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Abstract. A class of global solutions of the Yang-Mills equations whose
Cauchy data depend on a pair of arbitrary functions is constructed. The
asymptotic propagation of the energy in space-time is studied. The same
results are valid if the Yang-Mills field is coupled to a scalar field.

1. Introduction

This paper is concerned with solutions of the classical Yang-Mills equations
in the whole of Minkowski space-time. Although one would like to exhibit such
global solutions by explicit formulas, the best representation one could envisage
for a general solution would be its exhibition as an infinite series or as the result
of a limiting procedure. Since the equations essentially comprise a hyperbolic
system of partial differential equations, it is natural to consider the Cauchy
problem: do arbitrary data at a finite time (say t = 0) determine a unique solution
at all later and earlier times? In this paper we restrict our considerations to data
which have finite energy and whose potentials vanish as x \ -» oo.

It should be noted that the Yang-Mills equations are entirely different in
Euclidean space. They form an elliptic, rather than a hyperbolic, system. In
particular, the condition that a solution be square-integrable in space and imagin-
ary time is a severe one. It makes the instantons form a class depending only on
a few parameters.

In Sect. 2 we use a limiting procedure to construct a family of global solutions
to the Yang-Mills equations (YM) if the gauge group is SU(2). The solutions
depend on two arbitrary functions of one variable. A substitution of the
Polyakov-tΉooft type specifies the direction of the gauge potentials Aμ and
expresses their amplitudes in terms of a single scalar function α( | x \, t). The equa-
tions are thereby reduced to a single scalar nonlinear wave equation with singular
coefficients. Except for the condition of finite energy, the Cauchy data for this
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scalar equation are arbitrary. The solution is uniquely determined by such data.
A critical role is played by an estimate from [3]. At the end of Sect.2 we extend
this construction to the Yang-Mills equations coupled to a scalar field (YMS)
with a positive self-interaction.

In Sect. 3 we consider the space-time structure of the global solutions of YM
and YMS. This structure is a further consequence of the conformal invariance
discussed in [2] and [3]. We begin this section with the fact that solutions propa-
gate no faster than the speed of light. Then in Theorem 5 we state the main result
on energy propagation. The energy "splits" into three components: one component
e{θΐ carries all the energy forward to the distant future and another component
eback carries it back to the distant past. We prove it for any nice global solution
of YM or YMS and also specifically for the solutions constructed in Sect. 2. This
result can also be interpreted as stating that, asymptotically as t -> ± oo, the
energy of any solution propagates along light rays. For further discussion, see
[4] and [1]. In particular, there can be no stationary solutions nor any solitary
waves. We are continuing to assume that the potentials vanish as |x | -> oo. If they
do not, our asymptotic result is false: there exist stationary solutions of YMS
of finite energy whose potentials approach non-zero constants as | x -> oo (see
[7,14]).

2. Existence of Some Global Solutions

We use the following notation. The physical variables are i ,x 1 ? x 2 ,x 3 . The
derivatives are

τrd°^ T-=δ*ot oxk

d 3 x
(xι,x2,x3\r = \x\9 — = dr = £ — dk.

Oγ k=l T

The potentials are Aμ(x, t) for μ = 0,1, 2, 3. The field strengths are

Ek = Λ4° + d°Ak + gAk xA° (k= 1,2, 3) (l.k)

H1 = 33A2 - d2A* + gA* x A2 (2.1)

with H2 and H3 defined by cyclic permutation of the indices. The coupling constant
g is real. The covariant derivatives are

Dk = dk + gAk x (fe = 1, 2, 3)

D° = d° - gA° x

The Yang-Mills equations (YM) can then be written as

D°Hl=D*E2-D2E3 (3.1)

D°H2 = D1E3 -D^E1 (3.2)

DQH*=D2E1-D1E2 (3.3)
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D°El=D2H3-D3H2 (4.1)

D°E2 = D3H1-D1H3 (4.2)

D°E3=D1H2-D2H1 (4.3)

3

Σ DkHk = 0 (5.H)

£ Dfe£fc - 0 (5.E)
fc=l

The energy is
£ = ̂ (\E\2 + \H\2)dχ (6)

In this section we shall take the gauge group G to be SU(2). Its Lie algebra can
be identified with Euclidean 3-space with x being the ordinary vector product.
We define

ω = x/r (r = \x , x

e^ = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1) the standard basis and

vk = ekxω ( f c = l , 2 , 3 ) (7)

A function defined on IR3 is called radial if it depends only on r = \ x . We
define H* to be the completion of the C°° functions of compact support which are
radial, under the Dirichlet norm

We define L2

r as the space of square-integrable radial functions. By C(M, X) we
denote the space of (strongly) continuous functions on IR with values in the space X.

