZlu,«i—wil] é C(/) ,

g o
we get finally

[IM, exp[..JSCA**IC(L) Y e~ Ackelis),
T, #2

(12)

(13)

(14)

(15)

(16)

(17)

Using the assumption (3) for F/ and |V|, <y S« the 3, v; sums in (7) are now easily

estimated, see [1], giving

md

<c*ci)L *

S IFlexp |7 0L~ 10

m; = |1,
C TS

m;lo™ .
L3k my) 7 (m—=1)

Now,
m  min(Z,q) m-—gq
l_[n ‘
I}, k, (mj} ¢=0 p=1 \4/\D En=g i+ k=0
Inyzt

— -\ £+k m;—n;
s gy D e T

nni! m,} j:l(mj—nj)' J

£tk
Y n,=m—gq
£+1

where by definition n,=0, i=p+1,...,7. Since

. (m; — Cn o eCmi*
Z (CO()mJ .}(n‘l) :(I—COC) J 1—1§{Ca]1/gec,,jal/2a

m;>n; Jj

(18)

(19)

(20)
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we get as in Lemma 2

(19) L C/mlame L 2 ZocZ“ ma N [ Tnef

Xni=q
<Ct’m|amecal/2mL 2 Z<Q+P) (q l)aé(lnémq)ﬂ" (21)
ar\ P/ \p—1
p —
If m<¢, (@) (q 1> <’ whence
p ) \p—1
_md
QDS Cf/mlomteca " mp 2 (22)

and the claim follows, for o small.

Let m>/. Since for p=gq
p
<q+p) - (q+p)2p,
p p

£ 3P eser

q=0 p= p_l

We get

and

Z L =)+ Z [p+q} (q i) < CotmCleCm < Cle™m, (23)
g=¢+1 p= p p—

thus giving the claim for m>7. [
Remark. From (16) it is not hard to see that we may replace C(¢, A) by
[TR exp[—eAL([L™'zDIC(AY .

This would be useful if we studied the infrared behaviour of n-point functions in
more detail.

Now we turn to the study of the thermodynamical limit of our model and the
RG-transformation in this limit, that is, Theorem 1. We start from Part (A4), i.e. the
thermodynamic limit of correlation functions.

We consider first one-point functions. The idea is then to proceed inductively
in s using (1). Since we will compute the correlations by iterating the RG, let us
start with general localized “one-point functions.” Let for each N FM(x, ¢) be
localized at x with constants D, «, given by translation invariant kernels
FY¥(x,X)xe A% and such that FY(x, X)——— F,(x, %) for each x,X,m.

An example of such FN(x, ¢) is ¢} We now want to show that the limit of

{FM(x, d)>Nn as N— oo exists.
Denoting S, ... S, F" by F¥", we get

CFN(x, @) P =F(x) + Z Z ZFN"x X) 2oy, =F3(x)+ Z T, (24)

=0 m=0Mi’x 1=
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1 -
where (Z%), is taken in /—V—e‘VN ““dw(Z%) and

|
Fix)= Y~ X En (6% (e (25)
m=1"" x

By Lemma 2
|Zix)|=CDY, 6<1. (26)

Hence, to establish the limit N— oo for {(F)}y it suffices to show that for each /
Fn(x) converges as N—oo. This we prove inductively in /. Recall the recursion
formulae (5.13) and ([1], (5.12)):

5 (6, [L™9])

FRAOL™X],0)=L = Y
knmy wiey = L)!

k k T
Fon 31,50 [T VoG 17,-)< [ Z{L-lm> . @)
j=2 j=0 ¢
AT, L5,
gm0 7 (my—IL)!

T
TL7 45,5, <nz[L ]> . 28)

Jj

md
VNIt x)=L 2

Assume inductively that for each m,X,y, F)'“(y,X) and VN=4(X) converge to
some limits F’(y, X), V(X). Since the sums in (27), (28) converge absolutely and are
uniformly bounded in N (this was the content of Lemma 2 and an analogous one
in [1]!), the induction step follows, provided the correlations (Z%), have N— oo
limit for each X. But this is standard, given the cluster expansions for {—),
established in [1].

