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Abstract. A class of states on Borchers' tensor algebra is constructed. These
states are invariant under the translation group and fulfill the spectrum
condition. This leads to a characterization of the linear span of all such states
in terms of a simple continuity property.

1. Introduction

In the algebraic formulation of Wightman's axioms, quantum fields correspond to
a class of positive, linear functionals on a topological *-algebra, the tensor algebra
over a space of test functions [1 — 3]. The conditions which distinguish Wightman
functional from other positive functional on the algebra are invariance under a
group of automorphisms and the requirement that the functional vanish on two
prescribed ideals. Various general aspects of the positive linear functional on this
algebra have been studied, e.g. in [4-14], cf. also [15] and literature quoted
therein. The invariance condition and the two ideals play almost no role in these
works, however. In the present paper, we want to take into account a part of the
automorphism group, the translations of space-time, and one of the ideals, which
corresponds to the spectrum condition for energy and momentum. We give a
characterization of the linear span of all positive, invariant functional satisfying a
general spectrum condition. From this characterization follows in particular, that
the invariant positive functional span a dense subspace of the space of all
invariant functionals and that the spectrum ideal is the intersection of the left
kernels of the positive invariant functionals which annihilate it.

It is perhaps worthwhile to point out some differences between the present
framework and the theory of C*-algebras. On a C*-algebra, there are just as many
invariant states for a given group of automorphisms as there are invariant linear
functionals. This is so because the Jordan decomposition of a linear functional
automatically preserves invariance. Moreover, for an amenable group of automor-
phisms, one can construct an invariant functional from an arbitrary functional by
using an invariant mean. For the tensor algebra these methods do not work. First,
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there is no minimal decomposition for linear functional, and in fact, not every
continuous functional is a linear combination of positive ones [7]. Secondly, an
invariant mean is of almost no use, because the algebra is not a normed algebra,
and the combination of the automorphisms with a non-invariant functional will in
general lead to an unbounded function on the group. These matters are discussed a
little further in [16]. In a C*-algebra, every left ideal is the intersection of the left
kernels of pure states and an analogous statement holds for the two-sided ideals.
For the tensor algebra, this is far from being true. For a better mathematical
understanding of the Wightman framework, it would be desirable to know which
ideals and automorphisms go well together with the positive, linear functionals on
the tensor algebra. The present paper may be considered as a part of such a
programme. To a certain extent, this applies also to a joint paper of the author
with Borchers [17], where the ideal in question is the one generated by all
commutators. The main objective of that paper, however, was to find conditions
on Schwinger functions, under which they have a representation by a measure on a
space of distributions. If the requirement of Euclidean in variance for the measure
is added, this problem also has a bearing on the present paper, and the last section
is devoted to some remarks on this point. In particular, it contains a simple proof
of the fact that, contrary to what is the case for Schwinger functions, the time
ordered functions of field theory can never have a representation by a trans-
lationally invariant, complex measure on a space of distributions.

We now give a summary of the other parts of the paper. After some
preparations in Sect. 2, we discuss in Sect. 3 continuous, translationally invariant
seminorms on Schwartz space if and the tensor algebra ££• The collection of all
such seminorms defines a topology on y, in which ξf is no longer a nuclear space,
and the subclass of invariant Hubert seminorms defines a strictly weaker topology.
It is this latter topology which is relevant for the invariant positive functionals and
we give an explicit description of it. In Sect. 4, we show that every invariant Hubert
seminorm annhilating the spectrum ideal can be dominated by a positive linear
functional with the same property. This result is analogous to Theorem 1 in [7]
but the proof is more complicated and it turns out that the geometrical shape of
the spectrum is important. A characterization of the linear span of all invariant
states with spectrum condition and related results in Sect. 5 follow as simple
corollaries.

2. Notations and Preliminaries

We use mostly the same notation as in [7]. The test function algebra y is the
completed tensor algebra over Schwartz space y = &^ = ίf (Rd). It is thus a direct
sum

with ^o - C and <fn = ̂ (!R"'d). Its elements are sequences / - (/0, /1? . . .) with all but
finitely many fne^n equal to 0. Addition and multiplication by scalars are defined
in an obvious way, and the product of two elements by

ι> ••-,*,,)= Σ fv(xι> >Xv)9μ(χv+ι>' >xn)
v + μ — n
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The adjoint /* of/e^ is defined by

where the bar is complex conjugation. For Fourier transforms

Λ(Pι> -.,Pn)= /2 I ****** f ( χ ι > ...9x^dx1...

this means

If Jί is a subset of ίf> we denote by Jί(n} its intersection with 5 ,̂ i.e.