Theorem 1. Let <x0eH} and a.1eL2

r. Let geU. Then there exists a unique solution of
YM in all space and time with the following properties:

A°(x, ί) = 0

Ak(x,0) = u0(r)vf (fe = l,2,3;xeK 3) (8.0)

dtA
keC(R;L2

r);

The energy $ is a constant,

Ak(x,t) = a(r,t)vk (k= 1,2,3), (8.k)

α(r, t) is a (real) scalar function, and

*2ί 2V— (go. -- is integrable over all space-time.
r\ rj

In what follows we will take g = 1 for simplicity, without loss of generality.
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Lemma 1. The inequalities

x)3 (9)

where c is a numerical constant, and

$φ2r-2dx^4$\Vφ\2dx (10)

are valid for every function φeC™(R3) and hence for all φeH^. Furthermore, every
φεϊϊl is almost everywhere equal to a function which is continuous for x =£ 0,

4πrφ2(r)^$\Vφ\2dx (11)

and

rφ2(r) -+ 0 as r -> 0 and r -» oo. (12)

Proof. It suffices to prove the inequalities for 0eCc°°. Equation (9) is the standard
Sobolev inequality. Hardy's inequality (10) is proved as follows.

V-(xφ2/r2) = χ-2φVφ/r2 + φ2V (x/r2)

= 2φφr/r + φ2/r2

Integrating over all space, we get

from which (10) follows. Assume now that φ is radial. Integrating over the ball
{|x| <R} we have

4πRφ2(R)^ J (φr + φ/r)
2dx

\*\<R

Integrating instead over the exterior of a ball {\x\ > R} we have

4πRφ2(R)= f \φ2-(φr + \
\x\>Λ\- \ Γ

^ ί Φ2

rdx
\x\>R

The continuity and (11) and (12) follow by passage to the limit.
Lemma 2. The formulas (7) and (8.μ) reduce YM to the scalar equation

d2u-Aa + F(r,a) = Q (13)

where

F(r9 α) - 2r~2α - 3r~ xα2 + α3. (14)
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Proof. The following properties of the vectors vk are easy to verify:

i,k

vj x vk= -
j,k

Since A° = 0,

Ek = doAk = (^θφfc? hence

(δ°φί;fc x ί;fe = 0.

This is (5.E).

We now verify (4.1). Using the definition of Hk from (2.k) we have

9 2α 9 / α\ o « 9/ί = — e 4- α,. — 0^1^ — ω^f1) — ω.orω,
r r

= — e + α — ω^ - ω1r r

Straightforward computations then yield

A2 x H3 = — v2 x e3 -f α( α — lω^i;2 x t;1 — co^3v2 x ω, and
r \ r )

— 2 ( α\
H2 x A3 = - α2ί;3 x e2 + α( α -- }ω~v* x t;1 -f ω.α3t;3 x ω.

r V r/

When we calculate the indicated cross products, we find that

A2 x H3 +

These are the nonlinear terms in (4.1). The linear terms are d2H3 — d3H2, which
contribute, after a lengthy calculation, the terms

[αrr + 2r"1αr -2r~2α + r~^2}υl.

By cyclic permutation of the indices, Eqs. (4.2) and (4.3) yield the same factors
but in the directions v2 and v3 respectively. Thus (4.1) — (4.3) are valid if α satisfies
the Eq. (13). The other equations in YM are automatic consequences of the de-
finition (2.k) of Hk (cf. [3] ).

We also calculate the energy (6) in terms of α. From the expressions for H1, H2
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and #3, we calculate

r2\H\2 = 2r2α2 + (2α - rα2)2 + (2rα2),.

Therefore

(6).

provided rα2(r) -> 0 as r -» 0 and r -» oo.

Lemma 3. Tte scα/αr equation (13) possesses a global solution with given Cauchy
data αQ, aί.

