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Surface Integrals and Monopole Charges in Non-Abelian
Gauge Theories*

Clifford Henry Taubesf
Lyman Laboratory, Harvard University, Cambridge, MA 02138, USA

Abstract. We derive a formula which gives all the magnetic charges (topological
invariants) of a monopole in the adjoint representation of a non-abelian gauge
theory in terms of surface integrals at infinity.

1. Introduction

It has been known for some time that there exist topological invariants which are
associated with static Yang-Mills-Higgs field configurations on Minkowski
space [1-3]. In particular, suppose that the gauge group G is a simple, compact
Lie group. Further, assume that the Higgs field is in the adjoint representation of
the Lie algebra ^ of G. Every field configuration satisfying certain asymptotic
conditions (c.f. Theorem 2.1) is known to define a gauge invariant set of integers
{wα}£= 1X^rank G [3]. These integers are the aforementioned topological in-
variants. It is the purpose of this paper to prove that the integers [naYa=ί are
completely specified by surface integrals at |x| = oo. For example, if G = SU(n)
and the representation of ̂  is the defining one, then

Qk= lim^ J tτ(ΦkFAl /ce{l,...y} (1.1)
R->ao^π\x\=R

completely determine the integers {naYa=ί. Here Φ is the Higgs field; the Lie
algebra-valued two form FA is the curvature of the Yang-Mills connection A;
and x = (x1, x2, x3) are cartesian coordinates on (R3. For example, if G = SU(2)
then only Qi is needed. In this case the right hand side of (1.1) computes the winding
number of the map

φ = φ/|φ| :S2

R = (xeR 3: |x | - R} -* S2 = {σe^(2):|σ| - 1} [1]

(see also [4], Proposition II.3.7.)
We remark that the right hand side of (1.1) is gauge invariant so it is not sur-

prising that there should be some connection between the numbers {QkYa = 1 and the
integer invariants {nkYk=ί. This relationship is stated as Theorems 2.4-5. The
proofs are contained in Sect. 3-5.
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2. The Topological Invariants

We begin by establishing our notation. For convenience, we realize G as an embed-
ded submanifold in the vector space M (m C or 1R) of m x m matrices for some m.
Let tr( ) denote a normalized trace on M. For σE Ml ,

If A is a connection on the principal G bundle [R3 x G then the curvature of A is
the ̂  valued 2-form FA given by the well-known formula

FA = dA + A*A. (2.1)

If Φ is a section of !R3 x ^ then A defines a co variant derivative by

DAΦ = (V^\dxl = dΦ+ [A Φ]. (2.2)

We identify a gauge transformation with a map g : 1R3 -> G and (/4, Φ) transforms
under the action of g in the usual way.

Let x denote a point on S2 and suppose that

£(x)=limΦ(fx) (2.3)
ί-*oo

defines a map of S2 into ̂ . Let A = Φ(l, 0, 0). Then define the Lie subgroup J c G as
l=h}. (2.4)

Theorem 2.1. (Theorem II 3.1 of [4].) Let A be a Cl connection on R3 x G and
ΦαC1 section of [R3 x &. Assume that

lim s u p ( l - | Φ | ) = 0 (2.5a)
R-^oo |x|=JR

and that for some δ > 0,

(2.5b)

(a) There exists a gauge such that Φ(x) is a continuous map from S2 into #.
(b) The configuration 04, Φ) defines a homotopy class [(A, Φ)]e772(G/J).

(c.f. Proposition 2.2).
(c) The class [(A. Φ)] is invariant under C1 gauge transformations.
(d) Suppose that (α, φ) is respectively a C1 ^-valued 1-form and a C1 section of

[R3 x ^ which satisfy

lim sup Φ| = 0 = lim sup x| |α|. (2.6)
R-+OO \x\=R #->oo | j c | = Λ

Then

\_(A + a, Φ -f </>)] = \_(A9 Φ)]. Π

In order to be more specific, we note that the map

p\G/J -+ M = {ghg~ί:g£G} c:^ (2.7)

is a diffeomorphism (c.f. [5], Theorem 2.9.4).
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Proposition 2.2. The map Φ(x) takes values in M. Further, the map

h(x) = p-\$(x)):S2 -> G/J (2.8)

is at least C°. Π

By definition, the class \_(A9 Φ)] = [K].
We remark that Proposition 2.2 is a restatement of Lemmas 11.4.3,4 of [4].