The topology on _5^ is the locally convex direct sum of the topologies of
the £fn, and there are many equivalent descriptions of this topology in terms
of seminorms (cf. e.g. [7]). We recall from [7] a notation for tensor products
of seminorms, which we shall use in the sequel. If || ||' is a continuous semi-
norm on £fn and || ||" on <9^m, then || |Γ®π | | |Γ is a continuous seminorm on
yn+m — yn®ym, defined as the largest seminorm || || with the property ||/®#||
HI/HΊI0IΓ f°r /e^n> Qε^m If I I * I Γ > I I Ί Γ are Hubert seminorms, correspond-
ing to scalar products ( , )' and (•,•)"» ώen I H Γ ® σ l l IΓ is defined as the Hubert
seminorm on ^M+m, corresponding to the scalar product

In general, || |Γ®σ | | ||" is strictly weaker than || |Γ®π|| \\". Since ^m is a nuclear
space, there is, however, always a continuous Hubert seminorm || ||'" on 5̂ m such
that

The continuous linear functionals on ¥ have the form T = (T0, T1? ...) with
ϊ anάT(f) = ΣTn(fn). A functional T is called hermitan if T(f*)=T(f)> and

positive if T(f* x /)^0 for all / The space of all continuous, linear functionals on
¥ is denoted by ξf', its hermitan part by 5̂ ί, and the cone of positive linear
functionals by ^ + '. For Te^+' we have T0>0 unless T=0. If Te<f+' is
normalized so that T0 = 1, we call T a state. When we have occasion to talk about a
topology on <9̂ ' and 5 '̂, this is understood to be the strong topology.

The translation group IRd operates on y as a group of automorphisms : For
αeIRd and /E^ we define

In terms of the Fourier transform this is

Call <9^v ̂ e subspace of all continuous, linear functionals which are invariant
under these transformations.

We omit the straightforward proof of the next proposition.
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2.1. Proposition. The following ^-invariant, closed subspaces of ξf are all equal:
(i) Closed linear span {f-<xtj\fe&', αeRd}.
(ϋ) Closure of {faJh(a)da\f<E^, he^, Λ(0) = 0}.
(iϋ) {/l/o = ° and]fn(x,+a, ...9xn + a)da = Qfor all n}.
(iv)
(v)

2.2. Notation. The subspace described in Proposition 2.1 is denoted ^inv.
The dual group of Rd can be identified with IRd itself as usual, by means of the

Minkowski scalar product

2.3. Definition. Let SCR** be a closed set with OeS. The spectrum ideal J2?s

corresponding to S is the closed left ideal in y generated by elements of the form

with /e^ and fte^, such that the Fourier transform h vanishes on S.
A translationally invariant state T on ξf gives rise via GNS construction to a

continuous unitary representation of the translation group, and the joint spectrum
of the generators of this representation is contained in S if and only if T vanishes
on jSfs. The case of interest in quantum field theory is of course S = V + (forward
light cone) or some Lorentz invariant subset of it containing 0.

Every hermitian functional which annihilates j£?s vanishes also on the right
ideal

Moreover, the spectrum ideal is mainly of interest in connection with invariant
functionals. With this in mind, we introduce

2.4. Notation. Jίs\ = closure of (JS?S

Jίs : = closure of (JS?S

We shall soon see that Jίs is automatically ^-invariant, so Jt$(^Jis. From the
bipolar theorem we have

2.5. Proposition.

MS= Π kerT

Te^ίnvnjSfs

Here _L stands for the orthogonal complement in the dual space. Note that all
these spaces are the direct sum of their projections onto ίfn. In order to describe
these and related spaces explicitly, it is convenient to make a transformation of
coordinates on Wd and define

qk= Σ Pv fc=l,..,n,
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We write these coordinates in inverse order, thus: (qn,qn-l9...9qj. (This somewhat
strange convention turns out to be convenient in the proof of Theorem 4.5.) The
Fourier transform of a function f e £ f n expressed in these coordinates will simply
be written f(qn, ...,^1). The *-operation is, in this notation,

2.6. Proposition, (i) JSfy= {/|/0=0, fn(qn, ..., qj = 0 on S x ... x S}, JSf* - {/|/0 = 0,
fn(qn,...,qJ = Oifqne-S andqvES + qnfor v = l, ...,n-l}.

(ii) ^ = {/|/o = 0, /π(gn, ...,^) = 0 on {0}xSx... xS}.
(iii) Jlsis ^-invariant, and JίsCJ?s. IfSπ—S={0} and 0 is an isolated point of

S, then Jίs = Jίs.
(iv) There is a natural isomorphism

Here ®n denotes the completed n-fold tensor product with respect to the q-variables.
The proof is straightforward and is given in the appendix.

2.7. Remarks, (i) If 0 is not an isolated point of S (e.g. if S is the whole forward light
cone), then the functions in Jί(^} will in general vanish with all derivatives for
qn = 0, so Jίs is a proper subset of Jίs.

(ii) For sufficiently regular 5, one can show (using Whitney's extension
theorem) that j£?s + J2?s* and ^fs + ̂ inv are already closed.

3. Translationally Invariant Seminorms

In this section we first describe a basis for the set of all continuous seminorms on
yi5 which are invariant under the translation group Rd. Next we define some
strictly weaker topologies with the aid of I^-norms of Fourier transforms. By
introducing difference variables, one can extend these topologies to £fn and ξf, and
the topology generated by all continuous translationally invariant Hubert semi-
norms on y vanishing on Jέfs is shown to be identical to one of them.

