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Abstract. It is shown that r-particle irreducible kernels in the two-dimensional
λφ4 — \φ2 — μφ quantum field theory have (r -f- l)-particle decay for |μ| ̂  λ2 <ζ 1.
As a consequence there is an upper mass gap and, in the subspace of two-
particle states, a bound state. The proof extends Spencer's expansion [20] to
handle fluctuations between the two wells of the classical potential. A new
method for resumming the low temperature cluster expansion is introduced.

Introduction

Much progress has been made recently in describing in detail pure phases of
quantum field models in low temperature regions of coupling. Glimm et al. [16]
developed a convergent expansion for the Schwinger functions of the
λφ4 — \φ2 — μφ model in two dimensions (with |μ|^/L2<^l), establishing also the
mass gap of the theory. Subsequently their expansion technique has been applied
to some φ\ models with three minima [22, 23], to the two-dimensional pseudo-
scalar Yukawa model in the two-phase region [1], and to the Coulomb gas in the
sine-Gordon representation [2, 3]. Investigators have concentrated on proving the
cluster property of correlations and the mass gap, leaving the higher spectrum
unexplored.

A wealth of information is known about the spectrum of single phase λP(φ)2

theories with λ small. The /^-particle cluster expansion [14] was used to establish
the existence of isolated one-particle states and to show that for λ<λ(n, ε), n field
operators are sufficient to generate all states of energy less than (n+l)m(l — ε),
where m is the single particle mass. Spencer [20] introduced an expansion for
r-particle irreducible kernels, proving (r + l)-particle decay. For even theories this
information was used to analyze the mass spectrum below 3m — ε [8, 9, 21], with
results including asymptotic expansions for bound state masses and scattering
amplitudes, and asymptotic completeness in this energy region. Burnap [5]
showed (without resorting to the rc-particle cluster expansion) that in general
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circumstances the upper mass gap follows from decay properties of one-particle
irreducible kernels. He applied the result to the λφ\ theory [4]. For λP(φ)2

theories with odd powers of φ in the interaction, Glimm and Jaffe [13] adapted
the π-particle cluster expansion [14] to establish discreteness of spectrum below
2m and Koch [17] used irreducible kernels to analyze bound states in detail below
2m.

In this paper some of the above results on mass spectra are established for the
two-dimensional ^(φ) — λφ4 — \φ2 — μφ — Ec model with \μ\^λ2<ξl. The external
field will vary with λ according to the relation μ = λ2μf(l+ ]/Ϊ8y + 4y2), where
y = λ5/2 μ! and μ'e[0, 1) is fixed. Ec is adjusted so that inf^ = 0. The classical
polynomial & has an absolute minimum at ξ+ = ($λ)~ll2 + λ2μ' and a relative
minimum at ζ_ = —ξ + . The model is defined in a finite volume A as in [16].
In terms of the variable φ = φ — ξ + , the polynomial becomes 0>(φ + ξ + )
= λφ4 + (2λ)ll2(l+ ]/Sγ)φ3+ j/Ϊ8y(l + ]/ϊy)φ2 + ̂ φ2. Denote the free Gaussian
measure for the Euclidean field φ(x) by dφ, where the covariance is ( — A + 1 ) " 1 .
The interacting, finite volume expectation with + boundary conditions is

where

V= j : λφ(x)4 + (2λ)ll2(ί + ]/Sγ)φ(x)3+ ]/Ϊ8y(l+ \/2γ)φ(x)2:dx. (1.2)
A

Wick ordering will always be defined using the free covariance. Dependence on A
will usually be suppressed. Truncated expectations are defined in the usual way
and are written with semicolons, for example (R1; R2} = (RίR2} — {Rλ} < # 2 )

With these boundary conditions, the infinite volume limit of the model is a
pure phase with exponential clustering [16]. (r+l)-particle decay of r-particle
irreducible kernels will be established in this paper. This leads to the following
result.

Theorem 1.1. Given anε>0, let λ be sufficiently small and positive. The spectrum of
the mass operator M consists solely of two eigenvalues, zero and m(λ) — 1 + O(λ), in
the interval [0, 2m(λ) — ε). When restricted to the subspace of states generated by up
to two field operators, there is exactly one eigenvalue mB(λ) of M in the interval
[2m{λ)-ε, 2m(λ)). The binding energy 2m(λ)-mB(λ) is equal to 36λ2 + O(λ512).

The proof of Theorem 1.1, assuming decay properties of irreducible kernels, is
contained in the literature [5, 7-10,17, 21]. The expansion of this paper applies to
irreducible kernels and to their A1/2-derivatives. Hence perturbation theory for the
kernels considered in [17] yields the estimates on m(λ) and mB(λ) that are in
Theorem 1.1. The reader is referred to [17] for a complete discussion of the mass
spectrum on the subspace of one- and two-particle states. The absence of any
spectrum other than m(λ) in the interval (0, 2m(λ) — ε) follows from [5]. The effect
of three or more field operators on the spectrum between 2m(λ) — ε and 2m(λ) is not
considered here, because the results of the n-particle cluster expansion are lacking
for this model.
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The decay estimates on irreducible kernels are proven by using an expansion in
decoupling parameters and in parameters which control large fluctuations of the
field. When the measure is completely decoupled, r-particle irreducible kernels
vanish to (r-hl) t h order in the decoupling parameters, leading to (r + l)-particle
decay. The expansion in decoupling parameters is based on Spencer's expansion
[20] and his methods are used to evaluate and bound derivatives. As in [16],
convergence from decoupling lines may be obtained only in regions far from
fluctuations between minima. However, as these large fluctuations have very small
contribution to the measure, they may be eliminated with only a small error. Once
an appropriate region free of large fluctuations has been isolated, Spencer lines
[20] may be introduced to exhibit multiparticle decay.

All derivatives are bounded by means of analyticity [12, 20]. To establish
bounds uniformly in large domains of complex parameter space (and in Λ) the low
temperature cluster expansion of [16] is applied. The method for removing large
fluctuations perturbs the theory sufficiently weakly to allow the use of an
inequality on partition functions that was proven in [16]. The inequality is
incorporated into a new resummation of the expansion using some ideas of
Pirogov and Sinai [18]. Constraints on the resummed expansion are handled with
some techniques of BaJaban and Gawedzki [1].

The remainder of this paper is organized into five sections. In Sect. 2, the
interpolating measures are defined and conditions are derived for the vanishing of
irreducible kernels and their derivatives. In the next section, the expansion is
generated and a resummation is performed. In Sect. 4, analyticity techniques are
used to bound individual terms of the expansion. This reduces the problem to a
proof of a uniform upper bound with clustering for generalized measures. The low
temperature cluster expansion is performed in Sect. 5, and its convergence is
proven assuming bounds on individual terms. These bounds are proven in the final
section.

Remark. After submitting this article for publication, we received a preprint of
Koch [24] establishing similar results for μ = 0. In contrast to his work, our
method is suited to handle the case of a nonzero external field.

2. Irreducible Kernels

Following [16], we insert a partition of unity into the measure to make a
decomposition according to whether the field in a unit square is on average in the
plus well or in the minus well. Let Δ] denote the unit square in IR2 with lower left
corner at '̂ = (/0, / x ) e Z 2 . Define the average field in Δ) by

φ{Δ)) = j φ(x)dx (2.1)
A}

and let σ .̂= + l be an Ising spin variable in Δ). We introduce approximate
characteristic functions of [0, oo) and (— oo, 0] :

00

0

A-vW — Λ + \ W \Δ'D)
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Note that χ + + χ _ = l. Then set χΣ= f\ χσt{φ(Λ])) where Σ denotes a spin

configuration, that is, a function on the squares in A taking values + 1 . We take A
to be a large square composed of unit lattice squares. We use the identity 1 = ^ χΣ

to expand the measure according to spin configurations: Σ

e-vdcp=ΣχΣe-vdφ. (2.4)
Σ

Here the sum runs over all spin configurations Σ in A. It is worth recalling the one-
to-one correspondence between spin configurations in A and sets of Peierls
contours which mark boundaries between seas of aligned spins. We set σ. = + for
A\%A, so all spins outside the outermost contours are +.

