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Abstract. Every outer automorphism of a separable simple C*-Algebra is shown
to have a pure state which is mapped into an inequivalent state under this
automorphism. The reduced crossed product of a simple C*-algebra by a
discrete group of outer automorphisms is shown to be simple.

0. Introduction

We consider two problems both of which depend on one technical lemma.

One of them is the problem, stated by Lance in [4], whether or not any
universally weakly inner automorphism of a simple C*-algebra is inner. In Sect. 2
we shall answer this affirmatively in case the C*-algebra is separable. The idea of
the proof is based on [3], the corresponding result in case of one-parameter
automorphism groups.

The other is the problem whether or not the reduced crossed product of a simple
C*-algebra by a discrete group of outer automorphisms is simple. In Sect. 3 we shall
answer this affirmatively. The proof is essentially the same as that of the result
which has been obtained by Elliott in [1] in case the C*-algebra is AF (i.e.,
approximately finite-dimensional).

In Sect. 1 we shall give a main lemma on outer automorphisms; a similar result
has also been obtained by Elliott in the AF case.

The author is most grateful to Professor Sakai for a seminar he gave on the first
problem.

1. Outer Automorphisms

Let 4 be a C*-algebra and « an automorphism of A. In [2] we have defined the
strong Connes spectrum () of «. In this case T(x) is the set of A e T = Z such that
&, (I)= I'for any primitive ideal I of the crossed product 4 x ,Z of 4 by o, where & is
the dual action. () depends on o up to inner automorphisms, i.e., T(Aduo o)
= T(«), where u is a unitary multiplier of 4. If 4 is a-simple, i.e., 4 does not have
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any non-trivial a-invariant closed two-sided ideals, then T(x) equals the Connes
spectrum of «. By Olesen’s result in [5], if 4 is simple and T'(«) = {1}, then o is inner.

1.1. Lemma. Let A be a C*-algebra and « an automorphism of A. If W(x)= {1}, then
for any non-zero hereditary C*-subalgebra B of A and for any a€ A (admittinga = 1),

inf{||xaa(x)|; 0=<xeB, |x|=1}=0.

Proof. (See [1, 2.3] for a similar result.) Suppose that there is a non-zero hereditary
C*-subalgebra B of 4 and a€A such that the infimum in the lemma is positive,
say o.
Let x be a positive element of Bwith || x|| = 1. Then x” = 0 and ||x"|| =1, and so
[|x"ao(x")|| = 6 for any nelN. It follows that for any m, nelN, ||x"aa(x")[|=J.
Since a(x")a* x*™ aa(x") is positive and has norm not less than 2, there is a state
Jfon of 4 such that

folo(x™a* x> " ao(x") = 62
Then for k < m,
Su(@(xa*x* an(x") z 62, ()

since x** > x*™. Let fbe a weak * limit point of (£,,). Then (*) holds with fin place of
S, for any keIN. Since (x**) is a decreasing sequence of positive elements, it has a
strong limit p in A**, which is a projection. Thus

fla(x"a*paa(x") z 6%

Since ||f]| £1, it follows that ||paa(x")||* = |la(x")a*pax(x")|| = 6.
Since pao(x*")a*p is positive and has norm not less than 52, there is a state g, of
A such that g,(p) =1 and

g,(pan(x*"a*p)=d6*—n"1.
Hence g, satisfies that g,(x>™) =1 for any meIN, and
guaa(x*9)a*) 2% —n""
for any k <n. Let g be a weak * limit point of (g,). Then
g(x*) =1 and g(aa(x**)a*) =52

for any keIN. Thus g(p) =1 and g(aa(p)a*) = 62, where &= o**. In particular,
since g is a state, it follows that ||pada(p)| = 0.
Let ¢ be a pure state of B and let

K,={xeB; 0=x=<1, o(x)=1}.
Then
() {f; state of 4 such that f(x) =1} = {¢p}.

xeK,
(To prove this it is enough to show that for any pure state fof B other than ¢, there is
a positive xe B such that ¢ (x) = ||x|| =1 and f(x) < 1. This can be easily shown by
using Kadison’s transitivity theorem.) For each xe K, let p(x) be the strong limit of
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x*as k—oco. If x, yeK,, then
z=(x+y)/2€ekK,

and p(z) £ p(x), p(¥). Thus {p(x); xeK,} forms a downward directed set of non-
zero projections of 4** so that it has a strong limit p in 4**. Since ¢ (p) = 1 and f(p)
<1 for any state f other than ¢, p is a minimal projection in A**. From the
preceding paragraph, there is a state g, of 4 for each xeK, such that

g(x*)=1 and g (an(x**)a*)= 4>
for any keIN. If p(x) < p(y) with x,yeK,,, then
8.0 =1 and g.(aa(y*)a*) 24>

Let g be a weak * limit point of the net (g,). Then the above equations hold with g in
place of g, for all keIN and yeK,. Hence g= ¢ and

p(ad(p)a*) 2 °.