3.1. Proposition. Let || || be a continuous seminorm on ίf^ such that a±->\\aaf\\ is a
bounded function of αeIRd for all /e^. Then \\-\\ is dominated by one of the
invariant seminorms

l l / l l I , N = Σ ί\Dvf(x)\dx.

Proof. If 0M|αfl/|| is bounded for all /, we infer from the Banach-Steinhaus
theorem that ||αα/|| :g \\f\\' for all a and / with some continuous seminorm || ||' on
£fv Divide ]Rd into cubes Qk with side lengths 1, indexed by corner points ke2Zd,
such that Qk = Q0 + fe. Choose a C°°-function χ0 with suppχ0 C (J Ql = : Q0 and

=l> where χk:=akχ0. We have | |/ | |^|Σ/X* ^Σ HΛJ^Σ l
k k



406 J. Yngvason

Since || ||' is continuous, there is an N such that

||(αk/)χ0ir^ const £ J l/Πfe/koll^ const ξ J \Wf(x-k)\dx.

Thus,

const Σ Σ| |0v/(*
|v| = o fc <2o

g const Σ Σ ί \Dvf(x)\dx£ const £ J l/>v

|v| = 0 fe

The invariant seminorms || || 1 N thus form a basis among all continuous,
invariant seminorms on &v Call iinv the topology which they define on ίfv. The
dual space of 5̂  in this topology consists precisely of the bounded distributions,
cf. [18], p. 200.

Let ρ be a tempered, positive measure on JRd and 1 :gr < oo. Define for

ιι/ιι,:β:
If NeN, put

For fixed r, 1 ̂  r g oo, call Zr the topology defined by all || \\~e respectively || || ~ N.
More generally, for an arbitrary closed set S, define Zr s by considering only ρ's
with support in S, respectively (for r = oo) by the seminorms

,
qeS

3.2. Proposition, (i) // lrgr<s:goo, then Zr>s is weaker than Σs>s; for general S
strictly weaker. Moreover, Z^ is strictly weaker than !Σinv.

(ii) The continuous linear functional on ̂  in the topologies ίr>s are the same for
all r and have the form

T(f)=$f(q)dμ(q),

where μ is a tempered, complex measure on IRd with support in S. On the other hand,
the dual space of ̂  DΣinv] is strictly larger than that of

Proof, (i) If ρ is a positive measure with support in S and (1 + lgl^)"1 is ρ —
integrable, then || | | r fβ^ const Hloo f jv , s> and if r<s<oo, then \\ \\ftβ^ || ||s,ρ' with
ρ/ = const(l + \q\N)Q, by Holder's inequality. It is a simple exercise in measure
theory to show that Z f t S is strictly weaker than Z s s (unless S contains only a
countable number of points). That ϊ^ is strictly weaker than £inv follows from (ii).

(ii) If Te&" satisfies ITC/ll^constH/H^^^, it follows that (l + lgΓΓ1!^) is
continuous w.r.t. || || ̂  0 s anc^ ^nus a bounded complex measure μ0. Hence T is
represented by the tempered measure (l + \q\N)μ0. Conversely, if T has such a
representation, it is Zr s-continuous for all r. On the other hand, there exist
bounded (and thus 2inv-continuous) distributions which are not Fourier trans-
forms of complex measures. (Example: Heaviside step function on IR, whose
Fourier transform is principal value l/q.) Thus 3
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Until now we have only considered invariant seminorms on ίf^. In order to
carry this over to ,̂ we introduce the coordinates ξl=χί, ξk = χk — χk_^
fc = 2, ...,n on IR"d. In Fourier space this corresponds to replacing (p1? ...,pn) by
(^n' ίίi) as in the preceding section. (In our convention, gfc is the conjugate
momentum to ξn + 1_k.) The translation group operates only on ξλ (respectively qn)9

and we can write ^n = ̂ ι®^n-15 where the functions in the first factor depend
only on ξ1 (respectively qn) and in the second factor on ξ2,...,ξn (respectively
g n _ l 5 ...,<?i). In the remainder of this section, ® stands for this decomposition of
<?„
3.3. Definition. The topology Xinv on y is defined by all seminorms of the form

11/11= Σ Il/Joo.
n = 0

with || - ||(π)= II Hι,tfn®J H^-D, where Λ^eN and || | |^_1 } is a continuous semi-
norm on ίfn-v

In an analogous way we define 2r s on 5 ,̂ replacing || || l j Λ Γ n by Xr ^-continuous
seminorms on «^15 and requiring that the || \\(n-D vanish on ̂ (^~l\

3.4. Remark. Since ^n-1 respectively ^n_1/^(

s

n~1} are nuclear spaces, we can just
as well use any other tensor product of seminorms which lies between ®π and ®ε.
Also, it is immaterial whether we define || || from the || ||(w) as above, or if

11/11 : = sup||/J|(n), or ||/|| : = /£ ||/J|fn)\
1/p with l^p<oo. In particular, the to-

\ n /

pology Z2tS can be defined by Hubert seminorms of the type

/ oo \ l / 2

11/11= Σ II/X) ,
\w = 0 /

with || ||(Π)= || || 2 ρn®σ\\ ' l l (n- i) ' where the ρn are positive, tempered measures with
\\[n-^support in S, and the || \\[n-^ continuous Hubert seminorms vanishing on &£~ 1}.