Two additional length scales will be needed. We choose ^ | l o g / ί | 1 / 4 > l to
exhibit the approximately Gaussian character of the measure far from phase
boundaries. We choose L ^ | l o g l | 2 > / to define what regions are far from phase
boundaries. For convenience, take / and L/l to be integers.

Let b denote a bond of the lattice 17L2. For each b introduce two parameters ub

and rb, each taking values in [0,1]. The w-parameters are introduced to remove
those terms of ]£ with phase boundaries within L of particular bonds of IΈ2. When

Σ

the unwanted terms have been removed, the r-parameters introduce Dirichlet data
on bonds of IΈ2. Expanding in the w-parameters yields a sum over phase-
boundary-free regions of IR2. The expansion in r-parameters is used to control this
sum. It is a two-dimensional analog of Spencer's expansion.

The w-dependent measure is

Σ Π ubχΣe-vdφ. (2.5)
Σ b:dist(b,Σ)^L

When ub — 0, there are no phase boundaries within L of b. We introduce Dirichlet
data into dφ in the standard way [15]. The measure dφ(r) has zero Dirichlet data
on b when rb = 0 free boundary conditions on b when rb = 1. We shall never use the
r-parameters to place Dirichlet data within L of Σ or in seas of minus spins. This is
enforced by allowing r b Φ1 only if ub = 0 and Σ= + near b.

We introduce Spencer lines [20] in order to exhibit multiparticle decay. Let W{

be the lines x0 = il in IR2, for ieΈ. For each z, fix J^Q j£? to be some finite union of
bonds of the ΏL2 lattice. Introduce Dirichlet data on jSf. with the parameter
tte[0, 1]. Denote the resulting measure by dφ(r, t). We allow ί t φ 1 only if JS?f is in a
sea of + spins. The set {Jzf.} will vary from term to term in the expansion in the u-
and r-parameters in order to satisfy this constraint.

We state the above restrictions in terms of a condition that must be satisfied at
all times.

Condition A. For all b, if rb Φ1 then ub = 0 and enough u's are zero so that all the
nonvanίshing terms of ^ in (2.5) have σ^= + within L of b. Similarly, for all i, if

Σ

ttΦ 1 then ub = 0 for all bQ.5£{ and all nonvanishing terms have σ- = + within L of S£v

We may now define an expectation which depends on u, r, t, {JδfJ, and A.

Σ Π ub\RlΣe-¥ dφ{r,t)
/τ>\_ Σ b:dist(b,Σ)^L Q /:\

Σ Π ub$χΣe-vdφ(r,t) '
Σ b:dist(b,Σ)^L
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We allow for R's containing derivatives. This expectation is used to construct the
irreducible kernels and to give them appropriate dependence on the parameters.
As an example, consider the one-particle irreducible kernel k(x, y) [20].
Suppressing dependence on w, r, etc., we define the following kernels when
Condition A holds.

S(xj) = <φ(x);φM>, (2.7)

Γ(x,y) = (S-1)(x,y), (2.8)

k(x,y) = (Γ-C-1)(x,y). (2.9)

Here we use operator inverses and C is the covariance of dφ(r, t).
We need to express k(x, y) as a Neumann series of connected expectations as in

[20]. In Sect. 4 this representation will be used to introduce dependence on
additional parameters h(oc). We follow [20] in this calculation except that we leave

derivatives — as such and do not explicitly differentiate the interaction. The
δφ

presence of the χ-factors in (2.6) make it awkward to differentiate the interaction
when integrating by parts. We obtain

y) (2.10)

and

= B(x,y). (2.11)

Note that these derivatives act on the χ-factors in (2.6) as well as on e~v. In both
cases there will result an overall factor at least as small as λ1/2. We express k in
terms of the operators A and B:

= Γ-C ~ί

(2.12)

Or,

1B. (2.13)

We refer ahead to Theorem 4.1 for the estimates that guarantee that the Neumann
series in (2.12) and (2.13) converge for small λ.

The next proposition gives conditions for the vanishing of k(x, y) and — k{x, y).

Proposition 2.1. Suppose Condition A holds and there exists a complete contour Γ of

r = 0 bonds or t = 0 lines separating x from y. Then k(x, v) = 0 and — k(x, y) = 0.
ot-
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Proof. Denote the interior of Γ by Y The measure used in (2.6) factorizes across Γ:

J Σ Π ubRγR^χΣe~vdφ(r,t)
Σ b:dist{b,Σ)^L

Σ Π ubRγχΣnYe
ΣnY bQY

1= +onΓ dist(b,ΣnY)^L

./[ y FT uhR γχΈ γe-V(~γHφ{r,t)\. (2.14)

\ Σ = +onΓ dist(b,Σ n~Y)^L I

Here ΣnY is the restriction of the spin configuration to Y and

%ΣnY= Π Xσ (Φ(^])) ^y a n c ^ R~γ a r e supported in Y and ~Y, respectively.

The w-factors may be distributed as in (2.14) because dist(ΣnY, ~Y)>L.
Factorization implies that connected expectations between Y and ~ Y vanish. The
covariance C(r,t) also vanishes between Y and ~Y. Therefore Γ, C" 1, and k
vanish between Y and ~ Z

The following calculation is as in [20]. The formula for differentiating
expectations

I 7\ \

\9z2)dz (2.15)

holds for the expectation (2.6). By factorization, if x and y are separated by Γ, then
(2.15) becomes

^r$= -SI — C M S . (2.16)
dtt \dtt )

The factor of 1/2 is cancelled by the two possibilities for positioning zx and z2

relative to Γ. We use (2.16) to calculate -— k:
ct.

( ( l ή ^ ή , y ) = 0. (2.17)
Proposition 2.1 is proven.

For other irreducible kernels, similar constructions and proofs apply. For JR in
(2.6), we will consider generalized derivatives whose actions may be restricted in
various ways. For example, the analog of the expectation /]"[: P(k)(χ.):\ in P(φ)2

theories is constructed in section four. {P(k) denotes the kth derivative of P.) These
expectations may be used to construct the kernels considered in [17]. We also

consider derivatives dJx) which are the same as _ . . except that they act only on
* δφ(x)

χ-factors or their derivatives.
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The first r derivatives with respect to t vanish at t = 0 for r-particle irreducible
kernels constructed in this way. The proofs depend only on factorization,
integration by parts, and analogs of (2.15). These properties hold for the
expectation (2.6), as we saw in the case of k(x, y). We omit further details.

In order to handle /l1/2-derivatives of irreducible kernels, we prove that the
generalized expectations are C°° in λ1/2. Since

we see that A1/2-derivatives of generalized expectations yield sums of other
generalized expectations. On these we perform an asymptotic expansion in λ1/2 as
in [16]. Each integration by parts produces derivatives of χ-factors as well as the
usual perturbation expansion. We establish in Sect. 4 that expectations of δχ(x)'s
are exponentially small in λ112 and that truncated expectations cluster. Hence the
derivatives of χ-factors contribute only to the remainder in the asymptotic
expansion, and the A1/2-derivatives are bounded as λ->0. Using their repre-
sentation in terms of convergent Neumann series of expectations, irreducible
kernels and ̂ -derivatives of irreducible kernels are also C00 in λ1/2. As in [17], we
commute /L1/2-derivatives with f-derivatives to see that /ί1/2-derivatives of irreduc-
ible kernels vanish to the appropriate order in t at ί = 0.

For the sake of definiteness, we consider only k(x, y) in the remainder of this
paper. From the above remarks, we see that the expansion applies as well to other
r-particle irreducible kernels considered in [5, 6,17, 20]. However, λ must be taken
sufficiently small, depending on r.

3. An Expansion for Irreducible Kernels

In this section we prove two-particle decay of k(x, y), assuming some bounds on
derivatives of k with respect to u, r, and t. These bounds will be proven in Sect. 4.

Theorem 3.1. Let ε > 0 be given. Then for λ sufficiently small and u = r = t= 1,

f\\ p-2(\-ε)\xo-yo\ (T. Λ\

Here fe C°(Axx Ay), where Δx and Δy are l-lattice squares with lower left corners at
x and y, respectively.