However, there are some errata in the statement and proof of Lemma II.4.3 so we
prove Proposition 2.2 in full in Sect. 4, c.f. Lemma 4.3.

The homotopy class \_(A,Φ)~]eΠ2(G/J) is the topological invariant alluded
to in the introduction. In order to categorize [(4, Φ)] we remark that the lie algebra
/ of J is necessarily the direct sum of a commuting algebra 4 of dimension t and a
semi-simple lie algebra / of rank 5 = rank G - /.

Theorem 2.3. The group Π2(G/J) is isomorphic to Ί-e. D

Thus, if (A, Φ) satisfies (2.5a, b), the topological invariant [_(A, Φ)] is completely
determined by a set of integers {naYa= 1.

Theorem 2.4. Let G = SU(n) c= M(n, C). Suppose that (A, Φ) satisfies the conditions
of Theorem 2.1 and in addition that FA and DA Φ are square integrable. There exist
constants bk

a with α,k= I,...,/ which depend only on AdGh such that

na = Σ V. lim ί tr (Φ*F A\ a=l,...,t (2.9)
k = l R-+OO | jc |=.R

#r£ integers. Further, the set {naYa= ί specify [(A, Φ)] in Π2(G/J).

Theorem 2.5. Let G = Sp(n) c M(2n, C) or G - S0(2rc) c= M(2n, R) or G -
S0(2n + 1) c M (2n -I- 1, R). Suppose that (A, Φ) satisfies the conditions of Theorem
2.1 and in addition that FA and DAΦ are square integrable. There exist constants
bk

a\a,k= 1,...,έ which depend only on AdGh such that

ϋm ί trίΦ"-^^) (2.10)
.R^oo \x\=R

is an integer for each αe{l,. . . ,/}. Further, the set {naYa=1 specifies [_(A, Φ)]
inΠ2(G/J). ' " D

There is a general formula to compute the integers {«α}£=1 which is valid for
any Lie group and all faithful representations. This is the content of Proposition 4.5.

The proofs of Theorems 2.3 — 5 comprise the next three sections. In Sect. 3 we
review the relevant topology of G/J and prove Theorem 2.3. In Sect. 4, it is proved
that the integrands in (2.9,10) are pull-backs of a linear combination of generators
of H2

DR (H*R is the DeRham cohomology complex). This fact and Hurewicz
isomorphism [6] allow us to prove the general result expressed in Proposition 4.5.
Theorems 2.4-2.5 follow from Proposition 4.5 and properties of the matrix repre-
sentation of the classical groups. This is explained in Sect. 5.

As a parenthetical remark, we point out that in theories with no Hίggs self
interactions, finite energy solutions to the classical equations of motion exist for all
simple groups G, subgroups J and integers {naYa= 1 if all the integers are the same
sign (with respect to a specific choice of generators of Π2(G/J) [4, 7].
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3. Algebraic Topology on G\ J

This section is a review of the algebraic topology behind the computation of
Π2(G/J). The important result is that the second homotopy group is isomorphic
to the second cohomology group of the universal covering of G/J. The implications
of this isomorphism are summarized in Proposition 3.2, and the second cohomo-
logy group of the universal cover is described in Proposition 3.3.

Let G be the universal covering space of G. There is a natural covering pro-
jection

G-*G. (3.1)

Further, identifying G/J with M defined by (2.7) we have

G/J = {ghg-t .geG} = {ghg^ geG}. (3.2)

Define the group J by replacing G by G in equation (2.4). Then

G/J - G/J. (3.3)

Let J(0) be the component of J which is path connected to the identity. The pro-
jection

p':G/J0->G/J = G/J (3.4)

is a covering space map. Since Π^G) = Π0(J(0}) = (0), the long exact homotopy
sequence of fibration [6, Theorem 7.2.10] implies that ΠL(G/J(0]) = (0). Thus G/J(0)

is the universal covering space of G/J.
Let x be the image of J in G/J and x0 the image of J(0) in G/J(0) . The following

proposition is standard [6, Theorem 2.4.5 and 7.2.10].

Proposition 3.1. Let M be a simply connected space and meM. Suppose that ψ
maps the pair (M, m) into (G/J, x) continuously. Then there exists a unique lifting

such that p'ψ = ψ. In addition, the projection p' induces an isomorphism between
for all n^2. D

Because Πl (G/J(0)) = (0), the Hurewicz isomorphism is applicable, that is,

). (3.5)

Here H^ Z) are the singular homology groups with integral coefficients [6,
Chapt. 7.5].