3.5. Proposition. The topology 2inv on ¥ is equal to the topology defined by all
continuous seminorms on ξf such that a\-^\\oίaf\\ is a bounded function for al

Proof. This is a combination of 3.1 with the Banach-Steinhaus theorem. From 3.1
follows that /i^-HI/i ®0Π- 1 1| ^s a ^inv-continuous seminorm on ̂ 1 for gn_ 1 e ̂ n_ 1

fixed. Now ̂ x is metrizable for ϊinv, and ^n-l with the usual topology is a
Frechet space. By Theorem 3.4.1 in [19], | |/ι®0n-ιll is therefore jointly con-
tinuous in /Ί and gn-l9 from which the assertion follows.

Since X^ s is a metrizable topology on ̂ 15 one can in a similar way show that
ϊ oo s on y is the topology generated by all continuous seminorms || || vanishing

on J5fs, such that || $ aaf(h(a)da\\ ^ sup|%)| const (/) for/e^ fixed and fee 5 .̂ We
qeS

shall not use that, but rather a slightly different statement, which is contained in the
next proposition.

3.6. Proposition. Let B be a translationally invariant sesquilinear form on y,
vanishing on <£s. The following statements are equivalent:
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(i) For all r, s ̂  1, with 1/r + 1/5 = 1, there is a Zr ^-continuous seminorm \\ \\r and

a ί^s-continuous seminorm \\ - ||s, such that

\B(f,g}\^\\ f \\M\ Jor all f,B.

(ii) There is a continuous seminorm || ||, and a X^ ̂ -continuous seminorm \\ - ||',
such that

(iii) There is a continuous seminorm || || , such that

\ $B(f,aag)h(a)da\ ^ \\f\\ \\g\\ sup \h(q)\
qeS

for all /, g e ϊ f , he^v

Proof. It is clear that (i)=>(ii), and for a 2^ s — continuous seminorm as in

Definition 3.3 it is also evident that || § aacjh(a)da\\' rg sup \h(q)\ \\y\\', so (ii)=>(iii). We
geS

now show (iii)=>(i). Let us write h*g for J uagh(a)da. Consider the mapping
(£,(j,h)\-*B(J[,h*cj). It is antilinear in the first variable and linear in the others.
Moreover, it is jointly continuous in all three variables, where ^^ is equipped with
the seminorm sup \h(q)\. By the abstract nuclear theorem (cf. [20], 7.4.3), there are

qeS

equicontinuous sequences {LJ and {M } in S£^ a uniformly bounded sequence
{vj of complex measures with support in S and a sequence {/IJ of positive
numbers with £Λ. f<oo, such that

We define a bounded, positive measure v on S by v = £li|vi| and use the
translation invariance of B and equicontinuity of {LJ and {MJ to get

with some continuous seminorm || ||7, vanishing on <£s. Consider the restriction of this
seminorm to <?n. For ge^ wήteg(qn) = h(qn)ΦN(qn)wth ΦN(q) = (l + \q\N)~ί. Fora
suitable N = Nn, ΦNn®g(n-D belongs to the completion of ^n in || ||; for all

-ι> and \\φNn®9(n-i)\\'^\\9(n-i)\\(n-i) with a continuous seminorm
on^-ι> vanishing on ̂ ~1}. Hence, for f,ge^l and
n-^ we have

W® 4,- 1

and (i) follows by Holder's inequality.

As a corollary we obtain

3.7. Proposition. The topology 22 s on y is equal to the topology generated by all
translationally invariant, continuous Hubert seminorms on y which vanish on
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Proof. By Remark 3.4, X2 s can be defined by invariant Hubert seminorms.
Conversely, suppose ( , •) is a translationally invariant, continuous scalar product,
vanishing on J2?s. The function K(a — af) = (ua,g,(xag) is the Fourier transform of a
bounded, positive measure with total weight K(Q) = (g,g) by Bochner's theorem. It
follows that the scalar product satisfies (iii) and hence (i) in Proposition 3.6.

4. Construction of a Class of Invariant States

Every translationally invariant, positive functional Te^ defines a continuous
invariant Hubert seminorm /^T(/* x/)1 / 2 vanishing on Jδfs. We now want to
show that conversely, any Hubert seminorm with this property can be dominated
by an invariant, positive functional in 3?$. This is not true for arbitrary S,
however. It turns out that the following condition on the set S is essential.

4.1. Definition. We say that a closed set Sc!Rd satisfies condition (R), if there is a
basis of continuous Hubert scalar products ( , )k, k = 0, 1, 2, . . . for the topology of

such that

(1) ( , )o is translationally invariant.
(2) For every k, there is a k' such that

4.2. Remark. Part (2) of the condition appears in the mathematical literature in a
different context : it characterizes precisely those nuclear Frechet spaces, which are
isomorphic to closed subspaces of £f [21].