Proof. For simplicity, write simply k for the left hand side of (3.1). For every b
within LoΐΛwQ apply the identity

k(ub =1) = k(ub = 0) + } / - k(ub)dub. (3.2)
o o u b

The result is the following expansion for k:

^fc(M,r). (3.3)
Γu

The sum runs over all possible configurations of u = 0 bonds and — bonds. For
ou

each configuration we let Γu be the union of the — bonds. The remaining bonds
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have u = 0. We use the notation δΓ

u

u = f\ -—. The integration runs over the

differentiated ubs. beΓ« b

We begin to control the sum by performing a resummation. Resumming a

bond b means fixing the state I w = 0 or — I of all bonds but b and applying (3.2) to b
\ δu)

in reverse. We define for each term of (3.3) the set of bonds to be resummed.
Clearly this definition must be invariant under changes in state of bonds to be
resummed, for otherwise both terms on the right hand side of (3.2) would not be
present. When the definition is invariant, we say the resummation is without
constraint. ^ ^

We say a set of bonds is a —- contour if it is a simple closed contour of —
δu g δu

bonds. We resum all bonds that are interior to some — contour. Changing a
δ du

configuration inside a — contour cannot alter the fact that bonds inside the
δu

contour are resummed. Hence the resummation is without constraint. After
resummation, every configuration consists of a collection of -— contours, with

δ
M = 1 inside the contours. Bonds outside all contours may be either —- bonds or

Λ 1 J du

u = 0 bonds. ,
We expand in the r-parameters for bonds with ub = 0. These bonds as well as

δ \ δ \
— bonds have no — contours surrounding them, by construction. Therefore
δu I δu

every term in ]Γ with a phase boundary around b is multiplied by 0 = ["J ub,.
Σ b':dist(b',Σ)^L

Thus the spins near b agree in sign with the plus phase that exists in ~ Λ This
property of the resummed w-expansion is what will allow the use of inequalities on
partition functions in section five. The inequalities are crucial for handling the case
μΦO. In addition, Condition A will not be violated by introducing Dirichlet data

onii = 0 bonds outside — contours. For each such bond the identity
δu

k(rb=l) = k(rb = O)+]-^k(rb)drb (3.4)
o orb

is applied. The result is

k(u = r=l)= X \dudrδΓ

u«δΓ/k(uj). (3.5)
ru,rr

Here Γr is the union of the — bonds and δΓ

r

r= f ] — . The sum runs over all
VT beΓr Vrb

configurations of— bonds, — bonds, r = 0 bonds, and M = 1 bonds that may be
δr δu ~

obtained by the above construction. Thus every bond inside a —- contour has
δu

u— 1, while every bond outside all — contours is either —, —, or r = 0.
du du or

For each term of (3.5), let W be the closure of the connected component of
R2\{r = 0 bonds} that contains Δx. By Proposition 2.1, the term vanishes unless
also ΛyQW. The measure factorizes across δW, so connected expectations vanish
between W and — W. Using the representation of k as a convergent Neumann
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Fig. 1. A typical term in the expansion for k. Solid lines indicate Dirichlet contours; dashed lines

indicate — bonds. Shaded regions have u = r = 0, while region 2 has u — r=\. All other bonds are —
du dr

bonds. W consists of regions 1 and 2, while V consists of region 1 only. The positions of Δx and A are as
indicated. Spencer lines (not shown) are inserted above the arrows

series of connected expectations (2.12), we see that k does not depend on the status
dk dk

of the bonds of ~ W. Thus -— = —- = 0 for b outside W, and the only
dub drb

nonvanishing terms have u = r = 0 outside W. Therefore, we need only sum over W
and its bond configuration. ~

Let V be the set obtained by deleting the interiors of — contours from W. All
du

bonds of W\V have w = r = l . K i s a connected union of lattice squares because W is,

and because the components of W\V are open sets whose boundaries — contours

meet dW or each other at isolated points or not at all (see Fig. 1). ^ '
We next introduce Spencer lines. Let I be the set of integers i such that j ?

separates Δx from Δy and such that j ^ never meets a — bond. Define the Spencer

line at iel to be £ = £ n W ! «£?. does not leave V because it may not cross —
* du

contours. Thus the bonds of j£f. are either r = 0 bonds or -— bonds. Condition A is

not violated by introducing these Spencer lines.

With ί. = 0, there is a complete contour of r = 0 bonds or t = 0 lines separating

Δx from Δy From Proposition 2.1 we conclude that fc(£. = 0)=—fc(ί. = 0) = 0.

Therefore we may apply Taylor's formula with remainder to obtain

(3.6)

The integration extends over ί fe[05 1] for iel. We evaluate u- and r-derivatives of
k by differentiating the right hand side of (3.6).

The next proposition gives the bounds on derivatives of k that we use to
control the expansion and obtain two-particle decay.

Proposition 3.2. Let fe= j"fe(zl5 z2)f(zvz2)dz be as in Theorem 3.ί and let ε > 0 be
given. Consider terms of the above expansion. There exist positive constants a, c such
that for λ sufficiently small

\tk (3.7)
iel



178 J. Z. Imbrie

Here \ΓU\ and \Γr\ are the number of bonds in Γu and Γr, respectively, and \I\ is the
number of integers in I.

The proof of Proposition 3.2 is deferred to section four. Note that the case
x o = j ; o of Theorem 3.1 is a special case of this proposition. In the rest of this
section we consider only xo=¥yo.

We showed above that nonvanishing terms in (3.5) are determined by W and
its configuration. These are in turn uniquely determined by V and its configuration
because the bonds of W\V have all been resummed to u = r=l. V does not
necessarily contain Δx or Δy but it must at least surround them. Since V is
connected, the number of F's with a given number of lattice squares \V\ is bounded

by eo{i)\v\^ E ach SqUare has no more than 3 4 possible configurations I—-, —, or
\du dr9

r = 0 o n each of four bonds . Thus the total number of terms with a given | V\ is

bounded by β0 ( 1 ) | Fl.

To every square of V we may associate at least half of a derivative bond —

\ou

or — I. Otherwise W would be divided into parts by r = 0 bonds, contradicting the

construction of W. (It is impossible to have |FF| = 1 because xoφj;o.) Therefore,

_ d
For every ie(xQ/l, yjΐ] (or (yo/l, xo/ΐ]), either iel or if. meets a —- bond of W.

No more than two if/s may intersect one — bond. Therefore |/| + 2\ΓU\ ^ \x0 — yo\/l.

ou

We split the convergence associated with — bonds into two parts: one to control

|F|, the other to assist in the two-particle decay. Taking λ small enough so that

\aλ-ιl2l2/L2^cl and
we may bound each term using (3.7):

ΆΓuΆΓr
32

°u °r 11 ̂ 2
iel Oli

p

-cl\V\l2 -2{\-ε)\χo-yQ\

Taking the supremum over the region of wrί-integration, we have for λ small
00

enough £ eo(i)\v\e-ci\v\i2^ s o t j i a t ^Q s u m of ajj terms is less than
\V\ = 2

ll/llL«e" ) | j c o~y o l τ h i s completes the proof of Theorem 3.1.

4. Analyticity Bounds

In this section we prove Proposition 3.2 using analyticity techniques [12, 20].
Derivatives of k are bounded by obtaining bounds on k uniform in large domains
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of complex parameter space and by applying Cauchy's formula. The chief
advantage of these techniques is the avoidance of factorial growth in the number
of derivatives. We shall establish large analyticity domains for u. For r- and
ί-derivatives, however, we must follow Spencer [20] by introducing dependence
on additional parameters h(oc) which possess large domains of analyticity. The r-
and ί-derivatives are then expressed in terms of /^-derivatives.

Let 7(2) be the disjoint union of two copies of / and let β be the union of 7(2)

with the set of bonds in Γr. For any a Q β let δ"t = J~[ —- f| — and denote the set of
bea Vrb ieoc ^ί

partitions of β by ̂ (β). The basic formula for r- and ί-derivatives is [15]

= Σ ίΠt^C ^Λ^-^r.t). (4.1)
πe&>(β) αeπ

We localize the derivatives of covariances by expressing C(zv z2) as a sum

C(Zί,z2)= Σ Cfa,z2), (4.2)
jeZ4

where j = (j1j2) and

Cj(zv z2) = Xj^i)C(zv z2)χj2(z2). (4.3)

Here χ7i, χJ2 are the characteristic functions of the /-lattice squares with lower left
corners at ljv lj2, respectively.

