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A Mass Zero Cluster Expansion

Part 2. Convergence *

Paul G. Federbush
Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA

Abstract. Convergence is proven for the mass zero cluster expansion presented
in Part 1 of this paper. An indication is given of changes necessary to treat
the more difficult λ(Vφ)4 model and the lattice dipole gas.

9. Counting I

In these sections we will be concerned with enumerating the terms in the cluster
expansion in a way suitable for estimation. The complexities are largely notational,
and due to the need to consider a number of different cases, there are no real
difficulties. Then too, this is a new type of cluster expansion, and its "standard
tricks" have to be invented. We will try to give motivation for a number of the
avenues taken.

9. A. Representation I

We here present the representation (labelling) of a single term in the cluster ex-
pansion, basically as developed in Sect. 8. In later subsections we will find alternate
representations more useful for computation.

A term in the cluster expansion is determined by giving
1) A finite sequence

v ^ l > " ^ l / 5 V ^ 2 ' 2^' * ' *

with

in the order (8. A.I) of [2].

2) A mapping

(ίs, xs) -> (04(5), α2(s), α3(s), α4(s)). (9.A.2)

Clearly the elements in the sequence are just the (i, x) not mapped into N by
T, and (9.A.2) is just the mapping T. There are compatibility conditions we are
omitting so that not all terms we have specified are nonzero. The order of the four
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α's in (9.A.2) is so far arbitrary, so we introduce a requirement (later we will intro-
duce others).

R.I) αt(s) is an interior variable at the onset of step s.
We now begin to introduce some useful language. xs is "attached" to 0^(5) at

step s.α2(s),α3(s),α4(,s) are "tied" to xs at step s. If after step 5, {α2,α3,α4} are part of
a tadpole, we will say this tadpole is "attached" to α t (s) and "tied" to xs at this step.
If α.(s)(i = 2, 3, or 4) was an exterior variable at the onset of step 5, we say α.(s) was
"generated" at step s. Each α.(s) is "connected" to each α .(s) at step s.

The present cluster expansion has several features one should become aware
of, they are somewhat alien to one experienced in standard cluster expansions.
First we observe that if the mapping T, defined in Sect. 8.A, maps a complete
sequence of (z,x)(α sequence of length p3jv) into AT, then the corresponding term
vanishes if any later pairs (j9y) are not mapped into N. One has completely de-
coupled the interaction, and later differentiations yield zero. This will be used in
realizing Representation 1 from Representation 2. Secondly, we will later use the
fact that terms in which a tadpole is completely decoupled vanish. This follows
from the symmetry of the interaction under φ -> — φ.

The third and final feature we now call attention to, is also elementary, but
very easy to overlook, leading to great confusion. It is essential to our reconstruc-
tion of Representation 1 from Representation 2, given later. To emphasize it we
give it a catchy name :

Attachment Urgency. If α is an interior variable at the onset of step s, and step s
maps (z',x) into N, then if any later step (z",x),z" > i, involves an attachment to
α, the term vanishes.

9.B. Representation 2

We now present an alternate representation of a term in the cluster expansion.
It does not uniquely represent a single term as we later discuss. It is much closer
than Representation 1 to a form suitable for estimates.

A term in the cluster expansion is determined (not quite uniquely) by giving

1) A subset of the α's, {αfc}k6/

2) A mapping for each αfc in {α Jfc6/

where the set of sites on the right may be empty, allows repetitions, but is unorder-
ed.

3) For each x appearing in (9.B.1) a number d(x)9 the "degree" of x, of mappings

x -> (α2(x), α3(x), α4(x))r, r = 1, 2, . . ., d(x). (9.B.2)

The "degree" of x is exactly the total number of times, counting multiplicities,
that x appears as an image of the αfc's.

This is derived from Representation 1 in a natural way. The set of 1) is just the
collection of interior variables. The mapping (9.B.1) gives just the set of x's attached
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to ak through all the steps of the cluster expansion, counting repetitions. (9.B.2)
gives the set of α's tied to x at the rth time interpolation takes place at x.

The term is constructed iteratively from the information in 1), 2), 3). If the
interpolation step (ί,x) has just taken place (using the notation of Representation 1),
one seeks the first (j,y) such that

and y is one of the sites attached to an α that is an interior variable after step (i, x),
and with this attached y not yet used, Remember attachment urgency ! 2) enables
one to read off these attachments, one has checked off ones already used. The α's
tied to y at this step are read from 3), again one picks the lowest r value in (9.B.2)
whose mapping has not yet been used. Thus step (j,y) is determined. But careful —
there we have the non-uniqueness — there may have been several α's with an
attachment at y to choose from ! This leads to a non-uniqueness throughout the
process overestimated as Π(^M ) This is handled by the counting rule.