To start the induction, let #/=0. From (25) we see that #(x) converges since
FN-9 does by definition. VN(x) converges too, since it is the periodization of V
Wthh satisfies |V/| =n. Hence the thermodynamic limit of (FN(x, )>¥~ exists, in
particular that of {(¢,)">p~ does.

Now consider a general expectation

GNP =<FY(9); ... (@D, (29)

where the FY are as above. We proceed by induction in s, iterating the expansion
(1) (we drop the subscripts from s;):

co-(gser) v T s (f1r,)

1 yN-1 =1 {1 N-1

S 2,

=1 k=1 (I} N-¢

s
+<H S[N/ZIFQV> o (30)
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By the recursion formula (6) the various kernels of (S/~'F ),j have N— oo limit
and thus by induction the sum on the right hand side has, since it is uniformly
bounded in N (as follows from Lemma 3). The second term satisfies

sl
K Il S[N/21F§V> ‘ <CHN———0 (31)

=1 w-[3] Vo
as follows from Lemma 2. Thus lim G(¥) exists. Finally, a general correlation is a
N—- oo

linear combination of products of truncated ones and Theorem 1 (A) follows.
Next, we turn to Part B of Theorem 1. We have already shown that

lim (TV),(%)= lim VY"'(3)

exist for all m, X. Call this limit (TV),(X). We have [TV|,=<0n. Indeed, TV is given
by the N— oo limit of (28) with £ =0, where VN will then be replaced by V But we
assumed that |V], < 4=n. Thus the same proof Wthh showed that

Z|I7,§—1(>z)|ef < sy (32)

(where we denoted explicitly by p that the distance is taken on the torus A4, _,) can
now be repeated to show

Z!TV () IeL ¥ <mi(ony" (33)

(we also need Proposition 2 in the N— oo limit, but this is straightforward given
the cluster expansion of [1]). Thus there is a state {—) ;,, and {¢; )1, is given by
the N— oo limit of the expansions (27), (28), and (30) (as applied to ([ F;>4y to
start with), ie. it is uniquely determined by the kernels (TV),. But so is

11m (p N5 whose existence follows as that of I&im {(p >Ny proved above.

Part B is thus proved.
To prove Part C we proceed similarly. First we write the infinite volume
versions of (24), (27), (28), and (30):

0

Frpy=Fo)+ T 3 T EPLIL DG, G

I=0m

md

(SPHMF), (L7 'x], %)=L %

k, {3}, {my} 3, {05

1 _ - -
'(Um)‘S’F)m(EL X1 31,,7)

k —
LV, 5) AT )7 a5)

md 1

T M,&H=L2 Y Y I[l——

ko my 5.y 5 (m;—IL)!

1TV, 51, v,-)<Hz,7,>f : (36)

J



492 K. Gawedzki and A. Kupiainen

Of course (—), is taken in the thermodynamic limit given by the cluster
expansion of [1]. Since |V| 4=2y for n>n0 and C, are uniformly bounded, the
sums converge absolutely, uniformly in n, when written for V=V,. Since the
individual terms converge, we may proceed by induction to show that

CF(x, 8y, = CF(x, D)y

—

For generalized n-point functions (F,(x,,¢); ...; F(x,, $)>; we write the infinite
volume limits of (30) and (6):

(Ne)y =55 s(1len,) . &

i=1 £=1k=1({I,} \j=1 TV

1
(005 = X ([T =75 16 5, )

()

H (T ), (51,,7) <n zg,.>5 : (38)

Again, by Lemmas 2 and 3, the sums are absolutely convergent uniformly in n.
Hence the convergence when n— oo follows by induction in s. Specializing to
F{x,®)=¢,, we get the claim of Theorem 1, Part C, the convergence being
uniform in {x;} since our bounds are. []

Notice that (34)~(38) together with the cluster expansion for (—»7 provide a
sort of inductive infinite volume expansion for our model.
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