We now express the right-hand side of (4.1) in terms of new parameters /z(α):

Π ί Π Π ( l + iΛ(α)3;(C/Jφ)Rχίe-"dφ(r,ί)|fc = 0 . (4.4)_ y
πe&(β)

Let <5f = Σ Π \ Define the /^-dependent expectation by inserting the 1+hA
πegP(β) αeπ ^^\^)

factors of (4.4) into (2.6)

Σ Π
Σ b:dist(b,Σ)^L ajβ je (4.5)

Σ Π « b ί Π U
Σ b:dist(b,Σ)^L aQβjeZ4

We use these new expectations to define k(h) from the formula (2.13). The
covariance C(r, t) is given the following /z-dependence:

C(r,tAx j 3;) = f Π Π (l + ih(oc)d^tCjΆφ)φ(x)φ(y)dφ(r,t). (4.6)
ocQβ jeTL4

Convergence of the Neumann series in appropriate domains of the parameters will
be guaranteed by Theorem 4.1. We remark that ^-dependence is introduced only
after integrations by parts and other constructions have been applied to express
kernels and their /l1/2-derivatives in terms of sums of products of expectations.
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Let FR denote the numerator of (4.5). From (4.4) we have dβ

rtFR\h = 0 = δβ

hFR\h = 0

and similarly for C(h). The operator δ{ behaves just like dβ

rt with respect to
products and quotients. This implies that

See Lemmas 3.1 and 3.2 of [20] for proofs of these facts.

We need to consider R's with derivatives —- so that we may be able to estimate
δφ

expectations such as B in (2.11). We must first isolate the ^-function contributions
to expectations with derivatives. For example, when two derivatives act on a
function of j : φ(x)n: dx, there are two terms:

δφ(x)δφ(y) --•>•— " " '

= n{n - 1 ) : φ(x)n~2: Ω'(J: φ{xf: dx)δ{x -y)

+ n2:φ(xΓ1::φ(yγ-ί:Ω"{$:φ(xT:dx). (4.8)

We denote the first term by dφ(x)Ωδ(x — y), and the second by dφ(x)dφ(y)Ω.
Similarly dk

φ(x) is defined as the term that results when k — 1 derivatives all act on

the : φ(x)n~x: factor in Ω. In general, when several operators <3̂ (χ.) act on Ω

we use the formula

Note that the 3^'s do not act on each other. If any fc >n, we get zero. The
generalization of (4.9) to functions of arbitrary : φ(f)n: is straightforward. For
products, we have a Leibnitz rule:

|Π ^(x ;) | Ω,Ω2 = Σ^ | Π W ] Ωi) I Π^ ^^.-)] Ω2J • (4 !0)

Ordinary derivatives may be expressed in terms of the d£(x)'s using the formula

) Π δ ( x , - x ( J β (4.H)

Here i^ is the smallest integer in β ^J*.
The K's we consider in the next theorem are of the form

:φ(xi)
Pi: Π ^ ) Π 3 ^ dx, (4.12)

where w(xv...,xn)eLpl f | zl is supported in a product of /-lattice squares, and
\t=l
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p > 1 is fixed, d (x) is the same as except that it operates only on χ-factors or
χ δφ(x)

their derivatives. For the truncated expectation <RX R2} we let w be a function of
both sets of variables and let the integration be implicit in the notation. Infinite sums
of products of expectations of R's of this form are sufficient to construct the
irreducible kernels and their /l1/2-derivatives. When we write (Rί;R2y it is
understood that the derivatives of Rί do not act on the monomials of R2. We define

deg,R= £ Pi + ̂ n — n^ and assume all fct 5Ξ4. Let D(RVR2) be the distance

between the supports oίRί and JR2. We define δ(R) = n2 — nί to be the number of δ*'s
in R and δχ(R) to be the number of δχ's.

We make a number of definitions which will enable us to describe domains of
analyticity in the next theorem. Let Γa Q Γr be the union of the bonds in a and let
Ia = I(2)na be the integers in α. Define d(oή = sup \i —j\ if Ia Φ 0 has no duplications

d(a) = — 1 if Ia = 0 otherwise d(oc) = oo. Define δ(<x) = sup dist(fe, jSff)// if α contains
fo,ieα

only bonds or only integers then set <5(α) = 0. As in [15], let L(Γa) denote the set of

linear orderings of the bonds in Γa and define if(Γα)= (J L{Γ'\ For each

oe^{Γa) we define a length \o\ in units of I that arises in estimating derivatives of

covariances. If o = (bv ...,frn), define b'1=b1 and b^ inductively as the first bond

after b'._ 1 not touching b' _ v Then set |o| = ]Γ dist(^ , fe^._ ̂ /L If ί>2 does not exist

we set |o| = 0. By convention, {0}GL(0). j~2

Theorem4.1. Let ε > 0 and p>l be given, and let λ be sufficiently small Consider
bond configurations occurring in the final form of the expansion of section three.
There exist positive constants α, c, g, d, and K such that (Rt ;R2} is analytic in u
and h and

δ ( R R ) / 2 x ί d R R D ( K 2 ) (4.13)

for u,he 3){π). Here π is any element of έP(β) and 2{n) is the complex domain defined

by

du

ub = 0, b a M = 0 bond

(4.14)

oeL(Γx)

h(<χ) = 0,(xφπ.

If δχ(RίR2)>0, a factor e~dλ~U2 can be included on the right-hand side of (4.13). The
bound (4.13) holds uniformly in UQgRίR2 if M is also allowed to depend on λ. An
analogous bound holds without clustering for untruncated expectations.

This theorem will be proven in Sects. 5 and 6 with a low temperature cluster
expansion. We remark that bounds uniform in degjR1K2 are needed to prove for
fixed λ that one-particle irreducible expectations of arbitrarily high degree have
two-particle decay, as required by [5]. We now prove a lemma for Proposition 3.2.
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Lemma 4.2. Under the hypotheses of Theorem 4.1, k — \k{zvz2)f{zvz2)dz is
analytic and uniformly bounded by ||/||Loo for u, h in @{π\ for any feC°(Ax xΔy).

Proof We express the 5-operator of (2.11) in terms of expectations of 3^'s:

( 4 1 5 )

Theorem 4.1 guarantes that <5^(x)> and (dφ(x) dφ(y)} are locally in Lq, q<oo. Also,
(d (x) d (y)y decays exponentially in \x — y\. Moreover, both expectations involve
at least one derivative so there is an explicit factor of λ1/2 in (4.13) which more than
dominates the diverging factor e

Klde&RiR2m Also, for any function geLq(Δ\ we have
C ^ ^ e ^ n L 0 0 ^ 2 ) . Together these facts imply that (ί + BC)'1 is a convergent
Neumann series for λ small enough. For details see [17]. Using again the factor /ί1/2,
we have

^(I/IILOO (4.16)
for λ small.

Proof of Proposition 3.2. We apply Cauchy's integral formula to evaluate
derivatives of k. From (4.7) we have

iel Oli

= Σ ^ Π g D -

(4.17)

where /? = Γ ru/ ( 2 ). The parameters ub, rb, ί. are all in [0,1]. The contours of
integration are the largest ones allowed by (4.14):

\h(ot)\=( Σ e-cl^\\clδ{a)e2^Γ^e{ι-El2)ma)Jrl\ (4.18)
\oeL{Γx)

This yields the bound

^ r π d2 ,

iel

, e

-eI|/|/2 V Π V g-cilolg-cWί^^-εZίdίαJ+DM^ (4.19)

Here we have used the fact that £ |ΓJ = |ΓJ and £(d(a) + l)^2 |J | . Hence (3.7)
aeπ aeπ

will be proven if we can show that

e-cl\Γr\e-εl\I\/2 V Γf V e-cl\o\e-cWa)e-εl(d(a)+l)/4.<ι^ (4.20)

πe^(β) aeπ

We use some counting arguments from [15].
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We start by expanding the left hand side of (4.20) into a sum.

e-cl\Γr\e-εl\I\/2 y γΊre-cl\oι\e-clδ(aι)e-εl(d(aι)+l)/4-i (4 21)

{{oι,uί)} ί

Here {(o , αf)} is a set of ordered pairs (oί5 α ) with o e &{Γr), ot = Γα, and {αj e
We allow of = 0 and we occasionally ignore the distinction between o{ and the set of
bonds ordered by o . The sum in (4.21) is bounded as follows:

Σ Γ

<

VII

lie'

π
(o,a)

expi

(l + e" d | o | e

Uo,α)

) g εί(d(α)+l)/4j

,-cίδ(α)^-εί(d(α)+l)/4\

;-dί(«,e-«I(d(., + 1 η
( ~el(d(a) +1)/4\

\ (o,a) ) \ας/<2) /

In the second exponential, there are |/| choices of minα, the smallest integer in
α. Fixing minα, there are at most 2 2 C choices of α with d(a) + l = C. This
combinatoric factor is dominated by e~εlc/4, so the second exponential is bounded
by βo(1)l/ . In the first exponential, fix o. The sum over minα and the sum over α are
controlled by the factors e~d(5(α) and ^~ε/(d(α)+1)/4

5 respectively. The number of
ofeJSf(ΓΓ) with |o.| ̂ m is bounded by | Γ r | β

0 ( 1 ) ( m + 1 } [15]. Thus the second exponen-
tial is bounded by e0{1)lΓr]. Putting these bounds into (4.21), we obtain (4.20). This
completes the proof.