X

C.I) The sum in absolute value of all terms associated to a single specification
of Representation 2 is less than f j (d(x) !) times the supremum of the absolute value

X

of any single such term.
The Yl(dl) will be controlled similarly to the way the number divergence is

handled in usual cluster expansions.
The basic strategy in combinatoric estimates for cluster expansions is to use

repeatedly the simple inequality

If one tries straightforwardly to use (9.B.3) to control the sum over terms in the
cluster expansion as labelled by Representation 2), using in a simple way numerical
factors in the interaction term, one has some success. The mappings of 3) are
easily dominated by (9.B.3), as is the number, n(fe), of x's attached to any αk by 2).
However the sum over possible values for xJ(k) is not so easily dealt with. It is to
control these sums that tadpoles were introduced ! Representation 3 will be design-
ed to take advantage of the tadpole device to control x site sums. We will first need
some new ways of viewing the connectivity properties of terms, and more language.

We will call the r value (see Sect. 4 [2] of an α its "level" and thus αfl will be lower
level than α& if its r value is smaller.

9.C. Painting

We introduce the concept of "painting" the interpolation steps that take place in a
particular term in the cluster expansion. They will be "painted" in stages, painting
a chunk of steps each stage. At the same time one paints an interpolation step, say
step s, one paints the corresponding α's, α1(s), α2(s), α3(s), and α4(s). Some of them
may already be painted, repainting has no effect. At any stage of the painting, the
painted subset of α's is a union of connected components (via the interactions),
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each containing a distinguished variable. The order of painting will be the order
in which sums are changed into sups in (9.B.3). At a given stage of the painting, we
view as painted all elements (steps and α's) painted at the stage and at all previous
stages. Note that the order in which steps will be painted, to be specified later, will
not necessarily correspond to their ordering in (9.A.I).

9.D. Solid Attachments

At a given stage of the painting we define the idea that step s, connecting α1(s),
α2(s), α3(s), α4(s) be a ''solid attachment". (At this step some of the painted α's will be
interior, some exterior.) It is "solid" if the level of α1 is not greater than the level
of all of the three other variables; and αt(s) is painted, but not step s. It is also said to
be "solid" if at least two of the α's are painted with no conditions on the levels, but
step s is not yet painted.

9.E. Binding of Tadpoles

Again we are at a certain stage of the painting. We are given throughout this sub-
section a fixed set of painted α's, and proceed through the steps of the cluster
expansion, as given in Representation 1, say.

Two tadpoles "bind" at the step when αα is connected to αb if
1) aa and αb are each in tadpoles containing no painted elements at the onset

of the step.
2) Let ta be the largest tadpole set containing αα and containing no painted

elements, and tb be the largest tadpole set containing αfe and containing no painted
elements; then ta and tb are disjoint.

3) Let ta be attached to OCA and tb attached to αβ, then the level aA ̂  level aβ

and α^ is painted. (It is notation only to interchange the roles of a and b.) Then we
say ta and tb bind at this step, the "hit" step.

ta was attached to α^ at step sα, by tying it to xSa tb attached to αβ at step sb,
by xsb .sa is the "root step" for the binding, sb the "target step", xSa, the "root site for
binding", and x s b, the "target site for binding"

Fig. 1.

9.F. Seating of Tadpoles

Again throughout this entire subsection we are at a fixed stage in the painting.
A tadpole is "seated" at the step when αα is connected to αb if
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1) αfl Is painted;
2) αb is in a tadpole ίb, the largest tadpole containing α&, and no painted ele-

ments. tb is attached to αβ, at step sb.
3) level aa ̂  level αβ.

xsb is a "rooί site for seating". If the hit step was sh, the xsh is a "to site for seating".

Fig. 2

9.G. Taming of Tadpoles

The tadpole ία (with no painted elements), attached to painted α^ , at step SA , the
"root step for taming" at site XA , the "root site for taming" is tamed at step st , the
"taming step", if one of the α.(sf), say α^s,), is in ί f l, and another of the oφj, say
α2(5ί), satisfies level α2(5?)^ level α^.

9.H. Bridges

An ascending "ordered bridge" joining the sf interpolation step to the later ssp
interpolation step (SF > sf) is a sequence of sί

sI<si<s2...<sN<sF, (9.H.1)

and the corresponding α's such that

aί(si+1) = a2(sί) (9.H.2)

αi(SF) = α2(5Jv)>

and such that each of these α2's is generated at the corresponding interpolation
step. Variables 2, 3, and 4 may have to be interchanged (relabelled) to achieve an
ordered bridge. Descending "ordered bridges" are defined analogously when
5F < Sj . A "bridge" is obtained from an ordered bridge by keeping only the informa-
tion in the sets

(xs^(s)^2(sl^(sloi4(s)) (9.H.3)

for s = s J 5sF,s., i = 1, ..., N.