The group J is a closed subgroup of G and an analytic submanifold ([5],
Lemma 2.9.2.) Since G is compact, J has a finite number of path components.
Hence G/J(0) is a compact manifold. By poincare duality [6, Theorem 6.2.18],

#2(G/J(0);Z) w H--2(G/J(0)) Z) (3.6)

where m = dimG/J(0) and H*( Z) are the singular cohomology groups with
integral coefficients.

The Universal Coefficient Theorem [6] relates cohomology with integral
coefficients to cohomology with real coefficients :
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Hm~2(G/J(Q) ;Z)<g> R « Hm-2(G/J(0) R). (3.7)

A fundamental result of #. Bott [8] is that

;Z)»Z'> (3.8)

where / is the dimension of the center of J(0). This gives Theorem 2.3. In particular,
Hm~2 is freely generated so

R^ (3.9)

Finally, Hw~ 2(G/J(0) R) « H£R

 2(G/J(0)) « H2

DR(G/J(0)). Here #*R are the DeRham
cohomology groups.

The above discussion is summarized in

Propositions 3.2. There are £ linearly independent generators {q^ , . . . , q£ } ofΠ2(G/J)
and ( linearly independent generators {ηl,...,rf} of H^R(G/J(Q}). Any element
[ψ^eΠ2(G/J) has a unique expansion

M= Σnaqa with naeZ. (3.10)
α = l

There is an £ x / matrix ak

a which is independent of[ψ~] such that

). (3.Π)
s2

Here <Ae[ίA] is any representative map. D

With Eq. (3.1 1) in mind, we examine H^R(G/J(0}). With G <= M(m) as a smooth
submanifold, we represent G/J(0) as the quotient by matrix multiplication on the
right:

g~g'ittg = g'j with ;eJ0.

Let {Xj}^™^ be an orthonormal basis for .̂ That is

tr(x]x,) = ̂ .r (3.12)

The structure constants of ̂ , {C^} are defined by the comutator

[xi,χ.] = ci/xji. (3.13)

We denote a basis for the left invariant 1 -forms on ̂  by

ωj = tr(x]g-ldg\ y = 1, ... ,dim^. (3.14)

Here d^f = dgAB is the restriction to G of the Euclidean one forms dxAB on M.
The one forms ωj satisfy the equations of Maurier-Cartan, namely

dωk= -^Cjω1 Λωj. (3.15)

It is convenient to distinguish the elements of the basis {xy.} which generate
the subgroup J(0). Recall that the Lie algebra ^ — & ©/ where [4,/] =0. Let

{haYa= l be an orthonormal basis for A

{^α)αLm/ be an orthonormal basis for /
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and {yA}^™ι ~dιm? '-* be an orthonormal basis for the remaining generators of .̂
Then set

of = tΐ(elg-ldg\ α - 1, ... , dim/ (3.16)

ωA = tτ(y^Ag~ldg\ A = 1, . . . , dim ̂  — dim / — /.

Proposition 3.3. Let p0 : G -> G/J(0) be the canonical projection. For each a = 1 ,...,/
there exists a closed two form ηaeΛ2(G/J(0}) such that

p*η»=-±Ca

ABω
AΛωB. (3.17)

Further the set {ηaYa = 1 generates H^R(G/J(0}) as an 1R module.

Proof. See, for example [9] and references therein.

4. The Pull-Back of Cohomology from G/J^

We begin by studying the asymptotic behavior of Φ to demonstrate that for

sufficiently large r, the Higgs field Φ(rx) maps S2 into a tubular neighborhood of
the manifold M defined by (2.7). Hence we can compute the homotopy class defined
by Φ(x) from Φ(rx). The result is Proposition 4.5.

In this section it is always assumed that (A, Φ) satisfy the conditions of Theorem
2.1.

For xe!R3, define x = x/|x|.

Lemma 4.1. There exists a smooth gauge such that

lim Φ(rx) = Φ(x),
r-*oo

is a continuous map of S2 into <?. Further,

lim rδ\ Φ(x) - Φ(rx) \ ^ const. (4. 1)
r-» oo

Proof. It is always possible to choose a smooth gauge in which the radial compon-
ent of the connection vanishes [10]. Then (4.1) follows from (2.5.6) by integration.
The continuity of Φ(x) is proved in Lemma Π.4.1 of [4].