5. The Cluster Expansion

Theorem 4.1 is proven in this section with the use of the low temperature cluster
expansion of [16]. We introduce a new way of organizing the expansion that is
related to some ideas of Pirogov and Sinai [18]. Since we consider μφO, we do not
have a symmetry φ^ — φ. However, an inequality on partition functions that was
proven with correlation inequalities in [16] is available for use. The ability to
make use of this inequality is the main advantage of the method of removing phase
boundaries given in section three. It allows us to handle a nonzero external field.
The idea of the resummation technique is to multiply every factor in the cluster
expansion by an appropriate ratio of partition functions. The ratio is bounded by
1 by the inequality on partition functions.

The resummation transforms the cluster expansion into a form in which the
techniques of Baίaban and Gaw^dzki [1] are applicable. Their ideas originate in
the work of Kunz and Souillard and are related to the formalism of [11]. The
notion of connectedness that we need is more complex than that of [1].
Nevertheless, explicit division by the partition function is possible and the
Kirkwood-Salzburg equations of [1] may be used to prove convergence of the
expansion.
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We start by generating the basic expansion and establishing bounds needed for
convergence. Some technical estimates are deferred to Sect. 6. In the second half of
this section we define the resummation and prove convergence of the expansion.

The first step is the expansion in phase boundaries. In accordance with (4.5), we
have

,Σ> (5.1)
Σ

where

FR,E= Π " b ί Π Π(l + Ίh(«)d:,Cj-Aφ)RχΣe-vdφ(r,t). (5.2)
b:dist(b,Σ)^L aQβ j e Z 4

We translate φ as in [16] by a function on R 2 that depends on Σ. The new field
ψ(x) has a mean that behaves roughly like σ .̂ξ+ and that is exactly σ€ζ+ farther
than L/2 from Σ. Choose a C00 bump function ζ(x) on IR2 satisfying

ζ(x) = 0 for \x\>\ (5.3)

ζ(x) = ί for | x | ^ j .

Let η be a small constant (independent of λ), and define the new field by

The meaning of ψ depends on Σ, though the dependence is not explicit in the
notation. Let dψ(r, t) denote the Gaussian measure in which ψ(x) has mean zero
and covariance equal to that of dφ(r, t). We define Q{Σ\ the translated interaction
for the spin configuration Σ by the equation

e~vdφ{r, t) = e-Q(Σ)dιp(r, t). (5.5)

See [16] for an explicit formula for Q(Σ). Note that ψ(x) — φ(x) = 0 wherever r Φ1
or ίΦ 1, by Condition A.

In each FRΣ we introduce Dirichlet data into dψ(r, t) on those bonds of the ITL2

lattice that are farther than L from Σ. Denote the set of such bonds by $(Σ). The
covariance in the S^C^-factors and in the measure now depends on a new set of
parameters {sb}be@{Σ) which interpolate between zero Dirichlet data (s& = 0) and
absence of Dirichlet data (s b =l). We perform a cluster expansion in these new
parameters:

= l ) = Σ ldsdΓ

s-FRιΣ{s). (5.6)

Pi

Here Γs denotes a subset of 3S(Σ) and dΓ

s

s= J~[ ——. The integral runs over the
beΓs VSb

range [0, 1] for each sb, beΓs. For be^(Σ)\Γs we set sb = 0 in (5.6).
Let Zκ denote the closures of the connected components of R2\{s = 0 bonds}.

For simplicity we defer the integration against the test function w of (4.12) and take
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R to be a product of: ̂ ( x ^ 's, δ*'(;cf)'s5 and 5x(xf)'s. We claim that FΛ > 2. may be
written as a product of F's associated with each Z κ :

bizκ

dist(b, ΣnZκ)^L

•ί Π Π (l +

In this formula, it is understood that derivatives dk and -— in R7 and A have
φ oφ φ

been applied in the integrand as it was before the translation to the φ-field. When
this convention is not in effect, we will use the letter ψ rather than φ to denote
derivatives, e.g., Aψ instead of Aφ. The bonds of Zκ are by construction farther
than L from any ΣnZκ,. Therefore the u-factors may be distributed as in (5.7). The
factor Rχe~Q may be written as a product, as in [16]. Moreover,

3;fC/r,ί,s) = 0 (5.8)

unless both Ah and AJ2 are in the same Zκ. Thus (5.7) is valid. In fact, f ] runs only

over a such that for all b, ieα, b n i n t Z ^ φ θ Φ ^ . n i n t Z ^ . For the other α's we have

The quantity FR Σ Zκ depends only on ΣnZκ and sb,beZκ. We may write (5.1)
and (5.7) as

FR=Σ Σ mdsd^F^β). (5.9)
Σ Γsζ0B(Σ) K

Each boundary segment of Zκ is either in a sea of + spins or in a sea of — spins. Let
dZ^ be the + boundary of Z κ and dZ~ be the — boundary. Denote the triple
(Zκ, dZ^, dZ~) by Zκ. We call such a triple a cluster. We reorder the summations
in (5.9) by summing first over all terms compatible with a given {TLK} and then
summing over all possible {Zκ}'s. With

Σ $dsd^nZ«FRΣnZκZκ(s) (5.10)
ΣnZ

compatible v

we have

ΣnZκ,ΓsnZκ

compatible with Z κ connected

FR= Σ Πe(z.) (s ii)
{Έκ} admissible K

{Έκ} is admissible if [j ZK = 1R2 and the Zκ's agree on boundary signs. This step is
K

possible because Σ in (5.6) factors into independent sums for each Zκ.
Σ,ΓS

We also define partition function type objects Ω(¥). In contrast to Z, ¥ need
not be connected.

Σ Πβ°(Zκ) (5 i2)
{Zκ} admissible inV K
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Here ρ°(Έκ) is the same as ρ(Έκ) except R = 0 for every term in (5.10). {ΊLK} is
admissible in ¥ if (J Zκ = V and the Zκ's agree with each other and with ¥ on

K

boundary signs.
We now formulate bounds on ρ(Έκ) and Ω(¥) which yield convergence of the

expansion. Denote by \Z\ the number of /-lattice squares of Z.

Lemma 5.1. Under the conditions of Theorem 4.1, there exists a constant c1>0 such
that for λ sufficiently small and dZ~ = 0,

l l ρ ί Z J I I ^ ^ M i ί d e g ^ ) ^ ^ 2 ^ ^ 8 ^ ^ " 0 1 ^ 2 1 " 1 ^ (5.13)

If dZ~*0 the factor λδ{Rz)l2 is replaced by A~degRz/2. // 3 Z ' Φ 0 + a Z + or if
δχ(Rz)>0 we include factors of e~dλ~1/2. This bound is independent of degRz if
χδ(Rz)/2 ιs repiaced fyy χ-dQgRzi2^ fiere ^ p a r e dual Holder exponents and the Lq

norm is with respect to the product of the l-lattice squares in which the uncontracted
variables of Rz lie. If Rz = 0 we replace the Lq norm with absolute value signs.