9.1. Order of Painting

The order in which the elements (α's and steps) are painted corresponding to a
given term in the cluster expansion is, naturally enough, defined inductively. One
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first paints the distinguished variables. Now suppose one knows the order of
painting to some stage. Run through the steps in the interpolation procedure with
all the steps and α's painted for which the order of painting is now known. Stop
the first time one reaches, at an unpainted step, either

1) a solid attachment
or

2) a hit step for binding
or

3) a hit step for seating
or

4) a taming step.
In the first case, paint the elements (α's and the step) of the solid attachment

at the next stage. In the second case, first build an ascending bridge from the root
step to the hit step and then a descending bridge from the hit step to the target
step (we view this as a single bridge). In this case one paints all the elements of
the bridge at the next stage. In the third case, build a descending bridge from the
hit step to the root step. One paints all the elements of the bridge at the next stage.
In the last case, 4), build an ascending bridge from the root step to the taming
step, and paint all elements of the bridge at the next stage.

If the same step may realize more than one process (a seating and a taming,
or two different binding processes, for example) we arbitrarily choose one of them
to determine the painting at this stage.

One should convince oneself that this process does paint all the interpolation
steps of the given term in the cluster expansion, as one proceeds through all the
stages in the painting process.

10. Counting II and Estimating

Section 9 was mainly an exercise in learning a new language. In this section we will
present Representation 3, and use it to estimate and control the sum over terms
in the cluster expansion.

10.A Representation 3

We now present a new description of our given term in the cluster-expansion.
Basically we construct a term inductively, introducing interpolation steps (and
variables α) in a way related to the process of painting in the last section. In the
painting process, steps were introduced in chunks, either elements of a bridge,
or a solid attachment. In the present representation steps and α's will be introduced
as members of the same chunks, but the chunks will not necessarily be introduced
in the order in which they were painted.

We need to present one new term, "pinning", which will be analogous to attach-
ing, but not necessarily the same. We will use the term in the following cases

1) In a solid attachment at step s in which only α^s) is painted, we say xs is
"pinned" to oc1(s).

2) In a solid attachment at step s in which at least two of the α's involved are
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painted, we will "pin" xs to the painted α of lowest level (or one of the painted α's
of lowest level if there is more than one.)

3) In a binding process, we say the root site for binding is "pinned" to the same α
to which it is attached.

4) In a seating process, using the language of Sect. 9.F, xSh is "pinned" to
α«

5) In a taming process, the root site for taming is "pinned" to the α to which it is
attached.

Representation 3 constructs the cluster expansion term inductively, starting
at step 1 with the distinguished variables. It presents inductively

1) For each α introduced, the x's pinned to this α, counting repetitions, and
taken unordered,

2) For any x pinned to any α, the type of pinning taking place at the pinning
step; i.e. one of 1) through 5) above, and the four α's connected in a solid attach-
ment, or the bridge in the other cases.

It has been a long road but this is our final description of the cluster expansion
term. Counting estimates are fairly trivial in this representation. At the end of the
inductive process one has a collection of sets each containing an x, and 4 α's.
Each is thus of the form

(A solid attachment clearly specifies this information, a bridge contains a finite
number of such sets making up the bridge.) A specification of which of>ί(xί)xί is
attached to, and an ordering of the like x's in 1) of Representation 3, would clearly
give us Representation 2! But there are at most 4 |Γ| f j (d(x)\) possibilities. Finally

then, a Representation 3 presentation is associated to at most
JC

Representation 2 presentations, and 4 |Γ| fl(d(x) )2 Representation 1 presentations.
Λ;

(Many different Representation 3 presentations may be associated to the same
Representation 1 term, and many Representation 3 presentations we will count
correspond to no term — we do not impose all compatibility conditions — thus
over counting.)

10. B Numerical Factors I.

When we look at (Aφ(x))4, breaking this up into a sum over monomials in the
αfc, we clearly have associated to the monomial

a numerical factor

λ Yl IA ψ. j(x). (10.B.2)

It is natural to define

/(α,,*) = λ^ (A -fL^Λx). (10.B.3)
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We split / into factors

(yβyyl-i* (10.B.4)

for v a positive integer to be picked, and ε a small number.
We state some estimates each under the conditions (of course using the notation

of [2] ) : if M is large enough, M ̂  M0 (ε), and λ is small enough, 0 ̂  λ < λ0 (p, M, ε) :

Estimate 10.B.L Σ/ε(α,x) ̂  1. (10.B.5)
α

Estimate 10.B.2. f[ /ε(otfc(0,x) ̂  -\, (10.B.6)
i=l H

where ak(i)^ak(j),i^j.

