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Abstract. Analyticity properties of the Feigenbaum function [a solution of
g(x)= — A" *g(g(Ax)) with g(0) =1, 4'(0) =0, g"(0) < 0] are investigated by studying
its inverse function which turns out to be Herglotz or anti-Herglotz on all its
sheets. It is found that g is analytic and uniform in a domain with a natural
boundary.

0. Introduction

In the theory of successive period doublings of one-parameter families of smooth
mappings of the interval [ — 1, 1], an important role is played by one particular such
function, here denoted g, which is a solution of a certain functional equation [see
Eq. (1) below]. This theory is expounded at length in references [ 5, 6, 2—4, 8] and will
notberecalled here. The purpose of this note is to indicate a few analyticity properties
of this function, which might, in the future, throw some light on the still somewhat
mysterious aspects of this theory.

Proofs of the existence of g have been provided successively by Lanford [7, 9],
Campanino et al. [ 1], and again by Lanford [10]. None of them is truly satisfactory
(see comments in [8]).

0.1. Notations

We denote IT, = —IT_={{eC:Im{ >0} the open upper half plane. ¢ will always
denote the complex conjugate of {€ C, and, to avoid confusions, the closure of a set E
will be denoted E°. A holomorphic function ¢ of a complex variable is called “self-

conjugate” if o(¢)=a(0).
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1. Recapitulation of Known Properties

a. The method described in [1] proves that there exists a solution g of the
Cvitanovi¢-Feigenbaum-Coullet-Tresser functional equation:

o= solglx), —1Sxs1,
90)=1, | M

with the following properties:

1) g is analytic in a complex neighborhood of [ —1,1].

2) g is even and concave: g"(x)<0 for all xe[—1,1] and in particular
g"(0)= —2a, with 1.429 <o <1.615.

3) A=—g(1)=—g¢g'(1)"*>0; in fact: 0.152< 12 <0.165.

From these properties and the functional equation (1), it follows immediately that
g extends to a real analytic function on R and also on ilR; the function f; initially
defined on [0, 1] by f(t) =g( 1/;), extends to a real analytic function over R. Moreover,
slightly more detailed information obtained in the course of the proof in [1] easily
shows that the graphs of f and g have the appearance given in Figs. 1 and 2. By
construction, the graph of g restricted to[ — A", A7 "], n= 1, is obtained by a dilation
(—A)~"from the graph of the (2")*" iterate of g|[ — 1, 1]. Hence |x| < A7 "=|g(x)| S 47",
and |x| = 1=]g(x)| <A™ !x|. Another consequence is that the succession of critical
points of g on R is dictated by the known kneading sequence of g|[ — 1, 1] and that
these critical points are simple and form an infinite sequence’. Let J,, (k=1,2,3, ...)
be the k™ intercritical interval on the positive real axis, ie. J,=(0,x,/4),
Jy=(xo/2,x), J3=(xy,xo/A*), etc. ... For —k=1,2,3, ..., wedefine J,= —J _. Let
d.=9glJ,. For each k with |k| > 1, there exist j and ¢ with |j| <|k|, |/| <|kl, such that,
VxeJ,,

1
gilx)=— 7 919,2x)). 2

This is easily seen by induction on k. The ends of J, are reached when either g; or g,
acquires a critical point. (The argument showing that these 2 events cannot be
simultaneous, (due to Lanford) consists in noting that this would imply a superstable
periodic orbit for g|[ — 1, 1].) The following “multiplication table” (Table 1) shows
values of jand Z for the first few values of k > 0. It is also obtainable from the kneading
sequence.

The functions g and f have negative Schwarzian derivative, i.e.

Sg(x)=g"(x)g'(x)" ' —3[g"(x)g'(x)"']*<0, xeR
(and similarly for f). For 0=x=<1, 0=t=1, we have

gd(x)=0, g"(x)<0, g¢"(x)=0,
fO<0, f"®>0, ["(t)>0.

1 We learned this fact from O.E. Lanford
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Table 1

k 2 3 4 5 6 7 8 9 10 11 12 13 14

j -t -2 -2 -1 12 3 4 5 5 4 3 3

r1rr 12 022222 2 3 3 3 4

\ X,
A
0 = 1 + ' —~+ — + ' 9,

> % B

X!