The statements above are gauge invariant under all gauge transformations
g(rx) which, as a function of y = 1/r, are Holder continuous with exponent δ ̂  1
as y -» 0.

Let {tkYk==1 be an orthonormal basis for the Cartan sub-algebra / c ̂ . Require
that ta = ha for αe{l, ...,/} where [haYa=l is defined in Sect. 3. By convention
h1 = h. It follows from (4.1) that there exists R0 > 0 such that | Φ(x)\ ^ \ if x| > .R0 .
Set vQ = (1, 0, 0) and ΰ0 =( - 1, 0, 0). For R > R0 define

VR = {xeR3 :|x > R and xeS2\v0}.

Lemma 4.2. ForsomeR0 <R<oo there exists geC00^, G)and{φkYk=1GCco(VR)
such that the following is true: For xe FR,
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(a) Φ(x)= ΣΦkgtkg-1.
/c=l

(b) lim rδ\ φ^rx) - 1 1 < const.
r->oo

(c) lim rδ \ φk(rx) \ < const. , for fe = 2, . . . , d . (4.2)
r-»00

Proof. Statement (a) follows from the fact that every element in ^ is conjugate
to an element in /. The smoothness conditions follow
and |Φ| > 0. Having established (a) we compute DAΦ:
to an element in /. The smoothness conditions follow because Vβ is contractible

DAΦ = Σ dφkgtkg~l + Σ ΦάA + dgg-^gt.g-1]. (4.3)

Using (4.3) and (2.5b) we obtain for x<=S2\ϋ0 , rl > R0 and fee (1, . . . , 0} that

lim \φk(rx) - φk(r^)\ < const. r~δ. (4.4)
r-»oo

Further, for x1 , x2 eS2\ΰ0 , and r > R0

lim rδ\φk(rxj - φk(rx)\ ^ const. (4.5)
r-* oo

The conclusion from (4.4) and (4.5) is that for each fce{l, . . . , < * } there exists a

constant ck such that

lim ra|φk(rx) - ck\ ^ const. (4.6)

By construction, ck = δkί . Hence statements b) and c) of the Lemma.

Let

e^x) = g(x) h,g- \x)EC^(VR M), (4.7)

where g(x) is given in Lemma 4.2 and M is defined in (2.7).

Lemma 4.3. The function e^x) extends to an element in Cco({x: x\>R};M).

In addition,

(a) lim rδ\Φ(x) - ^(rx)) ̂  const. (4.8)
r-» oo

(b) Proposition 2.2 is true.

(c) For all r > R, Φ(x) and e^rx) are homotopic as maps from S2 into M. D

Proof. The fact that φΐ(x) never vanishes in {x;|x| > R} implies that ev(x) has

the stated extension. Statement (a) follows from statements (b, c) of Lemma 4.2
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and Eq. (4.1). Statement (a) of Lemma 4.3 implies that the sequence {

is a Cauchy sequence in M for fixed x. Hence the limit, which is Φ(x\ takes values

in M. This last fact and the previous Lemma imply (b). Statement (c) is implied

by statement (a).

The orbit of each ha, αe{l, ...,/}, under Ad§ maps the group G smoothly into

its Lie algebra. Define la : G -> ̂  by

We note that for each 0e{l, ...,/}, the map f a descends to a smooth map (which

we also denote by f^ of G/ J(0) into .̂ This is because J(0) is generated by exp(/)

and[/f,/]=0.

Let h be the map defined in Proposition 2.2. Denote by h\S2 -» G/J(0) the

unique lifting oϊh:S2 -> G/Jas guaranteed by Proposition 3.1.

It follows from (c) of Lemma 4.3 that for r > R, the maps

h(r:x) = p- \e(rx)) : S2 -> G/J (4.10)

are homotopic to h(x). In addition, the liftings of these maps,

(4.11)

are homotopic to h(x).

For αe{l, ...,/} define

ea(rix) = ta(K(r,xn (4.12)

Definition 4.4. For r > R and ae{l, ...,/} define

ββ(r)= J'tr(ee(r;x)FJ. (4.13)
1*1 =r

Proposition 4.5. L^ί (^4, Φ) ftg as in Theorem 2.1.