Estimate 10.B.3. If

w^, (10.B.7)

then

εvM^L~315, (10.B.8)

if level α ̂  level α (where Lα is the edge length of the cube to which α is associated,
as in [2]).

Estimate 10. B A. If

«gl,
then

Σί/1 '")(«,*) ̂ «3/4 (10.B.9)
Λ;

The choice of the powers in (10.B.7), (10.B.8), (10.B.9), (̂ , \, J) is subject to large
possible variation. If one were working with models Λ(|zl|α(/>)4 instead of λ(Aφ)4',
other choices would be made. These largely arbitrary choices follow through in a
number of places.
These follow from Estimates 7.1 and 7.2 of [2].

10. C. The Counting Theorem

Associated to a term in the cluster expansion we will have a numerical factor

s ί=l

We will factor N into

N = Ni N2, (10.C.2)

where we will use N2 to control the number divergence in Sect. 11 and Nί to
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control the counting process in this section. We proceed to define Nί . There is an
integer vί < v to be fixed. Again we must consider several cases.

1) A solid attachment. Let the pinning take place onto α t and α2 have the
highest level of α2,α3,α4. Then the contribution of this interaction term to Nί is

Here/, is shorthand for /(α.,x).
2) Each other situation involves the contribution of a bridge. Let the bridge

be

(xί,α1(0»α2(0ϊ

α3(0>α4(0) i = 1, •••>"> (10.C.4)

with

α 1 ( i+l ) = α2(i) (10.C.5)

and be pinned onto α1 (1). Then the contribution to Nί is

Π Π//r /1

1-"ε

 7 4 (/u+iΛ,)1-" (io.c.6)

Here /. . is short for f(&j(i), xt). We assume α2(rc) has the highest level of α2(rc),
α3(n), α4(n). LM = sup Lα2(i).

l ^ i ^ π - l

The factors (fι i+ιf2,i)
ί~vε and ( fι~υε~fj/4 ) control sums over sites (by

\ ^i /
Estimates 10.B.3 and 10.B.4) in the Sums into Sups process. L^5 is "available" by
Estimate 10.B.3, as are the /'s in numerical factors from the interaction. The
L\14 will be reabsorbed in the estimates of Sect. 1 l.C. For this purpose it is essential
that the bridge is constructed (as it must be) with level α t(l) ̂  level α2(rc).

We will present now a theorem that will include as a corollary the Main
Theorem as stated at the end of [2]. It has two parts, one part proved in this section,
one part in the next section. Now our double theorem

Counting and Number Divergence Theorem There is an M0 > 0, a vί and
υ,Q <υί<v, and an ε > 0, (t ε ̂  1/12), such that for any fixed p, and any fixed c
(see Main Theorem), ίfM ^ M0 , and λ ̂  λQ(M, c, p) then

if s/ = ofi

ί...^t (W.C.I)

ΣI^^I^'^^y Sup^mΓK^ + m,)!)1/2!!^!)-1 (10.C.8)
T T i i

and

SupN2(T)Π((^ + "OO^ΓKP; O'1 ^ c(/.). (10.C.9)
T i i

(10.C.8) is the result of this section, and (10.C.9) the result of the next section.
N2(T) is the N2 factor of (10.C.2) for the given term T. p. is the number of x's pinned
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to α.. mi is the number of times α. is differentiated down in the interpolation process,
f{ = 0 if ί > t. (The labelling of the α. is special to the theorem). We will not detail
the form of the function c(^).

10. D. Sums into Sups

(10.C.8) is shown by iteratively converting sums into sups using (9.B.3), by now
a standard procedure in cluster expansion estimates. It is tedious but rather
trivial in our case. Representation 3 is most suitable for our purposes. We restrict
ourselves to several examples.

Example 1. Given α t , we wish to sum over sites x for the pinning of a solid attach-
ment on α, and possible α2 , α3 , α4. We look at

where G contains all later dependences on this process. We use (9.B.3) to find
(10.D.1) satisfies

KIO.D.DI g (Σ Σ Σ Σ(/I -"Mi )/2/3

ε/
\ X Ct2 <X3 014 \ 1 /

-!_„£ fε rε rε
J I J 2 -J 3 J 4

(10.D.2)

x,α2,α3,α4 \ •' 1 J 2 J ?> J 4-

The sums are now controlled by Estimates 10.B.1 and 10.B.4. The numerical
factors needed in the sup are taken from N^.