Fig. 1. Graph of the function g

In the interval [0, 1] there is one solution x, of x, =g(4x,); Eq. (1) then shows that
g(xo)=0: this is the unique zero of ¢ in this interval, and it satisfies: g'(Ax,)= —1,
f(x3)=0. The convexity of f and the concavity of g, together with: g(1)= —4,
g()=—21"1 f()= -2, f'(1)= —1/2A shows that (1 —21*)<x2<(1— 1%~

b. Considerably more detail is provided by Lanford’s first proof[ 7, 9] which has
the advantage of yielding (in particular) the Taylor series of f at O with any desired
degree of accuracy. These numbers, kindly communicated to us by their author, are
the basis of the various plots shown in this paper. Furthermore, they have been used
by Lanford [9] to prove the existence of a singularity of g in the complex plane (at the
point ¢ later to be reobtained in this paper). Briefly and incompletely the argument is
asfollows: one proves, (using the Taylor series and its known degree of accuracy) that
z—g(Az) has a periodic point ¢ within its domain of analyticity: g(Ac)=¢, g(Ac)=c,
c#¢. If g could be continued to ¢, it would satisfy g(c)= — A~ *¢(¢) = — A7 §(c), hence
lg(c)|=0; thus for a certain a0 and n=1,

9(2)=(z—la+(z—(z)]
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Fig. 2. Graph of the function f

around c. The functional equation then gives
g(z)=—A"1gC+ g (A)Mz—c)+ ...)
= =17 [g Az~ o))" [a+(z—c)s(z)]

and therefore A7 Ag'(Ac)|" = 1. This is not the case, and a more detailed investigation
shows that, in fact, there is a sequence {z,} such that z,—c¢ and |g(z,)|— .

2. The Inverse Function of g

For each ke Z we denote u, the inverse function of the restriction g, of g to J,. Since
gx)=g_(—x), we have u, = —u_,. From (2) it follows that, with the same k, j, /

1
uk(C) = I ug(uj( —A0). (3)
The function u,, also denoted u, satisfies
uO)= gl —0),  — 5 <L<1, @

Itis clear that each u, is analytic in a complex neighborhood of g,(J,), and, by general
theorems, has a square-root-type branch point at each end of that interval. The
function f also has an infinity of intervals of monotonicity. Using the estimates of [ 1]
one can prove that, for a certaint, >0, ¢, <6, f'is monotonic decreasing with f'(t) <0
in (—t,,x3/72), taking the values f(—t,) =172 f(x3)=0, f(x3A~2)=—1"", f'(—1,)
= f'(x32~?)=0. The inverse function U of the restriction of f to that interval, [which
satisfies U({)=u(()* forall {e(— A~ ', 1)] is defined, real and analyticin (— 4™, 17 2),
and negative in (1, 4™ ?). This displays the trivial nature of the singularity of u at 1.

We now study the analytic continuation of u. We recall the following classical
facts [11, 12].
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Lemma 1. Let {¢,} be a sequence of functions holomorphic in A=II VIl _\(a,b),
(where (a,b) is a non-empty open real interval) and having the properties:
¢, (I )CI ., ¢, (II_)CII_,¢,((a,b))C{c,d) CR,where — o0 <c<d = 0. Suppose that
the sequence {¢,} converges uniformly over a compact subinterval K C(a, b). Then {¢,}
converges, uniformly in any compact subset of 4, to a function ¢, holomorphic in A, with
¢(H+)CH+’ ¢(H—)CH—’ ¢((aa b))C(C, d)

If, moreover, ¢, is injective in A for all n, then either ¢ is a constant or it is injective.

The first part immediately reduces to Vitali’s theorem after IT, UIT_U(c,d) has
been mapped onto the unit disk by a conformal map 7 and the sequence {¢, } replaced
by the bounded sequence {t °¢,} (cf. [12]). The second part is similar to Hurwitz’s
theoremand can befound, e.g.,in Rudin’s textbook [ 11] as thelaststepin the proof of
Riemann’s theorem on conformal mapping.

We now prove:

Lemma 2. uextends to afunction holomorphicin Il , UIT _u(— "1, 1), (again denoted
u or u;) which is injective there and verifies

) ) =ald)
(i) (0= Julul~20),
(iii) Im{>0=(Imu({) <0 and Reu({)>0).

Analytic functions mapping IT , into IT, and IT _ into IT _ will be called Herglotz
functions; if — h is a Herglotz function, then 4 is called an anti-Herglotz function.