Proof. The only difficulty in solving (13) derives from the singularity of F(r, α)
at r = 0. Therefore we consider the approximate equation for ε > 0

In this equation the nonlinear term is locally Lipschitz from H l into L2 because of
(9), (10). We choose functions α0ε(r) and αlε(r) which belong to C™ and converge to
α0(r) and αt(r) in H* and L2, respectively. For fixed ε > 0, the Eq. (13)ε has a unique
C°° solution αε(x, ί) with compact support at fixed times with Cauchy data α0ε

and α l ε . This solution exists in a time interval 1 1 \ ̂  T. See [8] or [10].
Let G(r,α) be the primitive of F(r,α); that is, d(XG = F and G(r,0) = 0. We

multiply (13)ε by dtaε to obtain

\ Vαε |
2 + G(r, αε) = V [δΛVαJ. (15)

Integrating over all space we have the energy identity

(16)

where Sε is independent of time. Putting t = 0 in this expression, we see that Sε

is determined by the initial data and so is bounded independently of ε. Now G is a
perfect square :

Therefore the approximate solution αε exists for all time (see [10], [8] or [13]).
We shall also need Morawetz' radial estimate (see [6], [13] or [3]). Let u = raε

so that

dfu - 3Γ

2M + (r2 + ε)~ \2u - 3u2 + u3) = 0

Multiplying this equation by dru and integrating over r, we obtain the identity

^]dtu-drudr + \(dru(Q9 1))2 + J \r(r2 + sΓ2u2(u - 2)2dr = 0
at 0 2 0 2
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since w(0, ί) = 0. Integrating over time and replacing u by rα, we obtain from the
last term the bound

00 4 2\Ύ
*S2/.. (17)

Now we can pass to the limit. There is a sequence of ε's tending to zero such that

αε -» α weakly* in L°°(R, /?*) and

d,a£ -> d,α weakly* in L°°(R, L2).

Therefore the derivative terms in (13)ε converge in the sense of distributions. By
compactness and diagonalization, the sequence may be chosen so that αε -> α
a.e. in space-time IR4. So α3->α3 a.e. and α3 is bounded in Lfoc([R4); hence

2

OC([r2(r + ε)"^3 ->α3 weakly in L2

OC([R4). Similarly r2(r2 +ε)~1α2 -»α2 weakly in
while r^eL^2. Finally r2(r2 + ε)~1αε -» α weakly in L^C(1R4) while

r~2eL^5. Therefore every term in (13)ε converges to the proper limit in the sense
of distributions in (R4. The differential equation (13) is therefore valid for α in all
of space-time. It follows also that α and αf are continuous functions of time with
values in ^'([R3) and that α(x, 0) = α0(r) and α^x, 0) = at(r).

Lemma 4. Leί/eL^c(lR, L2), β0^H^ and j81eL2. T/zβn ί/zere is α unique solution
of the linear problem

dfβ-Aβ + 2r~2β=f (18)

]8 - β0 and dβ = βl when t = 0,

such that /?eC(R, Jϊ^) and dtβeC(R, L2) and

f(i(W +f |V/?|2 + r-2/J2)dx|J = f f/ ^dxdί (19)
o

Proo/. This lemma follows from the fact that the operator — A + 2r~2 restricted
to Cc°°((R

3\0) is essentially self-adjoint ( [9], p. 161), together with the theory of linear
contraction semigroups. Another method is to change variables to y = β/r. Then
y satisfies the equation

dfγ-A5y = r-lf

where A5 is the Laplacian in 5 space dimensions. Standard facts about the in-
homogenous wave equation satisfied by y are converted into the conclusion of
Lemma 4 about β.

We now show that the solution found in Lemma 3 satisfies the properties
required by Theorem 1. From (17) and Fatou's Lemma, we have

00 / ?\ 2dr
f f α 2 (α-- ) — dt<2δ(ϋ) (20)
o V r) r

We shall apply Lemma 4 with β = a. and

f

 3 2 3 3 ί2 2\ , ! 3/ = -α — or = -αl -α — or I + -αΛ
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Therefore

j/2dx ^ 3sup [rα 2H<x 2α - *Y + f «6Λc

By (11) and (20) the first term on the right is integrable over time. By (9) and (6)α

the last term is bounded over time. Therefore /eL1

loc((R, L2

r) and Lemma 4 is
applicable.