Example 2. We first note that if d interpolations take place at a site x, then at
least d/2 different α's are differentiated down by interpolations at x. (The tadpole
process allows the number to be less by ~ 50% from the usual number d+ 1.)
Thus using Estimate 10.B.2

-1. (10.D.3)

This can be used to control the (J~[d(x) !)2 factor that arises from the transition from
Representation 3 to Representation 1 presentations—among other places. The
/ε factors again can be borrowed from Nί (or N2 for uses in controlling number
divergences).

Example 3. If n x's are pinned to α there are 5" different types of actions that may
take place at the sites.

Example 4. Let us sum over the number of x's,«, that are pinned to an α. And
let

/ ε(α,x)<ε1 9 all α,x. (10.D.4)

Then

Σ G(n) (10.D.5)
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is estimated as

-ov,= ι // - x;=ι , (10D6)

Here/j is a small factor borrowed at the/h pinning from N^.

Example 5. In summing over the positions of the pt x's pinned to α., as in Example
I, one will naturally count any given configuration pi \ times, as the order of selecting
each x. and the objects pinned to it is irrelevant to the Representation 1 presenta-
tions associated to the Representation 3 presentation.

II. The Number Divergence

The "number divergence" is the numerical factor that arises in integrating a
polynomial (of high degree) over the measure, in our case integrating over α, a
variable occurring to the *?th power in the distinguished variables and differentiated
down m times, one gets

JdαέΓα2/2 α|^+m, (11.1)

which we estimate as

(11.2)
V L J

One must control the factor

π(^p)! (n 3)
This section deals with dominating this factor by

i Pr

11.A Numerical Factors II

We consider a bridge as defined by equations (10.C.4) and (10.C.5). Denoting
this bridge as B we associate to B a numerical factor F^(α1(l),α2(w)) (suppressing
the dependence on other variables).

F^α^l), α2(rc)) =fε(ΰί, Xι)'fε(&2>xι)'fε(U2> xτ)'

where here
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α. =αι(i) i = 2,...,n, (1
δn+ι=α2(n)

(See (10.C.6) for definition of LM) and we use

level α. < level ΰn+ί i = 2, . . . , n

level α t ^ level αn + 1 (11.A.3)

(one or the other end of a bridge has the highest level). We use the conditions
listed before Estimate 10.B.1, in stating:

Bridge Estimate. LetFε(αα,αb) be the sup of -Fβ(αα,α&) over all bridges and x.
connecting αfl and α f c > for all n, but of course satisfying (11.A.2) and (11.A.3). Then

where La , Lb are the edge sizes of αα , αft.

This estimate is a natural geometric reflection of the scaling properties of the
/(α, x) under level changes in the α. The heart of the result is the statement that

where Fε is calculated as Fε, except that the last two factors L^ 3/5 •/ 1 " vε are omitted
from (1 I.A.I). Notice that if Max(Lm, Lα) were always greater than (Lb)

1/2, (1 1.A.5)
would imply (11.A.4)! The content of (11.A.5) can be appreciated by viewing
(/(α, x) as approximately (for L the edge size of α)

ε/ if x is in the cube
associated to α (11.A.6)

0 otherwise

in which putative situation, Fε(αα, α6) would be dominated by

where Δa and Δb are the cubes associated to αα and α6. The Bridge Estimate is
proven in Appendix A.

1LB A Factorial Estimate

We now state a most useful estimate for controlling factorial factors:

Factorial Estimate ll.B. Let s. ̂  0, g. ̂  Ό, and Σβi = 1 (i ranging over any finite
indexing set) then

Proq/. The inequality is equivalent to

σ l n σ + ΣXlnfoA-1) (H.B.2)

being less than or equal to zero, where

σ = £s, (11.B.3)
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We use Lagrange multipliers to find the value of (11.B.2) at its stationary point,
keeping σ fixed.

In σ + In g. + λ = In s. (1 1.B.4)

Here λ is the Lagrange multiplier and b = eλ. Substituting these values for the s.
into (11.B.2) we find

where we have used

Thus b ̂  1 suffices to ensure (11.B.2) ̂  0 at the (only) stationary point. This is
exactly Σgί ^ 1. If we now consider the values of (11.B.2) along its boundary, i.e.
some of the s. are zero, we find our procedure for a smaller index set ensures that
(11.B.2) ̂  0 also on its boundary. This proves Estimate ll.B. This estimate also
follows from the arithmetic mean geometric mean inequality.

ll.C The Final Reckoning

We view occurrences of a given α, as a distinguished variable fromj/, or as diffe-
rentiated down; there again are different cases.