Condition (R) is a regularity condition on the set S. We now want to show that
it is fulfilled in most cases of interest. An open connected set in IRd is usually called
Lipschitzian, if its boundary is given locally by a function satisfying a Lipschitz
condition (of order 1). This is a local condition on the set, invariant under
diffeomorphisms. In order to exclude possible irregularities at infinity, let us agree
here to use the term in a slightly stronger sense, and to mean that the image of the
set under the map q\->q' = q(ί + k!2)~1/2 is also Lipschitzian at points lying on the
boundary of the unit sphere.

4.3. Proposition. Suppose S is a finite union of disjoint sets in lRd, which are either the
closure of open, Lipschitzian sets, or the closure of open, Lipschitzian subsets of lower
dimensional submanifolds o/lRd. Furthermore, suppose the minimal distance between
the connected components of S, within a sphere of radius r around the origin,
decreases at most like an inverse power ofr, when r— »oo. Then S satisfies condition
(R).

Proof. Assume first that S is the closure of an open, Lipschitzian set in Rd. It
follows from the extension theorems of Whitney, cf. e.g. [22], Theorem 3.1, p. 77,
and Proposition 3. 11, p. 79, that ^J^(

s

l} is isomorphic to the space <f(S) of C°°-
functions on S of rapid decrease with the seminorms max sup \(l + \q\N) Dv f(q)\.

\v\^N qeS

The isomorphism is given by restricting functions in ̂  to S. By a transformation
of variables, qι-*qf = q(l + |g|2)~1/2, we map S onto a Lipschitzian set S', contained
in the unit ball in JRd, and <?(S) onto a closed subspace of the space S>(S') of C00-
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functions on S' with the seminorms max sup \Dvf(qf)\. By a theorem of Zerner
| v | ^ J V q'eS'

[23], c.f. also [24], Theorem 4, the expansion w.r.t. the orthogonal polynomials in
L2(Sf,dqf) defines an isomorphism between 2(S') and the space 0 of rapidly
decreasing sequences of complex numbers (flv)v = o, ι , . . . wu"h ^ts usual topology.
This space obviously satisfies (2) with ((αv), (bv))k= ]Γ(l + v)kάvbv,and the same

V

holds for all subspaces. In terms of functions of the original variable q, we have

which is translationally invariant, so (1) is fulfilled.
If S lies in a submanifold, diffeomorphic to IRfc, k<d, we note that all

derivatives in directions normal to the manifold are suppressed in the quotient
space yj£?£\ One can therfore apply the preceding argument with IRd replaced
bylR*.

It is easy to extend this to arbitrary submanifolds by covering them with pieces
diffeomorphic to Rfc, but this is a rather irrelevant generalization and we refrain

n

from writing down a formal proof. Finally, if S= (J S{ with disjoint St as above,
n i=ί

we have y^Sf^— 0 (ίV^s^X because the last hypothesis of the proposition
t= 1

implies that one can split /e £f in a continuous way into a sum of functions fί with
= f on 5- and = 0 on S

4.4. Remark. By the last proposition, condition (R) is in particular fulfilled if 5 is the
forward light cone, or a Lorentz invariant subset of it, consisting of {0}, a finite
number of mass shells and a continuum, as usual in relativistic quantum field
theory.

Examples of closed sets, which do not satisfy condition (R) may be constructed,
either by considering sets with sharp "cusps," or by taking the union of an infinite
number of disjoint sets. For instance, it can be shown that condition (R) is violated
for S as above, but with an infinite number of mass shells below a continuum.

4.5. Theorem. Suppose S satisfies condition (R). Then for every continuous,
translationally invariant Hilbert seminorm \\ * || vanishing on J2?s, there is a con-
tinuous, translationally invariant, positive linear functional T in <£$, such that

| |/|]rgΓ(/*x/)1 / 2 for all JeP.

Condition (R) is also necessary for this to hold.

Proof. The components Tne^'n of T will be constructed by induction over n as in
Theorem 1 in [7]. The odd components can be taken to be 0, and the even
components T2m are defined by means of suitable scalar products on £fm. At each
step, one must have two estimates for T2m : First, T2m must be large enough, so that
(T0, ..., Γ2m) dominates the given Hilbert seminorm. On the other hand, if /ve^v,
9μe^μ> v + μ = 2m and v < m, one must be able to estimate T2m(f* x gμ) from above
by ^2v(/v* x /v)1/2 times a continuous, invariant seminorm oίgμ, vanishing on
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in order to carry on with the construction. It is for this latter estimate that
property (R) is essential. A combination of Definitional (1) with Proposition 3.7,
and 4.1 (2) with Riesz' lemma implies the existence of a tempered, positive measure
dρ0 with support in S, and positive (unbounded) operators Ak, k=l,2,..., on
L2(S, dρ0\ such that

(a) f^\\f\\k: =
\s

1/2

and /i-Wj \Akf(q)\2dρ0(q)\ are continuous seminorms on yγ.
'

(b) Every continuous seminorm on yι? which vanishes on JSf^Us dominated
by || || fc for some k.