Finally we prove uniqueness. Let α and α^ be two solutions with the properties
listed in Theorem 1. Let β = α — α^ . Then β statisfies Eq. (18) with

and vanishing Cauchy data. Now

so that

by (11), (20) and (9) where l(i) is integrable and c is a constant. Denoting the left
side of (19) by E(T) we therefore have

This implies E(T) = 0, hence β = 0 and α = α^ .
Now (13) is invariant under time reversal. Since the solution α of (13) is unique,

we conclude that the energy $ in (6)α is in fact conserved.
We now discuss a Yang- Mills field coupled to a scalar field (cf. [3]). One

introduces an additional unknown φ(x, ί), a real 3-vector. When φ = 0 we retrieve
a pure Yang- Mills field. With

(μ = 0,l,2,3)
the equations of motion become

D°El = D2H3 - D3H2 + gψl x φ, etc, (21.1)

k = gψ°xφ, (22.E)
i

D0ψ°-ΣDψ=-V'(φ); (23)
1

Eqs. (3.k) and (5.H) remain unchanged. The equations are collectively denoted
YMS. Here V(φ) = V0(\φ\2) and V'(φ) = 2φV^(\φ\2) where K0' is the derivative
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of the real valued function F0 . The energy is

= l-$\\E\2 + H 2 + |ιAT + Σ
z L k = ι

Theorem 2. Lei <x,Q9β0eHϊ and α^el2. Let geR and V(φ) = c2\φ\2 + c4\φ\4

where c2 ^ 0, c4 ^ 0(F(0) = 0 is allowed). Then there exists a unique solution of
VMS such that

A°(x, t) = 0, Ak(x9 t) = α(r, t)υk(k = 1, 2, 3) (24.μ)

φ(x,t) = β(r9t)ω (ωk = xk/r) (25)

α(x, 0) = α0(r), δtα(x, 0) = at(r), β(x9 0) = j80(r), δ/(x? 0) = /ί^r)

0, ^fceC(lR, Hr

x) 3fφ, dtA
keC(U, L2

r); the energy £ is a constant, and

α 2/ 2\
2 β2/ 1\2

— I ga — I and — I gu — I and C4β
4/r are integrable over all space-time. (26)

r \ r r \ r

We only give a sketch of the proof, which is similar to that of Theorem 1. The
substitution (24.μ), (25) now results in the pair of scalar equations (taking g = 1)

1-α - -α2 + α3 + J82 f α - - =r r r

= 0 (28)

The energy is formally

Since F0 ̂  0 by assumption, each term in δ is formally bounded. As in Lemma 3
we introduce the factor r2(r2 + ε)~1. The limiting argument works because F0

has degree 4. The estimates (26) come formally from Theorem 4 of [3], namely

/ 9\ 2

In this case Ψω = βrω and | Ψ\2 = β2 + 2/?2(α - r'1)2 and \Hω 2 = α2ί α -- ) .

The estimates and the uniqueness proof follow from the same techniques as before.

Remark. Theorem 2 is valid verbatim if c2 < 0, except that (26) is valid only over
finite time intervals, and we assume α0, /?0eL2. Indeed, in this case the energy δ
above has a negative term — §φ2dx. It is estimated by

J|0(x, T)\2dx ^ 2 J|0(x, 0)|2ί/x + 4T§§\dtφ(x9 t)\2dxdt
o

and so each term in δ is bounded for bounded time. Minor changes are made in the
rest of the proof. More generally we can state the following existence (but not
uniqueness) theorem.
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Theorem 3. Assume only that VQ is a C1 function such that

VΌ(s) ^ 0 and V0'(s) ^ Qfor s ̂  SQ.

Let α0 , β0 , α t , βί be as in Theorem 2. Then there exists a solution of VMS satisfy-
ing the conclusions of Theorem 2 except that: φ, Ak are weakly continuous with
values in H* dtφ, dtA

k are weakly continuous with values in llr $* satisfies the
inequality $(t) ^ <ί(0) and the expressions in (26) are integrable over all space but
only over finite time-intervals.

Proof. By assumption V(φ) and φ-V'(φ) are bounded below by 0(|</>|2). Therefore
we obtain energy bounds as in the preceding remark. We introduce the factor
r2/(r2 + ε) as in Theorem 2. We approximate V0 by Vε, where Vε(s) grows slowly
for large s (for each ε). The passage to the limit is effected by the method of The-
orem 1 with the omission of Lemma 4 and its consequences. See [12] for the very
similar case of a scalar field.

3. Propagation of the Energy

Theorem 4. YM is causal. YMS is causal if V ^ 0.
Suppose we begin with any smooth solution of YMS. We have the law of con-

servation of energy

with the energy density e and momentum densities pk (see [3] ). We integrate this
identity over a piece of the solid light cone (see sketch) with base £, top T and
side K. By the divergence theorem,

But ^ e (cf. [2], [3]) so that the integral over K is non-negative. Therefore

(29)

In particular if e = 0 on B, then the Cauchy data vanish in the solid cone depending
on B. This is a precise expression of the causality.