1) Powers of α arising from stf have no numerical factors associated with them,
say these contribute a power

of. (1 I.C.I)

2) Powers of α arising from bridging elements of a bridge (an 0 (̂1), i = 2, . . ., n
or α2(z), i = 1, ..., n - 1 in (10.C.4)). There are at most two such α's. These contri-
bute a power

associated to numerical factors

ε{ (11.C.3)

(see (10.D.4)).
3) All powers of α not included in 1), 2) or 4) below, say si from x.. These con-

tribute a power

and may be associated to a numerical factor from N2

( ( 1 \Sί/2

Π ((/1"M(«^ί))Sί - *ι
i V \ 5 i/

4) Powers of α arising as α t(l) or α2(n) in (10.C.4) or α t or α2 in (10.C.3). These
each may be associated to an α.(α:(l) to itself, α2(n) to α t(l), α t to itself, α2 to αχ),
ί. to α.. We get a power

αΣίί (11.C.6)
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and associated numerical factors (for v large enough)

where

for λ small enough (primarily the Bridge Inequality).
In this paragraph we derive the factors F(αp α) by detailing numerical factors

assigned to the four sources of α's in 4), α^l), a2(n\ α19 α2 (using the generic labell-
ing). The factors are given in the table

α numerical factor

«ι(D . «ι
α β

Here L t and Lr are the edge sizes of α t(l) and ΛI respectively. It is clear from
(10.C.3) and (10.C.6) that the numerical factors in the table are "available" in N2 .
From the table we see we may choose

= Max K^, Sup (εJ\a

(11.C.9)

where L is the edge size of a.A.
Using (for λ small enough)

and the Factorial Estimate ll.B, the square of the overall estimate we get for the
integral over α is

^ + /0' ffir< + & f+/» πi C in2 ' ( }ox +;&,)! 2

where s2 can be made arbitrarily small as λ -» 0.
We observe finally that

(iι.c.12)
where

2 / j γ,/2
The — in (11.C.5) arise as in Example 2 of 10.D. The - in (11.C.7)
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arise from the ( — 1! in (11.4). It is almost miraculous how cleverly the numerical
\PiJ

factors contrive to satisfy our requirements.

12. Notes on Extension to λ(Vφ)4 and Dipole Gas

There are two essential difficulties in extending the present program to the more
complicated λ(Vφ)4 and dipole gas models. We will give a brief discussion of these
difficulties, and indicate the alterations in the expansion necessary to treat them.
Details are left to a later paper. Models such as the classical Heisenberg model
would require even further ideas, and we have not considered them at all.

The first problem is to control the number divergence for an αfc corresponding
to a large cube. When there are many interior variable α's close to αk, in particular
α's corresponding to small cubes inside or close to the big cube, the controlling
factors (not as effective as those in Sect. 11) become insufficient. At some stage
one adds all the α's close enough to αk into the set of interior variables. This is an
old idea going back to an unpublished preprint of T. Spencer (see [3] also). One
key to controlling estimates resulting from this process is the inequality of [1].

The second problem is that our tadpole procedure is not sufficient to control
the numerical factors leading to convergence. It must be generalized in a straight-
forward way to tadpoles of even total weight. In this new situation, expectations
of tadpoles—isolated in the interpolation procedure—may be nonzero. One
uses the fact that these expectations are nearly independent of the position of the
tadpole, so when the position is summed over one is roughly doing a numerical
integral of the dependence of numerical factors on the position. This in useful
places contributes small factors arising from the estimate

Here we assume Lkι > Lk2 and d is the distance of the cube corresponding to k2

from d(rkί , ykι). (See Sect. 7 and in particular Estimate 7.2.)

Appendix A — The Bridge Estimate

Extensions of the Bridge Estimate may be needed in later work, the form of the
result may be modified in a number of directions. With the observations of
Sect. 1 LA, the proof is straightforward. It follows, with a sequence of small observa-
tions, from the following simple estimate.

Estimate A. Let 0 ̂  δ ̂  1, and t > 0, then

(A.1)
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Proof of Estimate A. We first maximize ——- by /(x.),

1 x < 1
1/v ί Y > 11/X. Λ f ^> 1

and seek the sup of π((5/(χ.)) under the same restrictions as the sup in (A.I).
We split the set of x. that achieve this Sup into two sets, {xf ^ 1} and {x. > 1}.