Proofof Lemma 2.In [ 1], g is obtained as the fixed point of a contractive map defined
asfollows. Starting with a real function ¢, on [0, 1] with ¢,(0)=1,¢,(1)= —17*,0ne
defines

1
F(x)= z[q’l(l —-x)—¢,(1)],

and constructs (by iteration) a function ¥ such that
Y(t)=F(P(A*), YP(0)=0, ¥P(0)=1.
Then, defining « as the smallest solution of
200¥'()=1, oa>0,
one defines

92(x)= 1= ¥(ax?),
G09= (@1 —9)— a(1) = 3 [#(e) ~ (alt —xP)].

The mappingin questionis ¢, — ¢, or,equivalently the mapping T, given by T,F = G.
It depends on / as a parameter, and, for 0.152 < 12 <0.165, is defined and contractive
on a set of functions F which can be described as follows:

F must be €3 on [0,1], F(0)=0, F'(0)=A"2 and for all xe(0, 1),

F(x)z0, F'(x)=0, F'(x)=0, -FX/Fx=s1-x)"". ©)
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For 0=x=<A4,

1 17}
At - <

—c(1=x)—c5(1=x);  (6)

1— F'(x) —Xx
d F"(x)
dx ( F (x)) L. @)

Here 4,¢,,¢c5,7,,¢ 5,and L are piecewise constant positive functions of 4. [ In theend 1
ischosen so that the fixed point of T, yields a solution of (1).] If F belongs to this subset
thenso does G = T, F, and G satisfies the condition (6) for all xe [0, 1]. If Fis chosen in
acertain class of functions holomorphicnear [0, 1], Galso belongs toit ; ¥is then also
analytic. ¥ is obtained as the limit of ¥,, when m— co, where ¥ (t)=t and ¥, ,(t)
=F(¥,(A*1)), te[0,A72].

Itisclear that F, ¥,,and ¥ allhave %> (or, in fact, if F is analytic, analytic) inverse
functions on (0, 1), (0,4~ %) respectively, and that ¥, ! converges to ¥~ !. These
functions satisfy

V(=272 HFHQ)). )

This holds for all m=0 and all (eF([0,1]). It follows from (5) that
F(x)= /" 2x(1 — x/2) for xe [0, 1], and (inductively on m, by estimates similar to those
in [1, Sect. 5])

1—-A2t/(1-2H) P (=1 t[1=22%2(1 - A< P, ()<t

for all te[0,A72]. In particular F)z=A"%/3>2 and
Y (A7%)=A7*[1—1/2(1—A*)]>2.Since Fand ¥, are increasing, it follows that F !
is defined on [0,272/3], ¥, ! is defined on [0,2] and F~*({)<1 for 0<{<A7%/3.
Assume now that F~ ! extends to a function holomorphicin IT . UIT _ (0, .~ ?/3)and
maps I7 , injectively into {we C:Imw >0, Rew < 1}. Assume that, for some m, ¥, *
extends to a function holomorphicin IT  UII _ (0, 2) and maps IT , injectively into
itself; (this is certainly true form=0. Since F~ ' and ¥,, ! are self-conjugate, thereare
symmetric statements about their behavior in IT ) Then ¥, 1, has the same
property as ¥, ! and, by Lemma 1, so does ¥ !, From the equation

G HO=1~[a ¥ (¥(@)—-20)]", ©)

which holds for 0<{ <1~ *¥(«), with the square root defined as positive, it follows
that G™! extends to a function holomorphic in IT, UIT_u(0,A™%/3): for 0<(
<A7?3wefind A <1< ¥(x)<a<2 Forlell,,wehavea ¥ Y(P(o)—Aell _,
and therefore

G Y(De{weC:Imw>0,Rew<1}. (10)

Thus G™! is analytic in the same domain as F~!. Moreover G~ ! is injective in IT
since G~ 1((,)=G"!((,), {; ,€I1,, implies

Y P(o)—AL) =P (P()—AL,)=(, =(,.

Now iterating the mapping T, : F— G and applying Lemma 1 completes the proof
of Lemma 2, provided an initial F with the required properties can be found. Such
examples are given in the appendix.
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From now on, u=u,; will denote the function analytic and injective in
IT, VIl _u(— A1, 1) whose existence is asserted in Lemma 2, and U will denote the
function, analyticand injectivein IT, OIT _u(— A", A~ %) which satisfies U({) = u({)?
in (—A71,1). Both u and U are anti-Herglotz functions.

3. Sheet Structure of the Analytic Continuation of u

3.1. The Functions u,, keZ

The branch of the analytic continuations of u that is easiest to study is u_ , since it is
simply given by u_,({)= —u({). It is therefore a Herglotz function with

u_,(II,)c{weC:Imw>0,Rew<0}.