With R = 0 and A any l-lattice square, we have

ΔM~ι^λXm\ (5.14)

for some constant c2. Finally, if u = r = t=l and h = 0 in F, we have

Ω ( ¥ ) ^ Ω ( ¥ + ) , (5.15)

where ¥ + = ( K ^ K 0 )

Proof For ρ(A,dA,0) there is only one term in (5.10) that contributes:

ρ{Δ,dA,ΰ) = FR^+Δ. (5.16)

For Δh = Ah = A we have da

nCj = 0 so that the (1 + hdCΔ) factors are absent in (5.7).
The product of w's in (5.7) is empty. With JR = 0 we are left with

ρ(A,dA,0) = $χΣΞ + e-W+>Δ)dψ(s = OondA). (5.17)

The right-hand side is bounded below by e~
C2λU212 in [16, Lemma 4.2.2]. This

proves (5.14).
With u = r = t = l and h = 0 in V, Ω{Ψ) and Ω(¥+) are partition functions of the

type considered in [16]. The inequality (5.15) is proven using correlation
inequalities in [16, Lemma 4.2.3].

We now establish (5.13) with the use of the following lemma, proven in Sect. 6.

Lemma 5.2. Under the conditions of Theorem 4.1, if Σ=+ then

(5.18)

for some dΐ>0. \Σ\ denotes the length of the phase boundary Σ. For a degRz

independent bound, or if Σ is not identically +, we replace the factor λδ{Rz)/2 with
^-degi^/2 jf sχ(Rz)>0, we include a factor e~d'λ~υ\ Here ΓsQintZ, Σ = ΣnZ,s = 0
on ΰZ, and || \\Lq is as in Lemma 5.1.
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If |Z| = 1, (5.13) follows immediately. Consider the case | Z | > 1 . The factor

λδ(Rz)/2 i n ^5 1 3 ) m a y b e obtained from e-*i*-i/2W in (5.18) with a decrease in d1 if Σ
is not identically + and dZ~ = 0. We may extract a factor e~"dλ~1/2 with a decrease
in dx if 3Z~ Φ 0 φ 3 Z + because | Σ | > 1 for all terms of the sum (5.10).

(212\Z\\
The number of 2"s with a given |Σ] is bounded by . Therefore

\ 1̂1 /
y

Σ compatible
withZ

The number of Γs's in Z is bounded by eo ( 1 )lz '. Z\ΓS cannot have more than one
component. Thus in order for Σ, Γs to be compatible with TL, there must be a
certain density of either phase boundaries or bonds of Γs. This is expressed in the
inequality

(5.20)

Therefore,

e-cl\Γ8\e-d3λ-W\Σ\<e-cl\Z\/2 (5.21)

for λ sufficiently small. The factor e~cl^/2 dominates the <?o(1)lzl factors and
establishes (5.13). This completes the proof.

Proof of Theorem 4.1. We rewrite the expansions (5.11) and (5.12) in terms of new

objects ρ(Έ)Ω(V)/Ω(V+). Consider first (5.12) with dV~ =0. For a term in £ , let
{Έκ}

{ZJ be the clusters that are not surrounded by minus loops of any cluster. For
each Zj, let /• α be its minus loops. Note that the Z/s are positive, i.e., they have
plus external loops. Therefore intz?.?αnZ = 0. We resum the expansion (5.12) inside
all / ί α 's. As in Sect. 3, this resummation is without constraint. Let
Vt = Vn I J m t T " and let Vi = {Vi,dVindV+, (J / t > ) . The resummation inside the

^ α's yields Π Ω ( ¥ i ) τ h u s (5 1 2 ) becomes
i

ΩW= Σ ΓHΛW,)]. (5.22)
{Έi} positive ί

restricted

Restricted means that no TLt is surrounded by a minus loop of {ZJ.
We claim that the following formula holds for any ¥ with dV~ =0:

Σ
{ΊLK} positive

unrestricted in^

(5.23)

Here ]Γ is over Zκ's that may be surrounded by minus loops. The Zκ's may

disagree with each other on boundary signs but they may not disagree with ¥ .
They may not overlap and their union must equal V. We prove (5.23) by induction
on \V\. If | F | = 1, then Ω(V) = ρ°(V) so that (5.23) holds. Suppose (5.23) holds for
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\V\<N. Rewrite (5.22) as

= Σ
{Zi} positive

restricted

and substitute (5.23) for Ω(V+). Since \Vi\<\V\
result is

(5.24)

, this is a valid operation. The

Ω(V)= Π
{Z,} positive ί
restricted

π Σ
{TLji} positive

[^unrestricted in V?

(5.25)

The unrestricted sums over {Zj} relieve the restriction on ]Γ so that the sum over

{Zκ} = {Zt, Zj.} is unrestricted. This proves (5.23) for arbitrary ¥ with dV~ =0.

An analogous formula holds for Ω(Y) = Ω(Ψ) I f ] ρ°(Δ9dΔ9SS) and
/ ΔQV

1 ρ°(zl,δzl,0):
ΔQZ

Σ
{Έκ} positive

unrestricted in

(5.26)

We need not consider ΈK = (Δ9 dΔ, 0) in (5.26) because ρ°(J,3J,0) = l. With

= FRI f ] ρ°(zl, δzJ, 0), (5.26) holds for F 0 -Ω(1R2). (Note that ρ°(Δ, dΔ, 0) = 1

if )

Equations (5.22)-(5.26) are closely related to some equations in [18]. We desire
a generalization of these equations for R Φ 0. Multiplication by ratios of partition
functions containing R-factors must be avoided. This entails a consideration of ¥ s
with 5 F " Φ 0 .

The basic objects we need to consider will be denoted ΞΏ p(Z). Z is a connected
cluster, but D need not be. D may not even make sense as a cluster. We will have
dD + udD~ QdD, but no other relation between D,dD + , and dD~ is assumed. The
subscript p is either 0 or 1. If the outer boundary of Z is minus, then ΞΏ P(Z) is
defined to be zero. If Z is positive, let {/J be its minus loops. We can assume that
D= [j Da and Dα£mt7α. Define Ώ=Ώ+ if p = 0; ί ) = Dif p = 1. If ί)disagrees with

α

Z on boundary signs, then ΞDp(Z) = 0. Let L = /(Jint/α, 0, (J/Λ and set

¥ = L \ D Ξ ( L \ D , δ(L\D)ndD + , d{L\D)r\(dD~κjdL~)). If ¥ does not make sense as
a cluster with every component of dV given a unique sign or if Ω(¥) = 0, then
ΞΏ p(Z) = 0. Finally, for Z positive and ¥ a sensible cluster with Ω(¥)Φ0, we define

(5.27)
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ΞΏ p(Έ) is a dressed-up version of the objects appearing in (5.26). The purpose
of the definition is to have D indicate regions with R- factors that cannot be
included in ¥ . The subscript p determines whether it is appropriate to delete D or
D + from V. Ξ^ p(Z) is defined similarly but with ρ° replacing ρ in (5.27).

We next introduce operations that change the subscripts D, p on Ξ. Using
these operations, the expansion will be converted to a form very close to that
considered in [1]. The operations are different from the ones used in [1] and are
more complicated. We say a cluster is a vacuum cluster if it contains no R-factors
otherwise it is a nonvacuum cluster. For the first type we use the letter X; for the
second we use the letter Y. TL may refer to either type. We consider arbitrary X's
but only positive Ys in defining the operations. We use the notation

17(Y19Y2) =

0 if Yχ and Y2 overlap

changes Ξ° P(YJ to ££,0(^1) if a minus loop of Y2 surrounds Yx

changes S£>p(Y2) to Ξ£>0(Y2) if a minus loop of Ύ1 surrounds Y2

1 otherwise,

0 if X and Y overlap

changes Sj>fP(Y) to Ξg>0(Y) if a minus loop of X

surrounds Y and X is positive

changes ΞΏ p{%) to ρ{%) if a minus loop of Y surrounds X

[leaves ρ(X) alone if X and Y do not overlap]

changes Ξ^p(Y) to Ξ^uXtP(Ύ) if a minus loop of Y surrounds

1 otherwise,

0 if X t and X 2 overlap, or if they disagree

on the sign of a common boundary

changes ΞD^(XJ to ρ(Xx) if a minus loop of X 2

surrounds 3^ and X 2 is positive

changes ΞΏtP(K2) to ρ(5£2) if a minus loop of Xx

surrounds X 2 and Xx is positive

[leaves ρ(Xx) or ρ(X2) alone if X t and ^ 2 do not overlap

or disagree]

changes £ ^ 0 ^ ) to ΞΏκj^p(JL1) if a minus loop of X t

surrounds X 2 and ^ is positive

changes ΞD p(JL2) to S D u X i j P (X 2 ) if a minus loop of X 2

surrounds 3 ^ and JL2 is positive

1 otherwise.