Let y be the sum of the x. in the first set. Then the number of such x. is ^ y, and
each such x. contributes a factor δ to the product; so a total factor of ̂  δy arises
from these x.'s. Let there be n2 x.'s in the second set, with sum 2. Using Lagrange

multipliers we may see the sup of f^[( — j would be achieved with all x. equal,
\xi)
\1Ϊ2

for fixed n2 and z. Looking at / , ~ N \ we see the sup of this expression in the

range 1 ̂  n2 ^ z is obtained either at n2 = 1 or n2 = z, letting n2 be nonintegral.
(Notice its logarithm has second derivative positive in the variable n2.) Thus

(A.2)

Noting that either z or y is ^ x/2, and z ̂  1, the Estimate A easily follows.

Step L For any ε > 0, t > 0, <5 > 0 there is an M0 such that for M ̂  M0 and
A g I0(M, p) one has

— (A.3)

+ 1
\ ^ J

and
£ 1

?, (A.4)
ι*-*~ +1-.

where xα is the center of cube α, and β' > 0.

Step 2. We pick £>3and then (11.A.5) follows from Step 1 and Estimate A.
Thus if Max (Lβ, LM) were always greater than Ll

b

/2 the Bridge Estimate would be
proven. The situation here is essentially as in the simplified picture given at the
end of Sect. 11.A.

Step 3. For those bridges with Max(Lα,LM) < Lj/2, we use the factor

(/1-!;ε(αn+1,xn))2 to replace the factor —^ in (11.A. 5). (We do not seek help from

factors of LM or Lfl as we do then Max(Lα, LM) ̂  Lj/2.)/, as given by (10.B.3), is
estimated in (7.4). lϊ there were only the first term on the right side of (7.4), we could
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deduce the Bridge Estimate directly from (11.A. 5), in all cases (and without help

from La and LM factors). In the actual situation we must deal with the factor ̂  in

the last term of (7.4). For those xn with d > L]/2, this factor easily yields the Bridge
Estimate from (11.A.5). (It is sufficient to prove the Bridge Estimate for the three
classes of bridges separately: Max(Lα, LM) ̂  Lj/2 Max(La, LM) < Lj/2, d ̂  Lj/2

Max(Lα, LM) < L{/2, d < Lj/2.) For the final case we note from Estimate A, Step 1,
and the definition of d, that αα tries to live within distance Lj/2 from 3(rb, yb) (see
above equation (7.2)). This leads to control of the sum in (11.A.4).

Appendix B—Two Point Fall Off Estimate

In this appendix we prove the Clustering Theorem of Sect. 8.F. This is mainly a
book-keeping exercise we perform in a sequence of steps.

Step L Choice of parameters. We need two more "small" factors fε than in the
proof of the Main Theorem. Therefore we reconsider the proof of the paper with
"large" factors /1 ~ ( v + 2 ) ε and "small" factors fε. This will put more stringent condi-
tions on M, p, λ, ε. We let M, p, ε be values of these parameters for which the
Counting and Number Divergence Theorem holds for λ sufficiently small—with
v + 2 instead of v in the definition of the "large" factors—and which in addition

satisfy

2 f( l-(t? + 2)ε)^y. (B.I)

(i; is a fixed integer, y is given.) (B.I) and considerations in Sect. 10.B require ε
be small enough. M and p then may be chosen, sufficiently large (to fulfill condi-
tions in Sect. 10.B and Appendix A). The values of λ for which the Main Theorem
holds may have to be further restricted λ may have to be smaller, rg λy, for the
Clustering Theorem.)

Step 2. x — y Bridges. In Eq. (8.F.3) to a k = k' term, we associate a degenerate
(empty) x — y bridge, and a numerical factor

/ε(αk,x)/ε(αfe,y). (B.2)

/is defined generalizing (10.B.3)

/ 1 \
(B-3)

-A

Corresponding to the fe, k' term in (8.F.3), we define an x — y bridge as a se-
quence of sets (associated to interpolation steps)

(xs, αt(s), α2(s), α3(s), α4(s)) (B.4)

S ~ $ι 5 ^2 ' ' ' *' ^n>

for some n ̂  1, as in Sect. 9.H. For a suitable ordering of the α's, we want

i =
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The associated numerical factor is

ΓK > *) Π (/ W4 x,)/'̂ ), x^/X , y). (B.6)
i = l

For an x - y bridge, B, degenerate or not, we define Lxy(B) by

vL^> U Ms«) UM

3. Idea of proof. For a given term in cluster expansion for (8.F.3), let L0

be the smallest value of Lxy(B) for x — y bridges associated to this term. By Esti-
mate A9 the numerical factor (B.2) or (B.6) associated to the bridge with Lxy = L0

is ^

>~cι\χ-y\lLo

We are going to find an additional numerical factor

jy (B 9)

^o

Since y < 3 ̂  ί, the product of (B.8) and (B.9) will be bounded by
c

μ^Tp*
Both factors (B.8) and (B.9) will be "available", otherwise unused, factors in our
estimate of the cluster expansion term (for λ small enough). This yields the theorem.
The factor (B.8) clearly is present, as we've kept extra factors of/ε in Step 1. Our
entire burden is to find the factor (B.9).