It communicates with u across the segment I,=(1,472) of IR, i.e. when { crosses I,
from IT, to IT _,u({) gets analytically continued by u_ ,({) while the value u({) crosses
the imaginary axis from the right to the left half-plane. The branch point at 1 is of the
square-root type and u({+i0) are continuous there.

According to Table 1,

1
uo(8)=Fu(—ur(=40) . (11)

Hence u, is a Herglotz function (injective in IT , ) which communicates with u, across
the cut between — 4~ ! and — A7 3. The nature of the branch point at — A~ ! is again
trivial: as { approaches — A~ 1, u,({), as given by (11), has a singularity only because
— AL approaches 1, so that u,(— A{) behaves like |/ 14 ({4, while the outer u, being
holomorphic near 0, just gives a holomorphic image of this behavior. The same
occurs for all the u,, ke Z. Each u,, given by

uO)=2""u uf—20),

is a Herglotz or anti-Herglotz function. As { approaches one of the ends of its real
interval of analyticity u,(J,), only one of the functions u, or u; has a singularity (by
Lanford’s argument) which, by induction, is a trivial square root branch point.
Figure 3 describes the situation by analogy with the cosine function.

3.2. Boundary of u(Il_)

We now study the boundary values of u along the real axis. Denote
I,=(1,2"%, IL,=—A"'_,=(=0)"(A""A"""?), (n=123..).

As { follows I, —i0, u({) follows the segment 7, =i(0, 1/;) of the imaginary axis. If {
crosses I, into IT , u({) gets continued by u _, ({) = — u({) and the value of u({) crosses
7o into —u(Il,). At { =1, as noted, u({ —i0) is continuous. Suppose now { follows
I, —i0. Then — A{ follows I, +i0, u(— A{) follows T, which is inside the domain of
analyticity of u. Hence

u(@)=2""u(u(—20))
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Fig. 3a—f. The analogy between g and cos locally describes the sheets whose images border the real axis : a:
graph of x—g(x);b: graph of x—cosx; c and d: positions of images of sheets of inverse functions of g and

cos near R. As x becomes complex and follows the contours indicated in ¢ and d, respectively, g(x) and
cos(x) follow the contour indicated in e and f, respectively

1 .. . C 1
follows 7 w(Ty)=1,. Thisisasmooth curvein IT, whichis part of 7 u(iR), and starts at

1
7 u(0) =x,/4 perpendicularly to the real axis. If { crosses I, into IT , then — A{ crosses
I, into IT _, where u( — A{) gets continued by —u(— A{) while its value remains inside

. L 1
the domain of analyticity of TUs thus u({) gets continued by

0, (O)=24""u(—u(—20)).

By induction it is immediately seen that: as { follows I,—i0, (n=1), u({) follows a
smooth piece of curve t,CII, ; at the same time — A follows I,_, +i0, u(—A{)

1
follows 7,_, CII_ and 7,= zu(fn* - If { crosses into IT ., u({) gets continued by

0,0= Jutt, (= 20)= . = [Ju] (—u=2r0).
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Fig. 4. Border of u(I1_)

This is a Herglotz function. Starting with n=2, the starting point of t,, isinside IT , :it
coincides with the end point of t,_,; 7, and t,_, are atright angles. This is due to the
fact that, at all real points in a neighborhood of (—A) ™", u is continuous, and it has a
square-root branch point at(—4)~". Indeed if this is true forn <m — 1, it remains true

. 1 L .
for n=m because, in the formula 7u(u(—/1{)), u(—AL) is inside the domain of

.. 1
analyticity of T For the same reasons u'({ +i0)+0 whenever (e R and {#(—4)7"

foralln=0. Note thatv, coincides with u,. The other v, are defined as self-conjugate
[ie. v,({)=7,0)]. However the closure of v,(II,) does not intersect the real axis.
Figure 4 depicts the first few 7, and exhibits the fact that u(IT_) is bounded. The

next subsection is devoted to a proof of this fact.

3.3. Boundedness of u(I1_)

Consider the two maps of IT, into itself given by

#0=Ju@) = 170), (12
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and

@0=%4§Mﬂ=nnm. (13)

The first is anti-analytic, the second analytic, both are injective and extend to

. 1
continuous injective maps of IT¢, into itself. We have &(I1,)C Iu(ﬂ ). If {=u(w),

well _, then
P()= %u(%u(u(w))) = %u(u(—— X;—)) =u<%)

Hence ®(u(w))eu(IT_) and
u™ H(Du(w)) = ;”—2 for all well_. (14)

This is equivalent to
wod 2oy HMu(IT _)=Plu(IT_). (15)

u~! (=g) is continuous on u(I1°). Hence formulae (14) and (15) remain true on IT¢.
and on u(II°) respectively. In particular @[u(II°.) has an unstable fixed point at
u(0) = x,, from which emerge the invariant lines {{ : { = u(ge®), 0 >0}, —n <6< 0. Any
{eu(II¢), distinct from x,, moves further and further away from x, under repeated
application of &.