We resum the expansion (5.11) by summing over all {YJ's consistent with a

given {Jίy} and then summing over {\.}. [jXr must contain all the squares in
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which i^-factors appear. We also divide by f|ρ°(zl, dA, 0)
A

FR=Σ U~e(\) Σ Γ U W (5.28)
{Xr} r {γs} s

Here YsΦ(A,dA, 0), but by adding such squares to {X̂ , Ys}, it must be possible to
obtain an admissible {Zκ}, in the sense of (5.11).

As in (5.22), let {Zf} be the clusters that are not surrounded by the minus loops
of any cluster. 7Lt can be either a Ys or an X,. For each TLb let *f. α be its minus loops.
As before, the Zf's are positive. We fix {ZJ and {X,.} and resum the rest of the
expansion. The summation inside (J /. α yields a partition function Ω(Yf) as

before. In this case, however, the presence of X/s inside ίUa means that the X/s

must be deleted from Y. Setting V. = Lλ (J X,, where !Lf = /(J mt7~, 0, (J if. \ we
\ Y y α ' a ' J

obtain

FR= Σ Σ Π έ(^r ')Π[§ ( 0 ) ( z i )Ω( v i )] ( 5 2 9 )
{Xr} {Zι} positive r' i

restricted JLr'ΦiZi}

Expressing Q^°\Z^Ω(y^ in terms of S's, (5.29) becomes

= Σ Σ Π -QO^miΞZ^mVn, (5.30)
{Zί} positive

restricted Xr'ίlZi}

where E>.= [j \,.

We rewrite (5.26) in terms of S's to obtain

{¥κ,} positive κt

unrestricted in V,+

where ID = (J X,.,, L = (J int/κ. α, and /Kι α are the minus loops of YKι. In
r' J r . ς L K l α

deriving this step, we have matched the way Yκ was defined for (5.25) with the way
V was defined for (5.27). We used p = 0 in (5.31) because Yf

+ appears on the left-
hand side, not Y . With Y.+ appearing, any minus loops in X/s going into Όκ. had
to be changed to plus by using p = 0. We may relax the condition that {Yκ.} can be
supplemented with (A, dA, 0)'s to agree with Yf

+ on boundaries, because terms
violating the condition h a v e S ^ 0(YK.) = 0 for some Yκ.. Inserting (5.31) into (5.30)
yields

ΪR= L L 11 £(*»•') 11 P D . ' I W L 11
{Xr} {Zι} positive r' i [ {YKJ positive κt

restricted Xr'φ{Έt} unrestricted in Vt (ς. T>Ί\

We rewrite this expression in terms of sums of products of S(

0°\(Z)'s. The
differences in subscripts on S's are handled with the ^/-operations

xλ positive (Yκ) positive
restricted unrestricted in u,

= Σ Σ Σ Π
(Yκ) positive r^<r2

nrestricted in u,Ff

Π U(Y,I,Y,ϊ)Πs..1(Xr)Π2?,1W. (5.33)
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The U- operations commute, because the effect of a U cannot be undone by
another U. Every J^ that is surrounded by a minus loop has its Ξ converted to a ρ.

This yields the Y\ Q(\) in (5.32). Every Ys that is surrounded by a minus
r':Xr'φ{Zi}

loop has its Ξί converted to Ξo. Ys's and JL^s with minus loops surrounding 3^,'s
have the X/s joined with their D subscripts. Thus the subscripts on S's in (5.32)
are achieved.

We make use of the U = 0 and Ξ = 0 cases to remove the restrictions in (5.33). In

the sum £ , X/s with minus outer boundaries cannot appear unless surrounded
{ }

by a minus contour of some Z . But Ξ(Xr) = 0 for JLJs with minus outer
boundaries, and ΞfJQ is not converted to ρ(X,.) if X,. is not surrounded by a minus
contour of a Zf. Therefore we may lift the restriction. The restriction that the ¥ s ' s
in {ZJ not disagree with X/s on common boundaries may be lifted because for
such terms Ξ° 1(Ys) = 0. As in the passage from (5.25) to (5.23), the sum over {ZJ

and {¥κ} becomes an unrestricted sum over {¥s} positive in IR2\ [jXr. We may

extend this to an unrestricted sum in IR2, because the extra terms have overlapping

X/s and Ys's so that (7 = 0. We change from £ to £ —- £ and then extend

Σ to overlapping Y's. Here ( ¥ l 5 . . . ,¥ k ) is an ordered family of ¥°s. Finally,
( ¥ i , . . . , Y k )

we extend £ to all sets of X/s, including overlapping X/s and X/s that disagree

on common boundaries. The extra terms have 17 = 0. The result is

FR = Σ Σ h Σ Π υ&rs \ 2 ) Π u(\, YS){Xr} k *• ( ¥ i , . . . , ¥ k ) r 1 < r 2 r,s
positive

• Π ^ . ^ Π S u W Π ^ i W (5-34)
si <S2 r s= 1

Every i^-factor must be contained in some J^. The sums are unrestricted in all
other respects. The X/s need not be positive. The expansion now has the same
form as the one in [ l j .

We follow [1] and obtain an explicit factor of FQ from (5.34). Define A{Έ,Ύ) by
and expand the products of ί/'s in (5.34).

FR=ΣΣ^ Σ Π ^ Λ J Π
{ X r } k K ( ¥ i , . . . , ¥ k ) r 1 < r 2 SfeG

. . (5.35)

Here G is a graph of unordered pairs {\, ¥ 5 } or {Y5i, Y S J (called lines if). Let Gc

be the part of G that contains lines connected directly or indirectly to some X,.. Let
GO = G\GC. G is said to be connected with respect to {XJ if Go = 0. We sum
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separately over the Ys in Gc and the Ys in Go. This yields

ΣΛ Σ Σ Π W A ) Π
} kc

 κ c ( Y Ί , . . . , ^ C ) Gc r1<r2 J?eGc

Λ Σ Σ Π
K 0 : (¥Ί',...,¥k0) Go ife

The second factor is F9. Hence we may give the final form of the expansion:

Σ Σ Σ i Σ Φ(X1,...>XJ;Y1,...,Yt). (5.37)

Here Φ is defined by

Φ(Z1,...,Z,;¥1,...,¥,)=Σ Π U(Zn,Zr2) Γ.
G c r1<r2 £eGc

j k

- Π Ξ[σ\(Zr) Π ̂ 0 iTO (5.38)

and Gc is connected with respect to {Z l9 ...,2^}.
The Kirkwood-Salzburg type equations of [1] may be applied to prove

convergence of the expansion. The equation expresses Φ as a sum of terms
involving Φ's with fewer clusters and with some subset Ω of {Yl5 ...,Yfe} moved
across the semicolon:

j

Ω r=2 seΩ

2,..,πp(\)seΩ;(Ys)sφΩ). (5.39)

In order to prove convergence of the sum over (Y1? ...,Yk) in (5.37), we assume by
induction that the sum converges for smaller / + k and with ί/'s acting on clusters left
of the semicolon. Substituting (5.39) into (5.37), the induction hypothesis applies to
control sums over (Ys)sφΩ.

Two sources of convergence control the sums over (Ys)seΩ. The first is that a
term vanishes unless all A(TLV Ys) + 0 for seΩ. In [1] this meant that all Ys, seΩ
had to overlap or surround ΊLV Here one cannot always infer that Ys's overlap or
surround TLι because U(ZV YS)Φ 1 is possible for Ys's surrounded by a minus loop
of 7LV However, by a judicious choice of TLι from {Zr} we can arrange for A(ZV Ys)
to be zero for Y/s not overlapping or surrounding 7LV We choose TLX e {Έr} to be
any X or Y whose minus loops do not surround any other JLin {Zr}. Then for a Y
surrounded by a minus loop of ΊLX we have D = 0in Ξ&>p(Y). When D = 0, changing
p from 1 to 0 has no effect. Therefore t/(Z l 9Y s) = l and A{ΈVYS) = O.