Let ρ be another positive, tempered measure with support in S and keN. Let us
call ( , )(™l the scalar product on <9*m corrresponding to the Hubert seminorm

_
\\ρ,k' — I I I l 2 , ρ

where the tensor decomposition refers to the variables qm9...9q^ defined in Sect. 2.
From Proposition 3.7 and Proposition 2.6 (iv), we know that every continuous,
translationally invariant Hubert seminorm on <?m, vanishing on j^m) can be
dominated by a seminorm of this type. Define a distribution R(2™} in <?'2m by

for f , g e £ f m and extension by linearity and continuity to the whole of ^2m ^Y
definition, R ( f f i ( f * x f ) υ 2 = \ \ f \ \ ™ k for /e^m, and we now want to estimate
R(ρ™\f* x gμ) from above for /Ve5^v, gμ<£<9*μ, v + μ = 2m, v<m. In order to do this,
it is convenient to introduce different systems of coordinates on IRnd. We had in
Sect. 2 defined

and we now define

= Σ Pf k=l , ...,n,
i=n+1-k

k

4k= Σ

As independent variables in lRnd, we may, for any v, μ with v + μ = n, take
(q'ι, ...9q'v9qμ, ...9qι). A function / of (pl5 ...,pπ) can also be expressed in these
coordinates we indicate this by writing

We note: If /e^ and

Suppose now that v + μ = 2m, v<m. The transformation of coordinates from
, ...9q'v,qμ, ...^i) to ( 1̂? ...,^,ζfm, ...,^) is given by
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or conversely

4κ =

Hence, we can also write

The distribution Λ^^ can be written in the coordinates (q'ί9 ...,qf

m,qm, ...,<2i) as

m m— 1 m

*£?(/) = f Π *Zί Π dQάqj
/ = ! 7=1 /=!

• Π 4
7=1

m-1

Here Y\ Ak stands for the tensor product of the Ak, operating on fmm as a function
7=1

of the last (m—1) variables, with the other variables fixed. Thus, if /e^v and
ί = 2m and v < m, we have

m-1

ί Π dρQ(q)dρ(qm)fQv(qv,...9qί)
7=1

m-1

• Yl Akg0μ(qv, ...,qm_l9qm, ...,q
7=1

1/2

ί Π <*ρ0(«/)
> 7=1

m- 1

Π

m- 1

' Π
ί = v + 1

2 \ l / 2

The first factor is ^J

seminorm of g: Suppose

mm'
7=1

m-1

• Π
ί = v+l

m-1

^ Π

*x/)1 / 2. The second factor is a 22>s-continuous
μ

, ...,^ι)= Π ^j(^ ). The second factor is then
7=1

U/2

-jteX^)l \$dρ(q)gm(q)\
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The second factor can therefore be estimated by a π-tensor product of continuous
seminorms on yj<g£}. Moreover, it is an invariant Hubert seminorm, so
Proposition 3.7 implies that it is Z2 s-continuous. With these estimates the
functional T can be constructed in exactly the same way as in the proof of
Theorem 1 in [7]. We define T2m+ x -0 and T2m = Am#(/m

mim, where the constants λm

and km and the measures ρm are determined by induction over m, such that T is
positive and dominates the given X2 s-continuous seminorm || ||.

Finally, we show that condition (R) is necessary for the first part of the
theorem. This is based on the simple observation, that if T is an invariant, positive
functional in ĵ -, then for every fixed fee^ the sequence of scalar products

has properties (1) and (2) of Definitional (with fc' = k+ 1). Now for any basis of
Hubert seminorms || ||fc on ̂ J^l\ we may construct a Hubert seminorm || || on

ϊfl&s such t'ιat I I ̂ * x " h x g \ \ = l l f i f l l j f e , where h is some fixed function in ̂
occurring 2k~1 times in the product. If this seminorm can be dominated by an
invariant, positive functional T in j^ , then the scalar products defined above
form a basis.

4.6. Remark. No attempt has been made to obtain an optimal estimate for T from
above. The structure of the rc-point distributions Tn used in the construction is
particularly simple, but much smaller functionals (which nevertheless dominate a
given seminorm) can be defined at the cost of introducing more complicated
expressions, cf. Satz4.9 in [25]. A somewhat different method for constructing
positive functionals is used in [13]. It proceeds also by induction, but care is taken
to make the piece added at each step as small as possible. It seems, however, that
the incorporation of translation invariance and spectrum condition would also
make this construction fairly complicated.

5. The Linear Span of the Invariant States

We can now give a characterization of those linear functionals in &", which can be
split into translationally invariant, positive linear functionals fulfilling a spectrum
condition.

5.1. Theorem. Suppose SclRd satisfies condition (R\ and let T be a translationally
invariant linear functional on £f. The following are equivalent:

(i) There are positive, translationally invariant functionals TJεJSf/, /=!,... ,4,
such that T=(Tί- T2) 4- z(T3 - T4).

(ii) There is a translationally invariant, continuous Hilbert seminorm \\ \\ on £f,
vanishing on &s, such that |T(/* x_0)l ̂  11/11 1101! for edlfae?.