We shall apply to @ the theory of iterated Herglotz functions, due to Wolff,
Denjoy, Valiron, and beautifully expounded by Valiron in [12]. We need the
following facts:

a. Let ¢ be a holomorphic map of IT, into itself. It can be uniquely written as

P(O)=rl+y(),

k=0, w(I1,)CII, and, in any angle {Im{>k|{[}, k>0, [p(I/|{|—=0 as {—co. The
constant k =inf[Im@({)/Im{] is called the “angular derivative of ¢ at 00”.

b. Let ¢, denote the n'® iterate of ¢. There are 4 possible cases:

(i) ¢ is a homographic transformation mapping I, bijectively onto itself.

In the 3 other possible cases, ¢, converges, uniformly on each compact subset of
Il to:

(ii) a constant ae Il which is then an attractive fixed point of ¢;

(ii1) a constant aedlIl ., lal<o0;

(iv) infinity. Thisis only possibleifx = 1, x being the angular derivative of ¢ at co.

In the case of ¢ = @, manifestly not a homographic transformation of the above-
mentioned type, the “angular derivative at 00 is zero. Indeed @ is the square root of a
Herglotz function and cannot grow faster at infinity, in non-real directions, than
[{|*2. Thus cases (i) and (iv) are excluded, and therefore @, converges, uniformly on
any compact in II ,, to a finite constant denoted ¢, with Im¢ =0, which (since @ is
continuousin I1¢, ) must satisfy @(c) = c. [ In case ¢ were real this should be interpreted
as ¢ = P(c +10).] Since u(II _) is sent into itself by every @,, ce u(II _ ). More precisely

¢=lim @ (ulge™) = lim u(2"2"ge"),
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thelimit being uniform for ge[9,, 0,],0€[0,,8,], provided0 < g, S0, < o0, =<0,
<0, <0. This means that
c= lim u(ge®) (16)

0=+ 0
uniformly for 6€[6,,0,]. This implies
c= lim A7 ‘u(u(—Age")).

0=+ oo
But u(— Age®)—¢, a point of continuity of u. Hence

c= % u(c). (17
Incase cisreal [i.e.case(iil) occurs], (17) must beinterpreted as : Ac = u(c — i0). But this
would mean that u(c —i0) is real, i.e. ce [ — A~ %, 1], and g(Ac) = ¢, whence g(c) =0 and
¢=x,. This is impossible because x, e u(I1°.), where @, is conjugated to A~ *". Hence
there is a neighborhood A" of x,, e.g. A =u({{:|{|<A?}) such that, for each
{e A NI, there exists N >0 such that

nzN=9 ()¢ .

Thus @,({) cannot tend to x,, and case (iii) is excluded. Only case (ii) remains, so
Imc>0and cisanattractive fixed point of @, and also an attractive periodic point of

C—éu(?,’). Indeed A7 'u(c)=c¢, A 'u(@=c, and ¥(c)=|A"u'(c)|*<1. Hence

A"/ (c)| <1 and c is also an attractive fixed point of .

The open set u, (11 _) is a domain of analyticity for g. At any of the segments 7, of
the boundary of this domain, g is continuous, takes real values, and can be continued
intov,(I1 ). Since 7, =4~ 'u(7,_,), these arcs converge to c as n—co. The point cis a
singular point of g : as 0— 00, u(ge®)—c¢, (—n < 0 <0), and g(u(e'®)) = pe— co0. Each
of the patches v,(I1,) has its version of ¢ namely

Clijl; 0, =" W (= u(= ")) =2A""w)"(~c)
(ell +

ifnis odd or (A~ 'u)"(—¢)if nis even. These singular points converge to c. Each of them
is the limit of a sequence of singular points, each of which ... etc.
The boundary of v,(IT,) is given by

X
0
_.,xl

A
(with A7 1x,<x, <4 %x,) and so
; © 1 (1 _
Ov,(IT . )=i[ ]/E, y:,]u[ Uozu (1 u(— ’c,,))
is contained in IT,. Thus v,(IT, ) is a compact subset of IT_, and therefore