Step 4. Order of painting. Unfortunately, we must modify the order of painting
as given in Sect. 9.1. We start the painting process as in Sect. 9.1. We paint chunk
by chunk. At a given stage of the painting, the painted elements form either a single
connected set (in the obvious sense); or two connected sets, each containing either
αfc or αk, . We deviate from the order of painting in Sect. 9.1, if at some stage before
the painted elements form a single connected set, one of the connected painted
subsets, say the one containing αk (connected to x), contains some α with Lα ̂  L0 .
Having used one of the new factors/ε in (B.2) and (B.6) we use the other new small
factor to enable us to take a sup over cluster expansion terms with fixed value of L0 .

We will paint chunks of elements that connect to the subset connected to y
until either one of the painted elements in the subset connected to y has edge
length ^ L0 or until the painted elements form a single connected set. Thereafter
the painting proceeds as it would in 9.1 — the inductive construction is as in 9.1,
the sets themselves may be different. We must explain the painting process in the
intermediate region where we do not follow the construction of 9.1.

In this region, we suppose we know the painted elements and interaction steps
to some stage. We then, as in 9.1, run through the steps in the interpolation proce-
dure with all steps and α's painted for which the order of painting is now known.
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We stop the first time one reaches at an unpainted step either (compare these
directions to those in 9.1):

1) a solid attachment, attached to one of the painted elements connected to y.
or

2) a hit step for binding, with both tadpoles attached to painted elements
connected to y
or

3) a hit step for seating, with both αα and αβ (see Sect. 9.F) painted elements
connected to y

4) a taming step, with the tadpole attached to one of the painted elements
connected to y
or

5) a step in which an element connected to y is connected to an element connect-
ed to x, painted or not.
For alternatives 1) through 4) the painting is as in 9.1.

In situation 5), there are two possibilities. (In Example 3 of Sect. 10.D there
are now 7 actions not 5, this at most requires a smaller value of A.) With the interac-
tion steps up to this point we build either a bridge associated to a tamed tadpole
(rearranging the order of steps performed so far, a tadpole taming may be cons-
tructed) or a bridge associated to binding of tadpoles, one connected to x, the
other connected to y (again by rearranging the order of steps such a binding may
be realized). In the second case the bridging elements may be required to be of
edge size ^ L0, and one of the tadpoles, attached to a painted element of edge
length ^ L0 connected to x. Rearranging order of steps does not effect our counting
process. The restrictions on edge lengths in the second case follow from the require-
ment that L0 be the minimum of Lxy(B\ and our construction.

Step 5. Extraction of L~y. We will find a numerical factor g L~γ/2 associated to
the painted elements connected to each of x and y, at the stage when the painted
elements connected to each of x and y first include an element of edge size ^ L0.
We consider the y contribution, the x contribution is entirely similar. At the
initial step we borrow from (8.F.3)/1~(υ+2)ε(αfc,,3;). If we assume that previous
to the painting of a given chunk (connected to y) the largest edge size cube connect-
ed to y is L t and after the painting of the chunk the largest is L2, we will find a

/L V/ 2

factor g I — j . This will complete the proof. Referring to Sect. ll.C, the
\L2/

element αM, with edge length L2, that we are considering, cannot be a bridging
element. If it arises as an α included in the 3) case of Sect. ll.C, see Eq. (11.C.5),
we extract a factor/1"(v+2)ε(αM, x.). If αM arises as a 4) case of Sect. ll.C (including
the two new types of bridges developed in Step 4), we borrow a factor of
/1-(y+2>ε(άn+1,xJLf from (ll.A.l) or the analogous/1~(t;+2)ε(α2,xn)Ly

1

/2

from the table in ll.C. We have thus found numerical factors giving us (B.9),
we must know removing these numerical factors does not destroy numerical
estimates of Sect. 11. But the result of our extractions adds to a number of α's one
or two additional powers of α with no numerical factors associated to them—case
1) of ll.C, in this situation each associated to small factors,/6—which does not
upset the estimates of 1 l.C.
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