(nϊ) There is a continuous seminorm \\ || on y such that

If T(f x aag)h(a)da\ ^ \\f\\ \\g\\ sup \h(q)\
qeS

for all J9get?, fee5^.
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Proof. The implication (i)=>(ϋ) follows from the Cauchy-Schwarz inequality for the
positive functionals TJ. The equivalence of (ii) and (iii) follows from
Propositions 3.6 and 3.7. Note that (iii) implies that Te =£?/, so we may assume that
the seminorm || || vanishes on J*?s. Suppose T satisfies (ii). The same holds for its
hermitian and antihermitian part, so we can assume Te5^. By Theorem 4.5 there
is a positive, translationally invariant functional Te&jr such that
I TV* x/)| ̂  f (/* x/) for all/e^. Then T=(T + f)- f is the desired splitting of
7;so(ϋ)U(i).

5.2. Remarks. (1) Condition (iii) is easy to check, so this theorem leads to a much
larger class of invariant states than those constructed explicitly in the proof of
Theorem4.5. (2) Besides implying that the function a\-*T(f x aag] is the Fourier
transform of a bounded measure for fixed/,_#, condition (iii) says also that all these
measures are uniformly bounded for ||/||, ||0||:gl. Examples can be given of
functionals Te<9^ with the following properties: a) T is translationally invariant,
b) There exists a translationally invariant, continuous seminorm || || on ̂  such
that \T(f xg)\ ^ ||/|| ||̂ || for all /,#. (In particular, Tis the difference of two positive
functionals [7].) c) For all /,# the function a\-*T(f xαα#) is the Fourier transform
of a bounded measure, d) T is not of the form 7^ — T2 with translationally
invariant, positive functionals T).

5.3. Theorem. Suppose S satisfies condition (R).
(i) J^s is the intersection of all KerT with TeJl^^ + l. In other words: The

translationally invariant states in <?$ span a dense subspace of M^ = ̂ ^c\y(^.
(ii) <£s is the intersection of the left kernels {/|T(/* x/) = 0} of translationally

invariant states T in 5£$.

Proof, (i) The two forms of the assertion are equivalent by the bipolar theorem.
We show that ŝ = n{KerT}. The inclusion C is clear. Consider now a func-
tional T with Tπ = 0 for nφN>0, and TN(pί9...,pN) = δ(pί +...+pN)

N -L

Π δ(qk — (PN +1 - k + ... + PΛΓ)), where the qk are some fixed points in S. By
k = l

Proposition 2.6 (ii), Jίs is the intersection of the kernels of all such functionals (and
T=(l,0,...)). But such functiσnals obviously satisfy 5.1 (iii) and are thus decom-
posable into functionals in ^n5f + /. (ii) Obviously, there exist continuous,
invariant Hubert seminorms on 5f, which vanish exactly on <£s (cf. e.g. the proof of
Theorem 4.5). If T dominates such a seminorm, then J£s is equal to the left kernel
of T

5.4. Remark. Although condition (R) is necessary for Theorem 4.5, the last theorem
is a much weaker statement and is in fact true for quite arbitrary S. One way to
prove this is to modify Theorem 4.5 by considering only a subclass of invariant
Hubert seminorms and construct the dominating positive functionals in a similar
way as in Satz4.9 and 4.10 in [25]. Another method for constructing invariant
functionals is discussed in [16], where an analog of Theorem 5.3 for Poincare
invariant states with spectrum condition is proven.
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6. On Totally Symmetric Functional and Euclidean Invariant Measures

In Euclidean field theory one is interested in linear functionals on y which are
totally symmetric under permutations of the arguments (equivalently : functionals
on the totally symmetric tensor algebra over <f\ In this formalism, the following
question arises [26-28] : when has such a functional T a representation by a
positive, or more generally, complex measure dμ on the space of (real) tempered
distributions £f'R, in the sense that

WιX x Λ ) = j ω(f1)...ω(fn)dμ(ω)
y'R

for all /1? ...,/Meyi5 rceN? A further question is: when is there a representing
measure which is invariant under the natural action of the Euclidean group on
&"RΊ The first problem is well understood [26-28]. If invariance is required,
however, only partial answers are known. We now want to make a series of
remarks on this problem.

The group of Euclidean transformations of lRd operates in a natural way as a
group of automorphisms of y , and we call a functional on y Euclidean invariant
if it is invariant under this action. Recall furthermore that a totally symmetric
linear functional on y is called strongly positive, if it is positive on all positive
polynomials in the symmetric tensor algebra. [This is somewhat stronger than
simple positivity, i.e. T(/* x/)^0 for all/]

6.1. Proposition. A totally symmetric functional Tey has a representation by a
positive, Euclidean invariant measure, if and only if T is strongly positive and
Euclidean invariant on y.

Proof. T has a representation by a positive measure if and only if T is strongly
positive [26-28]. This measure is not necessarily unique. However, it follows from
positivity that the collection of all such measures for a given T is a bounded (even
compact) set in the weak topology defined by polynomially bounded cylinder
functions on &"R. One thus obtains an invariant measure by averaging over the
Euclidean group, which is amenable. See [26], Theorem 3. 8 for details.