In particular, the global solutions constructed in Sect. 2 satisfy (29). Indeed,
they are defined in terms of scalar functions α and β, which are approximated by
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αε and βε. The inequality (29) is valid for the approximate solution for each ε, which
is smooth [10]. The passage to the weak limit described in Sect. 2 implies that (29)
is valid for the exact solution, provided that B a {t = 0}, the time when the Cauchy
data are prescribed. Thus (29) is valid for any of the solutions in Theorems 1, 2
and 3.

Theorem 5. (Energy splitting). Consider a solution satisfying any one of the condi-
tions (I) -(III) below. Then there exists a decomposition of the energy density e into
non-negative parts

= e for

such that

These three expressions are defined in the proof below; e{or carries all the energy
forward in time and eback carries all the energy backward in time, asymptotically.
Assume that the initial data satisfy j(r2 + l)edx < oo. Furthermore assume one
of the following:

(I) The solution is a C2 solution of YMS such that J(r2 + l)edx < oo at all
times G is a compact Lie group and 0 rg 4F(φ) ̂  φ - V'(φ\

(II) It is a solution of YM given in Theorem 1.
(III) It is a solution of YMS given in Theorem 2, where V(φ) = C41 φ |4, C4 ̂  0.

Proof. This result is a consequence of the conformal invariance of the equations,
specifically the first inversional identity derived in [3]. It states that

JΊ (t2 + r2)e + 2tr Σωkp
k + 2tφ ψ° — φ φ \dx^ const. (30)

L k J

under assumption (I). Here

p1

YM=//2 £3-H3 £2etc

For the convenience of the reader we record the complete YMS system here.
(See [3]).

D0*/1 = D3E2 - D2E3

D°H2 = D1E3-D3E1

D°H3 = D2E1 - D^E2

D°E
1
 = D

2
H
3
 - D

3
H
2
 + gφ

l
 xφ

D°E
2
 = D

3
H

l
 - D

1
H
3
 + gφ

2
 x φ

D°E
3
 = D^H

2
 - D

2
H

l
 + gψ

3
 x φ

ΣD
k
H
k
 = 0
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= gψ° x φ

* = ~ V'(φ)

As in [3] we split the integrand I in (30) into the Yang- Mills part /YM and the
scalar part Is . Thus / = 7YM + Is where

and

where Ψ is the matrix with the three columns ψl, ψ2, ψ3. Define Xk = ψk -f xkr~2φ
and let Ξ be the matrix with columns X1, X2, X3 . We showed in [3] that

Hence

with

Now consider /YM. We define (£, H) = tr(ETH) so that \E\2 = (E, E). Here Eτ is
the transpose of E. We further define ω x E as the matrix with columns ω2£

3 —
ω3E

2, ω^E1 — ω1£
3, ω1E

2 — ω2£
1, respectively and note the elementary identity

With this notation, we can write

(31)

= \(r2 + t 2 ) ( \ E \ 2 + \H\2) + rt(E, ωxH)- rt(H, ω x E)

= ^(r2 + t2)(\Eω2 + |Hω|2) + |(r + t)2[\E + ω x ί/|2

+ \H - ω x £|2] +i(r - ί)2[|£ - ω x #|2 + |H + ω x £|2]

For the computation of/*, we add the elementary identities

i(r ± ί)2!'/'0 ± Sω|2 =|(r2 ± 2rί + t2)[|"A°|2 + |Sω|2 ± 2^° Sω]

to get
- Sαf

ί2)(|ι/>°|2 + |Sω|2) + 2rtφ° Ξω

(32)



Global Solutions of Yang-Mills Equations 183

Using (31), (32) and the original decomposition

we can write

[|£ω 2 + \Hω\2 + 2(|Ξ|2 - \Ξω 2 + 2F(ψ))]

— [|£ + ω x H|2 -f |H - ω x E 2 + 2\ψ° + Ξω|2]

— [|E - ω x H 2 + \H + ω x E\2 + 2|v>0 - Hω 2]

(33)

If we define

8e -back

+ \Hω\2 + 2(|Ξ|2 - |Ξω|2

+ ω x H 2 + \H - ω x E\2

- ω x H 2 + H + ω x £ 2 -f

4V (φ);

then (33) implies directly that these expressions have the properties claimed.
This completes the proof of Theorem 5 under Assumption (I).