μ*(ι?

β)=Umρβ(r), (4.14)

ίte ίwo cocycle ηaeH^R(G/J(Q)) is defined in Proposition 3.3 D

Proof. By assumption, A is C1 so the integrand in (4.13) is smooth. Hence we have

Q e W = - ί tr(/VβΛ,4 + >lΛ,4),= - f tr(DA Λ A -f X Λ ̂ ). (4.15)

Recall that the set P^ is contractible so that in V^e^x) is given by (4.7) with

g(x)eCco(VR G). Then up to an element of J/J0 (which is a discrete group)

ea(x) = g(x)hag-l(x). (4.16)
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An explicit computation of (4.15) gives

= - ί Λ
\x\=r

H

xeS2\v0

(4.17)

Use (4.3) to estimate the second term in (4.17). That is, let AL be the component of

A + dgg~^ taking values in g^g~l and let Aτ be the orthogonal complement.

Because φ1 -» 1, equations (4.3) and (2.5b) imply that

and hence that

Since the skew form

\AT\< const. (4.18)

{!,...

has a kernal which includes / and maps jτ into itself, we conclude from (4.20)

that

\tτ([ghag-\Aτ-]Aτ)\ ^ const, r'2'20. (4.19)

Therefore the second term in (4. 1 7) is order r ~ 2δ. As for the first term in (4. 1 7),

\x\=r

= ί (4.20)
| x |=r |x |=r

Because Λ(r; ) is C°° we can replace the point v0 in (4.20). Since h(r ) is homotopic

to h, Eq. (4.20) implies Eq. (4.14) and the Proposition is proved.

We now expand on the remarks in the opening paragraph of this section. The

manifold M is the orbit of h under AdG and it is a regular, compact submanifold

of p ~ (Rdιm *. As such, there exists a tubular neighborhood,0(M) of M in ̂  and a

C00 projection q : & -> M. (see [1 1], Chap. 12 for details.) We can specify q uniquely

by requiring that it be the orthogonal projection onto M defined by the Killing-

form on p. This choice has the advantage that the projection commutes with the

action of AdG on M and &.

Lemma's 4.1 and 4.3 imply that Φ(rx) maps S2 into (9 for all r larger than some
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rί. It is not hard to show that

(qoΦ)(rx) = e1(rx).

We end this section with a summary:

Theorem 4.6. Let (A, Φ) satisfy the conditions of Theorem 2.1 Let p'.G/J -> M =

AdG/z be the canonical map. Let q:(9-*M be a tubular neighborhood of M in ̂

such that q commutes with AdG. Let /α:G-»^ map geG to Ad^/zα. There exist

constants bk

a a, fee {1,...,/} which depend only on AdG/z such that

(4.21)

is απ integer. The set {nβYa=1 specifies [04, Φ)] m Π2(G/J). Here ρ~l°q°Φ is the
lifting ofρ~loq°Φ to G/J(0). D

5. The Classical Lie Groups

Equation (4.21) can be simplified considerably if the properties of the specific
matrix representation of a compact group G are taken into account. A faithful,
irreducible, unitary representation of G of dimension m is equivalent to an embed-
ding of G in SU(m) or S0(m) if the representation is real. Then h is an m x m matrix
and we can consider the matrix powers hk = hh ... A, k times. The set {hk}?~Q are
linearly independent where p is the number of distinct eigenvalues of h. (By con-
struction, h is traceless.) Let fi(h) be the linear span of {hk}^~^. Since [/(//),/] = 0,
the projection of fi(h) onto ^ lies in the commuting subalgebra A spanned by the

orthonormal basis [hl — h, h2 ... h^}. The projection of /ι(h) on ^ spans a subset

$ £ /|? say the subspace generated by {hί,..., h^} with /' ̂  /. Then there exist

constants^ whereαe{l,.. .,/ '} andke{l,..., m} 5wcA ί/zαί

m

A β =Σ^. α = l , . . . , Λ (5.1)
k = l

Equation (5.1) suggests that

m

lim Σ c|| ί tr(ΦfcFJ = f A*^"), (5.2)
''^^ fc=i |x |= r S2

for αe{l,. . ., /'}, and where ^α is a generator of H2

D,R.(G/J(0}) as discussed in Sect. 3
(Proposition 3.3.) In fact this is the case with a proviso, namely FA and DAΦ are
squared integrable.