X (oI ) ) =0, 4 (L)

0| 0, -0 ooyt

U{p,(ico)}

converges to ¢ as r— co.
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Another consequence of the boundedness of u and U is that
-1 1 1

= — t —

u0)=—Jol)|-—7 - —
1

t—¢ t—1

where ¢ and g are positive bounded continuous functions on R,

a(t)= —Imu(t+i0), o(t)=—ImU(t+i0),

dt,

1
v = —;{f@(t) dt,

with supports
suppo = [— o0, —A" 1]U[19 OO] > Suppgz[_ 00, —A" IJU[A-Z, OO] s

and o(t)|t— 1|~ /2 is also continuous. For —A71<{<172 nx1,

1 d n—1
] vo= - Lreoe-oa
This is negative for odd n, and furthermore for any finite sequence {a,}, a,€C,
n=0,1,...,

a,a,[(n+m+ 117U () =0.
0

3

In particular, from
sUQU 0 -3U" (0?20,
one recovers Sf <0.

3.4. Other Branches
For n=1,2,... and e=(g, ..., &,.), with ;= £ 1, let

1 n
u(0)= (Z) eu(eyu( ... epmu((—A)) ...)),

1 n
u,= (z) g UoEUo.. o8 il o —A)". (18)

1
Denote |¢| =n. By insertingu = Jueu o —A4)2"times in formula (18) we re-express u, as

u,, with |¢'|=|¢|+1 and, by induction, as u,. with ¢”=|¢|+ N for any integer N =1.
Thus the representation (18)is far from unique. The function u, is defined in IT , UIT _,
where it is injective, self-conjugate, and Herglotz (respectively anti-Herglotz) if
(—=1)%, ...e5n=1 (respectively —1). Suppose that |e|=n, |¢'|=m. If n=<m, we re-
express u, as u,, with |¢"|=m. Then

1
zueoue’ O(_}‘): 7 Uge Uy o(_,l)

1 m+1 1 n
= (z) Squo Szmu 0( i) (-) 8’1 oyyo... Oglzmu O(_A)m—i— 1
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is of the form u,.. with |¢”|=m+ 1. Similarly if m<n, we re-express u,, as u,, with
l¢"|=n, and, in all cases A~ 'u, ou,, o( — A) =u, with [¢”| =max(m+1,n+1). Let 4, be
the set of such functions which can be obtained with |¢| <n; by convention we set
%, ={u, —u}. Note that for |¢| > 1, u, can always be written as A~ 'u,, ou,, o(— A), with
le] = le"|=e| — 1.

We now prove

Lemma 3. Assume that, for some {,{'e Il , OII _,u({)=u.({"). Thenu,=u, and {={.

We may assume |¢| =|¢'|. If |¢] =0, the hypothesis either means u({) =u({’), hence
{={ since u is injective in I1 , UII_, or u({)= —u({’), which is impossible since

u(ll,vll _)C{weC:Rew>0}.
Suppose now n=1 and

ey uetl... epi((— AY'C) .. ) =&, u(Eyul .. sl — AT ...)).

Applying repeatedly the previous argument we find e=¢" and {={".
This means that the patches u,(I1 ,), u,(IT ) never overlap if u, and u,, are truly
distinct.

Lemma 4. (i) For each &, u, has continuous boundary values on both sides of the real axis.
(i) For eache,thereis alocally finite set of branch points on R, separated by open
intervals I, ; such that u, can be analytically continued across each 1, j, from I1 , into
I1 _ and vice-versa, the continuation being again some u, (depending onj). For all { in
any I, , u({ +i0)=%0. At the branch points, |u;| tends to co.
(iil) All u, can be obtained by successive such continuations, starting from u.

Proof of (i) and (ii) (by induction on |¢]). Suppose (i) and (ii) hold whenever |e] <n—1,
n=1. Then, for |¢|=n, u,=A"'u, ou,.o(—41), with |¢|=|¢"|=n—1, and u, has
continuous boundary values on both sides of R. Let {e R:itis a point of analyticity of
u,|II , unless — A{ is a branch point of u,. or u,.(— A{ —1i0) is a branch point of u,.. If
either of these cases occurs, |u,(w)| tends to co as w—{, we Il ,, by the chain rule: if
— Al is aregular point of u,., then u.(— A{ —i0) % 0; if u,.( — A{ —i0) is a regular point
of u,, then u., 0 there; if neither, then both u,, and u,. tend to co. Let I€IR be an
interval of regularity ofu |IT , . Then, forall e I, — A{isaregular point for u,.|JT _,and
u.(—A{—i0) is a regular point for u,, and u({+i0)+0 by the chain rule. If
u A — AL, —10)is real for some {,€ I then u,.(— AJ —i0) CIR for some open real interval
J>{,, otherwise, since ul.{ — AL, —i0) %0, u,, cannot map I7 _ into +11_, and hence
u,(— AI —i0) CR. Then by Schwarz’s reflection principle, u,. is its own continuation
across — Al ; by theinduction hypothesis u,. gets continued by some u,..,and hence, by
the composition rule, u, gets continued by some u, across I. If u (= AI)CII ., u,, is
analytic there, u,, gets continued across —Al by some u,., and, again by the
composition rule, u, gets continued by some u, across I.