Let B = B+ € e where e is the identity of B** (in 4**). For a unitary « in B, by
using uxu* in place of x with xeK, we obtain

o (w*ad(upu*)a*u) = 562,
In particular
lpu*ac(up)|l = é. **)

Let ,, be the unique extension of 7, to a representation of 4**. 7, (p) is the one-
dimensional projection onto €Q, and 7,(d(p)) is non-zero and so a one-
dimensional projection. Let ¥ be a unit vector of H, such that

(@)Y ="Y.
Now we define an operator ¥ on H,, such that
Vr,(x)Q,=n,oa(x)¥, xed.
Since
g0 a(x) ¥|1* = (7, &(px*xp) ¥, ¥)

= @(x*x)
=7, (x)Q, I

by px*xp = ¢(x*x)p, and since m, is irreducible, /" has an extension to a unitary on
H,, which is denoted by V' again. Then V satisfies that

Vr,(xX)V*=m,oa(x), xeA.

Let E =7, (e) be the projection onto [7,(B)Q,]= [r,(B)H,]. Then for any unit
vector e EH,,, there is a unitary u in B such that ® = 7, (1) Q,, by the transitivity
theorem. Then it follows from (**) that

l(n, (@) VD, ®)| = (7, (pu*ad(up) ¥, Q,)| = |7, (pu* aa(up)) || Z 9.
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Since a numerical range is a convex subset of €, by adjusting a phase factor of V" we
may assume that

Re(En,(a)VED,®) 2 6
for any #eEH,, with [[®@| =1. Thus
E(n,(@)V+ V*r, (a*)EZ20E.
Hence for any beB,
n,(b%) (n,(@)V+ V*n,(a*)n,(b) = 26 n,(b*b).

By the remark given before the lemma, &, with AeT(x) induces an
automorphism f; of the C*-algebra generated by 7,(4) and V in the way that

Bi(my (X)) =m,(x), xed, B,(N)=4V.
Hence for 1eT(x),
1, (b*) (A, @)V + AV * 1, (a*)m, (b) = 257, (b*b).
Since Ze () if AeT (), this implies that
Red- 7, (b%) (1, (@) V + V¥, (a*) 1, (b) = 20m,(b* b)

for be B. Hence Re 1 > 0 for A T(w), i.e., W(e) = {1} since T(x) is a group. q.e.d.

We conclude this section by giving simple remarks on the assumption in the
lemma.

The condition that M(«)# {1} in the above lemma can be replaced by the
following weaker one: The set of a-invariant closed two-sided ideals I of 4 with
M(x| D)+ {1} generates an essential ideal of A. Because then for any non-zero
hereditary C*-subalgebra B of 4 there is an a-invariant closed two-sided ideal [ of 4
such that BN I+ {0} and T(x|/)= {1}, and hence we can proceede as in the above
proof with BN I (respectively I) in place of B (respectively 4) since a (in the lemma)
is allowed to be a multiplier.

This weaker condition on « still implies that o is properly outer [1] (while we do
not know about the converse).

To show this suppose that « is not properly outer. Then there is a non-zero
a-invariant closed two-sided ideal 7 of 4, a unitary multiplier  of I,and a *-deriva-
tion 6 of 7 such that

o) I = (Adu) (expd)
(see [1, 2.2]). Since that T(expd) = {1} follows easily from the definition of T,
T(x| 1) = T(Adu*oa|T) = {1}.

For any non-zero a-invariant closed two-sided ideal J of 4 with J<= I, the restriction
of o to J has an expression of the same type as o | I since v multiplies Jand J leaves J
invariant. Hence T(a|J) = {1}. This implies that T(x|J) = {1} for any a-invariant
closed two-sided ideal J of 4 with Jn 7= {0}. This completes the proof.
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2. States and Automorphisms

2.1. Theorem. Let A be a separable C*-algebra and o an automorphism of A. If
T(e)= {1}, then there exists a pure state @ of A such that ¢ o« is disjoint from .

Proof. Let (u,) be a dense sequence of unitaries in A=A+ €1, and write
Adu,=o0,.

By Lemma 1.1 (with @ =1 and a = 0, o &) there is a positive e, in 4 such that
lle;ll=1 and |le; 0,0 a(e,)|| <1/2. By changing e, slightly if necessary, we may
further suppose that there is a positive a, in 4 such that ||a,||=1 and e, a, =a,.

By applying 1.1 to a, Aa, with ¢, o o, we have positive e, and a, in a,; Aa, such
that |le,|=la,ll=1, eja,=a,, and |le,0,0a(e,)|| <1/2. Since e a, =a,, it
follows that e, e, =e,.

By induction we construct a,, e, successively, i.e., e, and a, are chosen from

a,_,Aa,_; so that

€20, 4,20, |lel=lal=1-ea=a, [eo,°a(e)l<1/2.

Then it follows that e,_,e,=e, for all n.