6.2. Remark. The Schwinger functions of Euclidean quantum field theory do not
from the outset define a linear functional on y, but rather on a certain subspace
y^ cf. e.g. [17,26]. Now the following situation can in principle occur: An
invariant linear functional on ̂ 0 has an extension to a strongly positive functional
on y , but no extension which is both invariant and strongly positive. This is
somewhat puzzling at first sight, since one might . think that an averaging
procedure as in the last proposition would lead to an invariant extension.
However, in general T(αα/) will not be a bounded function of the translations a for
f^y, even if T is translationally invariant on 5 .̂ Positivity of T is of no help in
establishing boundedness unless every f^y can be dominated by a positive
element in 5 0̂. For the space y^ of interest in Euclidean field theory (functions
vanishing at coinciding arguments) this is not the case.

We now come to more general representations by Euclidean invariant complex
measures. In [17] it was shown that a totally symmetric functional Te^' has a
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representation by a complex measure if and only if there are continuous
seminorms || ||k, fc= 1,2, ..., on <?γ such that

for all /15 . . . , f n e £ f l 9 neN. Now suppose Tis Euclidean invariant on &*. One has in
any case a representation by a rotationally invariant measure, since the rotation
group is compact and one can integrate over it. For the translation group the
situation is more involved :

6.3. Proposition. In order that a totally symmetric translatίonally invariant function-
al Teέf" has a representation by a translationally invariant complex measure, it is
necessary that there exist seminorms \\ \\k on 5̂  such that || 1̂  is X2- continuous,
|| || k is Xinv-continuous for k = 2,3, . .., and

forallfl9...9fneyi9nεN.

Proof. By [30], Lemma 3.3, one can write every invariant measure as a linear
combination of positive invariant measures. Hence one needs only check the
condition for such measures dμ. But in that case we can take

l l / l l * = ί ί '-""2"-'--'-^1/2k

6.4. An Example. Consider the time-ordered functions of a free field of mass m. It is
obvious that an estimate of the type (*) is fulfilled, because the rc-point function is a
finite sum of products of 2-point functions. Hence there is a representation by a
complex measure. On the other hand there is no representation by a trans-
lationally invariant measure, because the Fourier transform of the 2-point
function, T2(p)= lim (p2 — m2 + iβ)~1, is not a measure in p (and therefore not

~ ε^° +

continuous in Z2). The same argument applies if the field is not free, as long as
there is a discrete mass appearing in the 2-point function.

This example shows that the existence of an invariant mean on a group is not
necessarily of any use for the construction of invariant functionals. What happens
in the example above is that the translates of a representing measure do not form
a bounded set.

It is not known if the condition in Proposition 6.3 is also sufficient. In any case,
it follows from Theorem 5.1 that T can be split into invariant, positive functionals
on y. But these functionals need not be symmetric nor strongly positive. In [16] it
is shown that the functionals which have a representation by an invariant measure
are at least dense in the space of all invariant totally symmetric functionals.

Appendix

In this appendix we prove Proposition 2.6.

Lemma. Let AcR" ana #ClRm be closed sets. Define J^ = {/e^(IRn)|/ = 0 on A}
and in the same way Λ^C^Ίir) and J^xβC^(IR"+m). Put ^A>B = closure of
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). Then
(a)
(b)
(c)

~ stands for a natural isomorphism between topological vector spaces.

Proof. By [29], p. 236, we have ^B-(J^®^(lRm))1n(^(IRn)(8)^)1. By [20],

7.4.3, we can write every Te^(]Rn + m}f = (^(lRn)®^(]Rm}y as T= £ t^ with
i= 1

ί G^IR")', S G^IR"1)'. Moreover, we can take the ίf linearily independent, so if
00

T£^A,B> tnen s feΛ^ for all z. Writing T= ]Γ ί'.φs with sj linearily independent

in J/β1, we get t'{eJ^^ and thus TE^^®^B, showing (a), (b) From the bipolar
theorem and the fact that y^R")®^(Rm)~^QR"+w), it suffices to compare JT^B

and Λ^ B. It is clear that Jf^ B C Λ^A & and from (a) we know that Te Λ^ B can be
written T= Σ^®5* with t^Jf^, ste^B. But such T are obviously in ^^XB. (c)
Since both sides are nuclear Frechet spaces and thus reflexive, it suffices to
compare the duals, so (c) follows from (a) by [29], p. 254.

Proof of Proposition 2. 6. From the definition of J ŝ it is clear that j£?s = {/|/0 = 0,

fne closure of £ ^®v®^s®^®μ}. This shows (i) by part (b) of the lemma.
v + μ = n — 1

In the same way one gets (ii), using Proposition 2.1 (iv). From this it is evident that
MS is *-invariant, so ̂  and thus JίscJls. Suppose Sn — S = {0} and 0 is an
isolated point of S. Assume for a moment that S is compact. We can then find a
function χe^ of compact support such that χ = 0 on S and χ = l on ( — S)\{0}.
If /„ vanishes on {0} xSx ... xS, we can write fn(qn, ...,qί) = χ(qn)fn(qn,...,qί)
+ (l~x(^fi))/n(fe •• 5ζίι) The first term is in JS?S and the second one in ^f|. For
non-compact S we apply this to functions in Jίs of compact support. Since these
are dense, we have in any case Jίs = closure (£?s + &£) = J(s. Part (iv) follows from
part (c) of the lemma. It should be noted, that the tensor decomposition is with
respect to the variables qk.
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