Proof of (iii). Assume that, for all ¢ with || <n—1, u, can be obtained by analytic
continuation from u along a path 7y, of the following type: a finite succession of
segments along the upper or lower side of the real axis, linked by judicious crossings,
and such that the image of y, under the continuation of ulies whollyin IT , or IT _. This
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is obviously true for [e| < 1, (since 4, = {u;, —u;,u,, —u,=u_,})so weassume n=2.
Given ¢ with [e] <n—1and any ¢, the path y, can be used to continue ™ 'u,, ou o — A)
to A7 u, cu, o(—A): it suffices to let —A{ follow y,. We now show how to obtain
A7y, ouo(—A) from 2™ 'uouo(— A)=u. For this purpose (in view of the induction
hypothesis, and since |¢] <»n — 1), it will suffice to prove the following : let 4, and u,. be
continuations of each other across a certain real open segment I, e.g. from [T, into
II_;then 1™ lun ouo( — A) can be continued into 1~ 1u,,, ou o( — 1) in the above manner.
To see this, let y, be the already known path (see 3.1 and Fig. 3) with image in IT
permitting a continuation of uinto u,, re Z chosen so that u,(I1 , ) borders the real axis
along a non-empty open subinterval of I, on the IT, side. Let — A{ follow y,. Then
A~ 'u, ou o — 1) gets continued into A~ *u, ou, o — A). Then let — A cross the real axis so
that u,(— A{) crosses I, which it can do without leaving the domain of definition of u, ;
then 2™ 'u, ou, o(— ) gets continued by A~ 'u,, ou, o(— A). Let — A{ follow the reverse-
conjugate path corresponding to y,. In the end we find 27 'u,, ouo(—4).

Lemma 5. The branch points of u, are all of the square-root type.

Proof. In view of the definition of u,, the only way in which this might fail to be trueis:
there exist ¢, ...,¢,, (¢;= +1) and {, such that: {, is a branch point of u and
wo=¢,u(e,u(...u(ly)...)) is a branch point of u while, for p=2,...,n,
eyule, 1 u(... u(ly) ...) is a regular real point of u, [unless n =1, but we exclude this
case which is easy to deal with]. The only possibilityise, =1and wy=1,with{,=1o0r
— A~ But this implies g"(1)={,, hence {,=1 since g maps [ —1,1] into itself,
ie. g""(0)=1, ie. g"(0)=0 which is not possible for n>1.

4. Final Remarks

We call “patch” a set of the form u,(IT, ) or u,(IT_). Note that u,(t 1, )CII, where
le|=z1andr,=(—1)"; ...¢&,. Lemma 3 asserts that two patches overlap if and only if
they coincide. From the proof of Lemma 4, it is clear that the boundary of u (IT,)
consists of a doubly infinite sequence of smooth arcs, each starting perpendicularly
from the preceding one (because of Lemma 5). These arcs converge to u,( +i00). Since
u, is injective on IT UII _, it has an inverse function, denoted g, on u (IT . )uu,(I1 ).
The proof of Lemma 4, (iii) shows that, for any given ¢, |¢| > 1, there is a finite chain of
patches, u"(o)(H 2y oo Uy (T T 1), U0y =1, Uy =1, such that u,,(t,,I1,)° and

Uyip+ 1)(r,m,Jr yI1.)* have a common arc, and Uy(0ys +++» Uyny TE the successive
continuations of u along the path y, The various g wp are then successive
continuations of g. Thus g is analytic and uniform in U u,(I1,) and also on all the

regular arcs of the boundaries of the patches, as well as at the ends of such arcs (in view
of Lemma 5), which are critical points for g. At points of the form u,(io0), g is singular
(g tends to infinity at such points). Note that u,(ico)=A""g,u(... &,.u((—1)"ic0) ...) is
animage of c or ¢, hence is the limit of a sequence of patches in the same way as citself.