Let S be the set of states ¢ of 4 such that ¢(e,) =1 for all n. Then since e,_, e,
= e, for all n, Sis a non-empty closed face. Let ¢ be an extreme point of S, which is a
pure state.

Since ¢(a,0 a(e,)) = @(e,0,0 a(e,)), it follows that

@ (0,0 a(e,) = lle,0,° ale,) [ < 1/2.

Hence

9(ey— 0,00(e,) > 1/2.
This implies that for any n,

lo —@oo,oull>1/2. ()

If peoo is not disjoint from ¢, then @oa is equivalent to ¢ and so « is
implemented by a unitary in the representation m,. By applying Kadison’s
transitivity theorem, we know that there is a unitary u in A4 such that ¢
= ¢ o Aduo a, which contradicts (*) since (u,) is dense in the unitary group of 4.
Thus @o o is disjoint from ¢.

2.2. Remark. Under the situation of the above theorem the set of pure states ¢ of 4
with the property that ¢ o o is disjoint from ¢ is dense in the set of all pure states (in
the weak* topology). Because, in the proof of 2.1, e; can be chosen from an
arbitrarily specified non-zero hereditary C*-subalgebra of 4, so each of those
subalgebras has at least one pure state with the above property (as a state of A).

If 4 is a simple C*-algebra, then the condition T'(x)# {1} is equivalent to «
being outer. Hence we obtain

2.3. Corollary. Let A be a separable simple C*-algebra and let o be an automorphis of
A. If poa is equivalent to @ for any pure state ¢ of A (i.e., o is extendible in every
irreducible representation, as in [4)), then o is inner.
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When 4 is UHF, this was obtained by Lance [4].
The following extends Theorem 8 in [3]:

2.4. Theorem. Let A be a simple C*-algebra (without identity ) and o a one-parameter
automorphism group of A. If o* is strongly continuous on A* (i.e., ||pooa,—@||—>0as
t—0 for any peA*), then o is inner (i.e., there exists a one-parameter group u of
unitary multipliers such that a,=Adu, and t—u, is continuous in the strict topology ).

Proof. If there were a sequence (1,) in IR such that ¢, converges to zero and each «, is
outer, then by applying the proof of 2.1 with ¢, in place of g, o to this situation we
would obtain a contradiction: [[¢ o «, — ¢ || > 1/2 for some pure state ¢ of 4. Hence
each ¢, is inner for small ¢ and so for all ¢. In case 4 is separable, this would be
enough to obtain the conclusion. In general we adopt the argument in the proof of
Theorem 7 in [3], where the continuity property of the implementing group of
unitaries is shown under the present assumption. q.e.d.

In the above proof we have used only the norm-continuity of ¢ o o, in ¢ with all
pure states ¢. This is in fact equivalent to o* being strongly continuous, even if 4 is
not simple [3, Proposition 9].

3. Reduced Crossed Products

Let G be a discrete group and let o be a representation of G by automorphisms of a
C*-algebra 4. We denote by AX G the reduced crossed product of 4 by a. Along

the same lines as Elliott’s proof in [1,3.2] we show

3.1. Theorem. Let (A, G, «) be as above. Suppose that A is a-simple and that
T(a,)* {1} for all ge G\ {1}. (In particular suppose that A is simple and each o, is
outer for geG\ {1}.) Then the reduced crossed product AX G is simple.

3.2. Lemma. Let a be a positive element of the C*-algebraNA, {a;;i1=1,2,...,n}
elements of A, {o;; i=1,2,...,n} automorphisms of A with T(a;)# {1}, and ¢ > 0.
Then there exists a positive xe A with || x| =1 such that

Ixax||=|lall—e |xaqo(x)|<e i=1,...,n.
Proof. Define a continuous function f on R by
f=it1, 12 |laf|
e tt—llal+e), lal—est<|lal
0, t<l|lal —e.

Let Bbe the hereditary C*-subalgebra of 4 generated by f(a). Then for any positive
veB with [yl =1, lay — llallyl| <, hence [[yay|zal —e.
By 1.1 there is a positive e; € B with |le, || =1 such that
llerayay (el se.

We may further suppose that there is a positive x, € B such that ||x; || =1 and e x;
=x,. Let B; = x; Ax, = B. Again 1.1 shows that there are positive e, and x, in B,
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such that |le, || =||x,]| =1, e, x, =X,, and ||e,a,a,(e,)|| =& Then x, satisfies
llx2a;0q (X))l = llega oy (ey) || Se,
Ix2a,0,(x,) | S leyaz05(e) | S e,
xax, 1 2 llall —e.
Continuing in this way, we obtain x, = x satisfying all the conditions in the
lemma. q.e.d.
We will not complete the proof of 3.1 because it is the same as [1, 3.2] if the
above lemma is used for [1, 3.3]. The extra assumption we have made is that a (in

the lemma) is positive. But this is not essential because ||a| < Ha+ Y. agu,|| in
[1, p.308] follows from

geT

*-
la*al| < ||a*a+ Y a*ayu,

geT
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