Proposition 5.1. Let (A, Φ) satisfy the conditions of Theorem 2.1 and in addition
suppose that FA and DA Φ are square integrable. Let a faithful, irreducible represent-
ation of G be given by an embedding of G c SU(m) or S0(m)for some m such that
(5.1}holds. Then (5.2)holds. D



Monopole Charges 309

Proof. Equation (5.2) holds with Φ replaced by e^rx) as defined in (4.7). Lemma
4.2 and Eq. (5.3) imply that there exists rx > 0 such that DAe^eL2(R3\{\x\ < rj).
Using Kato's inequality (c.f. [4], Chap. VI.) we have V |Φ - ei |eL2([R3\{ x| < rj)
where V is the ordinary derivative. Lemma's 4.1 and 4.3 imply that Φ — e^e

x\<r1}) for a l l q > 3 δ ' 1 . Then the Sobolev lemma (see e.g. [4], Chap. VI.)
gives:

(5.3)
3) with the property thatFix once and for all a function ,

(a) 0 £ j

(b)

(c)

Set βr(x) — β(x/r) which we define for r > 0. Then for r > 2r1,

(5.4)

Δ(r) = J tr(Φ*FJ- J
1*1 = »• 1*1 =r

^fe ί (l-^

+ "ί M^iα-
Here we have used Stoke's theorem along with the identities

dβr = dβr(l-βr/2),

and

1 Λ-i j k_^_\ I/*- 1

Φk~e = 2(Φ~e\Σfek ' J) + 2\£^ '

Now using Holder's inequality, we obtain

(5.5)

(Φ-e). (5.6)

By scaling, = II yβi I IL 3

 so we conclude from (5.7) that

lim Δ(r) = 0.

(5.7)

(5.8)

This proves Proposition 5.1.

Proof of Theorem 2.4 Let G = SU(n) acting on C". The number of different
eigenvalues of h is precisely the dimensions of A. Hence the projections of the powers
{hk}k= i onto ^ sPan ̂  Thus Theorem 2.4 follows from Proposition 5.1.

Proof of Theorem 2.5. Case 1. G = Sp(n) acting on C2". An arbitrary element in
the Lie algebra ό/ι(ri) has the form [12, Sect. 65]

,4®l+S.®τ, (5.9)
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where (1, τ^) are unit quaternious; A and Sj are real n x n matrices but Aτ = — A
while Sj = Sj. The Cartan subalgebra may be chosen to have the form

t = {D ® τ3 D a diagonal n x n real matrix}. (5.10)

The eigenvalues of A eJ come in ± pairs since τ3 has eigenvalues ± i. Hence we need
only consider the odd powers of h (the even powers are orthogonal to όfi(ri).)
We write

h = H ® τ3 with H diagonal.

It is not hard to see that the number of distinct eigenvalues of h (the number of
distinct eigenvalues of H up to sign) is precisely the dimensions of A. Hence /odd(/0
spans A. Case 1 follows now from Proposition 5.1.
Case 2. G = S0(2n) acting on U2n. The Lie algebra <ι#(2n) is the space of 2n x 2n
real skew-symmetric matrices. Let α, β, σ be 2 x 2 matrices defined by

1 0

vO -1

/O 1

Kl 0,
/ 0 1\

"L, o) (5 n)

Every element in 4#(2n) has the form [12, Sect. 65]

(5.12)

where AQ,AΛ,Aβ and Sσ are real nxn matrices with AθΛβ antisymmetric but
Sσ symmetric. An element h in the Cartan subalgebra can be put in the form

h = H®σ with H a diagonal n x n matrix (5.13)

Hence the eigenvalues come in ± pairs also and we need only consider the odd
powers of h. Once again the number of distinct eigenvalues of h is precisely the
dimension of A and /fcodd(λ) spans A. Case 2 follows from Proposition 5.1. Case 3.

G = SO(2n+l) acting on R2 π + 1. The group S0(2n + l) has rank n. The Lie

algebra, ό#(2n + 1) is the space of (2n x 1) x (2n -h 1) real skew-symmetric metrices.

Every element in o#(2n + 1) has the form

/ OltΛ
(5.14)

where v is an n x 1 matrix. An element h in the Cartan subalgebra may be taken to
have the form

(5.15)

where H is diagonal [12]. This case reduces to the case of S0(2n).
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