The preceding discussion has shown that D = U u,(II°, ) is adomain of analyticity

for g. Assume that g can be continued beyond D, 1 e. that there exists zo€ll , zo¢D, ¢,
z,€ult 1), Ry>0, R, >0, and g, holomorphic in ,={z:|z—z,| <R,} such that

Q,={z:lz—z;|<R,}Cu,t 1 ,)
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i

D

0

Fig. 5. Partial picture of {z:Img(z)=0}

and g coincides with g in Q,NQ, # 0. Then there exist z}, € Q,NQ,, zo€ Q,\D, a path p
from z| to z; in Q, and a neighborhood V of p where §’ does not vanish. One can
then analytically continue u, from g(z})=g(z}) to §(z,) along §(p): therefore
zpe D, a contradiction. Hence D is a natural domain of holomorphy for g. Its
boundary contains all the singular points u,(+ico). If z=u,{), (eIl ., then
Az=u (A —A0)eu,(t,.I1_) and g(Az)=u,.(—A{). By continuity it follows that
ze D=Aze D, g(Az)e D and Ag(z) = — g(g(Az)). Figure 5 attempts to give an idea of
the pattern formed by the boundary lines of the patches, i.e. the analytic set
{z:Img(z)=0}. Among these lines is IR, since the patches u,(I1,), k€Z, are
bordered by the intervals J, (see Sect. 2). Similarly iR is part of the pattern: indeed,
to every interval of monotonicity of f on the negative real axis corresponds a
restriction f; of f* which satisfies

50= = 5 R0,

hence a branch U; of f~ ! whose patches are bordered by an interval on R_; the
square roots of these are some u, whose patches are bordered by intervals on iR. For
any ¢ and &, ™ 'u, ou,, o(— 1) is some u,.., hence the image of du,(I1 ;) under A~ 'u, is
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again part of the pattern ; in particular, letting u, run through the set of the u,, ke Z
shows that the pattern is sent into itself by the dilation A~ *. Similarly it contains all
lines of the form A~ ' (ilR), which terminate at images of ¢ and . In fact, each line of
the pattern other than IR or iR is easily seen to be of the form
A" Ne u(e,u(... egu(iR) ...)), and terminates at images of + c or +¢. These line endings
are points of accumulation of points of the form u,( £ io0). Figure 5 was obtained by
using numerical data kindly provided by Lanford : the Taylor series coefficients of U
at 1 were obtained from his Taylor series for f'at 0, then Padé-ized ; for large values of
{, the functional equation is used repeatedly?.

Appendix

We give two examples of functions F on [0, 1] which have the properties required for
the proof of Lemma 2. They are both of the form F(x)=1"'[¢(1 —x)— ¢(1)], with
o(x)=h(x?) and @(0)=1, ¢'(1)= — A~ 1. The verifications are straightforward. We
give below (Table 2) the values of 4,c,,c5,7,,75, as functions of 1% and a lower
bound on L,

L=({,+{3y+y H[1—-44%y(1 -5,
y=(1—-A)2,

which permit such verifications.
First Example
W)= —— +1-a,
ut

u=0.12, a is fixed by the condition ¢'(1)= —A"! to be a=(1+ w)?/2ul. With the
above numbers a~13.
Inverse function: the inverse function of h is V,

VQ=u""!

a
S—
{+a—1 ]
the inverse function of ¢ is the square-root of V.,

2 The same method leads to the following estimate for ¢: ¢~ 1.831259 +i(2.683151)

Table 2

2 4 ¢ e I, ly Lz
0.152<42<0.161 0.26 0.16 0.224 03818 0.302 2.798
0.161<12<0.164 0261 0.172 0.243 03653 03145 2.795

0.164<7%<0.165 0.261 0.176 0.248 0.3601 0.3172 2.791
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Second Example

2at
ht)=14+ ——-—=
® (t—b)(t—b)’
b= —r+is, r>0, s>0, g=[r*+5>]"? with, e.g, r=5, o=10. The condition
¢'(1)= — A" determines a

a=[1+42r+0*1?[4Me*-1)]!

(a~178 with the above numbers).
Inverse function: the inverse function of h is V,

Vi)=z— VZT——?, Z=—r— C—Ll’

where the function z— /2% — ¢? is defined in C\[ — g, ¢] as being asymptotic to z at
infinity. One also has

VQ)=0’[z+)/2* =01}
which makes its anti-Herglotz character apparent.
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