In order to prove Theorem 5 under Assumption (III), our main task is to derive
the analogue of the first inversional identity (30) for the approximate equations.
Then we shall pass to the limit. Note that (II) is just the special case of (III) when
φ = Q. From Sect. 2 the equations for α, β are

where

F2(r, α, β) =

We consider the approximate equations

F1(r,α,j8) =

(27)

(28)

(34)

(35)

(27).

(28).

with solutions α = αε, /? = /?ε. We assume that the Cauchy data of αε, jSε are smooth
and have compact support. From Sect. 2 we know that the energy density of the
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approximate system is given by

*. = ϊ(«t

2 + «,2) + i(# + #) 06).

where α = ocε,β = βε.
We now derive the inversional identity for the approximate equations. This

tedious calculation will only be sketched, since it is a special case of the derivation
of (30), modified by the introduction of the factor r2/(r2 + ε) (see [3], [13] ).

We multiply the approximate equation (27)ε for α = αε by

(r2 4- f 2)αt + 2tmr + 2ία,

and use the multiplier

on Eq. (28)ε . These expressions are added and the result is integrated over IR3 (with
usual Lebesgue measure dx = 4πr2dr). We obtain in this manner the identity

- ί O2 + t2)(K + X2 + iβf + i# + 2rt«Λ + rtβ,βr (37)

Straightforward use of (34), (35) then gives us

1 Λ

and

2αF1 + βF

Similarly, we find

4 7 2 2
+ια2_4α3_4α/?2+4^

r* r r r
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Using this we can compute the third term in (37) by integrating by parts. The
result is

2 3 2 2 4

2α3 α4 2 #

We now combine these computations in (37) to obtain the first inversional identity:

— §Idx = Jε = 2εt J—2 ^Qdx (38)

where

and
/ = i(r2 + ί2)(α2 + α2 + i(# + ̂ 2)) (39)

2(,-

We keep in mind that α = αε and β = βε here. Now the analogue of estimate (17)
in the case of YMS is

2 4. p ^ ε >6(QCε> Λ^* ̂  Constant.r 2 4.
0 \r '

We use this to estimate J as follows. Let (5 = ε3/4. Then

o

g 2ε1/4Tc.

On the other hand,

ί -̂
o r>$v i ί r<(5

Recalling (11) and the definition of β, we have Q ^ cr ~ 3 (for r < 1). Hence

ό
5 ̂  cε -1T2jr2r~3r2dr ^ cs~lT2δ2 = c

o
Therefore, for any T,

r
Jjε(ί)dί-+0 as ε-»0.
o
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It follows from (38) that

\im$I(ocE,βε)\t=τdx = \im$I(aε,βε)\t=0dx. (40)
ε^O ε-»0

As in (33), we can express I essentially as a sum of squares as follows :

(41)A + lδr(rαβ) J + l(r - t)2 [s.α. - ̂ r(rα.)

A - ̂ (r/g+ n(r + fΓ ^β,+-d(rβ} + -(r-

r2(

The last term can be dropped because it integrates to zero. The right side of (40)
depends only on the initial data and can be chosen to converge to j/(α,/?)dx
at t = 0. Now fix a time T. Each of the expressions

(r±T)

and

(r±T)ldtβe±^dr(rβΛ

at time T converges in the sense of distributions on 1R3 to the same expression with
ε omitted, as we can see from the proofs in Sect. 2. Therefore (40) and (41) imply
that each of them converges weakly in L2((R3) to the same limit. Together with the
almost everywhere convergence of the last term in (41), this implies that

f ί(α> β}\t = τdx = lim inf f J(αβ> Pε)\t=τdx = ί^α' β)\t=odx

This is exactly the integrated form of (33) for our special solutions. The conclusion
follows immediately.

These results can be applied as in [4] to establish the nonexistence of solitary
wave solutions (including those of speed one).

Corollary. Under the assumptions of Theorem 5, j[|£ω 2 + |#ω|2]d.x = 0(ί~2).
IfA° = 0, then \\Aω\2dx = 0(log|ί|)2) as t -> ± oo.

Proof. The first statement is obvious since |£ω|2 + |Hω|2 ^4eang. By a gauge
transformation, the "temporal gauge condition" A° = 0 can always be assumed.
Then Ek = d°Ak so that Eω = d°Aω and

— l\Aω\2dx - lAω Eωdx ^ c((l + ί2)'1 .$\Aω 2dx)ΐ/2

from which the Corollary follows.
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