The number of Y5's with |ΓJ = iV that overlap or surround Z1 is bounded by
IZJe 0 * 1 ^. This combinatoric factor and the sum over {X^ in (5.37) are controlled
by the second source of convergence: exponential decay of Ξ^^Έ) with l\Z\. We
need the bound (5.13) with Ξ{^p(Z) replacing ρ(Z). Using (5.14), we see that the
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bound holds for ρ(Z). The ratio Ω{Ψ)/Ω(Ύ+) in (5.27) is bounded by 1 by (5.15) if

u = r = t=l and h = 0 in V.
For cases when wφl, r φ l , ί φ l , or /zφO in K we do not have a bound on

Ώ(V)/Ω(V+). However, the expansion of Sect. 3 was designed so that w, r, and ί
differ from 1 only in regions not surrounded by minus contours. More precisely,
terms in ]Γ with minus contours around regions with u φ l , r φ l , or ί φ l are

Σ p, Λ

multiplied by 0 = J | wfc. We need ft Φ 0 only in regions with — bonds or —
b:dist(b,Σ)^L ϋr Ot

lines. Therefore, we may take ρ(Z) = 0 without affecting the expansion if TL has a
minus contour surrounding regions with wφl, r φ l , ί φ l , or ftφO. This implies
that Ξ$p{Έ) = 0 whenever the bound on Ω(V)/Ω(V+) is not available.

In all cases the bound (5.13) holds for Ξ^p(Έ). Convergence of the expansion
(5.37) and Theorem 4.1 now follow as in [1]. The factors in (5.13) associated with R
and the Lq regularity accumulate in the product of Ξ's in (5.37) and (5.38). For fixed
degJ?, any missing factors of λδ^Rz)l2 or extra factors oϊ λ~degRz/2 coming from X's
with dX~ Φ0 are compensated by factors of e~

dλ~ί/2 from associated Z's with
dZ~ Φ0ΦδZ + . After contracting with w, one obtains the bound

(R}^\\w\\LPM{άegR)λδ(R)/2eκldegR (5.40)

uniform in λ for fixed degβ, or uniform in degK for M depending on λ. If δχ(R) > 0
we can include a factor e~dλ~1/2. For the truncated expectation (R1 R2y, we may
extract an extra decay e~9D{RuR2\ as in [1]. This establishes the bound (4.13) of
Theorem 4.1. As A is finite, analyticity in u and h is immediate. Theorem 4.1 is
proven.

6. Bounds on Terms of the Cluster Expansion

This section is devoted to the proof of Lemma 5.2. We follow [20] in much of this
section. The basic estimates on integrals such as §χΣe~Q(Σ)dψ come from [16].

Let Bo be the set of pairs (α, j) that enter the product J"] Y[ in (5.7). We expand

the product into a sum α J

Σ Π i % R < w (6.i)
BQBo σ = (a,j)eB

We define some distances (in units of /) which will be used to control the
combinatorics. Let γ be a union of /-lattice bonds, and let z(α) be the least integer in
α, if α contains integers. Define

(j, y) = sup (ώst{Δh, b) + dist(zl 2,
biy

7, h h m h m a). (6.2)

We intend to prove that

3[sί Π VϊKzWnCyΔ^RΛ^e-W^dψir, t, s)
σeB
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where \Σ\+=\Σ\ + 1 if δχ(Rz)>0 and \Σ\+=\Σ\ if δχ(Rz) = O. The factor λHRz)l2 is
replaced by χ~ά^Rzi2 if Σ is not identically + or if (6.3) is to be uniform in degRz.
Here we have reintroduced a test function w into Rz. Lemma 5.2 follows from (6.3)
because

^ Π exp(e- c ω ( σ ) )^e 0 ( 1 ) | z | . (6.4)
σei?o

We have used the fact that

(6.5)
J l

The w-factors of (5.7) can be handled with a decrease in d4 in (6.3) because

Π ubSe8aλ"υ2^. (6.6)

dist(b,2)£L

The number of bonds within L of Σ is less than 8\Σ\L2/l2, hence (6.6).
We apply the derivatives d^s in (6.3). In each term introduced by the

differentiation let ΓΛ be the set of bonds b such that —- acts on some 3" C., and let
3sb

 J

Γ2=ΓS\ΓV There are at most 2 | Γ | choices of Γ1 and Γ2. This combinatoric factor
may be absorbed into eO ( 1 ) ' z ', so we fix Γv Γ2 from now on. For each σ = (ocj), let yσ

be the set of bonds such that -— acts on da

rtCr We are reduced to bounding
osb

ί[ Σ Σ ndlc^ΔΔiΣΠmsi'KCj-ΔΔ
y z Ί ^ J \ { Ί a \ <TeB J

(6.7)

by the right hand side of (6.3). Here we have applied (4.1) for dΓ

s

2 and expanded dγ

sC
into its localizations j y .

Let θ index the terms in the sums in (6.7), that is, θ = {{yσ}> / , {jy}ye^}. Each
time a derivative acts on χΣnZ, I2 terms result. We take the supremum and include a
factor of I2 for each such derivative. Let T(θ) be the number of terms that result
from applying the derivatives in (6.7). We take the supremum over these terms and
let Wθ be the resulting polynomial in ψ that multiplies χ'Σe~Qdψ in (6.7), where χ'Σ is
a possible derivative of χΣ. We bound the 0-term of (6.7) by

where pv p2 are dual Holder exponents. We take px large enough so that the
following bound of [16] applies:
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Here n(Aι) is the number of differentiations of χΣ in the unit square A1 and \χ'\ is
the number of A1 QZ such that n(Aλ)^l.

The following estimate on derivatives of covariances will be used to bound
h e definitions of L(Γa\ \o\, <5(α), and d(α) given in Sect. 4.

Lemma 6.1. Gii en ε > 0 and ge[ l , oo), ίftere exzsί positive constants c, K x swc/z ί/zαί
/or A sufficiently small,

,e-4cld{σ)e-2cld(j,yσ)( y e~cl\o\\ e~cl\yσ\ ^ (6.10)

\oeL(γσ) )

Here the Lq norm is either Lq(A γ xAJ2) or, if j1=j2 and y σ uαΦ0, Lq(A ̂ ).

Proof We begin by scaling distances down by a factor of /, so that Dirichlet data is
on a unit lattice and the mass is increased to /. The Lq norm decreases by a factor of
/4/<? o r μ/q^ ̂ 1 ^ m a y b e absorbed into eKl1. We multiply several bounds together
to obtain (6.10). Each bound is produced by differentiating C- with respect to a
subset of y σuα and using the Weiner path representation for derivatives of C. See
[15, 19, 20] for details. With z, ί'eα and \i-i'\=d(oc\

^ H5f,3,m, C ^ l l i Γ ^ 4 ^ ^ - 0 - " ^ ^ " ^ . (6.11)

If d(oί)= oo (that is, α has duplications) then d^tCj = O because C is linear in the ί 's.
Similarly,

J^^^e-^^e"40^^-2^0"'^ (6.12)

and

oeL(Γα)

oeL(α)

for some c>0. Here we have used the fact that \o\ ̂  O(1)|ΓJ — 0(1). We may replace
Γα with yσ in (6.13). Adding 1 to d(oc) with an increase in Kί9 we obtain (6.10).

We next estimate the coefficients in W*. Recall the difference between — and
δψ

-—: φ-derivatives act as usual, while φ-derivatives act with V(φ) replacing Q{ψ)
oφ
and then are translated to the ψ-field. Let NΣ(Θ) be the number of ψ-
differentiations oϊe~Q within L/2 of Σ plus the number of φ-differentiations (other
than in R) of e'v within L/2 of a minus spin. Such differentiations introduce at
most factors of 0(1)λ'1. [The coefficients in V(φ) are O(λί/2) but translation
produces factors of O(λ~3/2).~] Recall that Rz contains dk

φ and dχ factors, each of
which we count as one derivative. Let Nχ(θ) be the number of differentiations of
Xinz ( o r °f i t s derivatives). The I2 factor introduced above for each such derivative
is absorbed into a factor eKl1 that we will associate to every derivative. Let NR(Θ) be
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the number of differentiations of monomials or derivatives in Rz or of factors
produced by such differentiations. If Σ= -f, the coefficients of R are 0(1) because
then ψ = φ. Otherwise they may be 0(l)λ~dGgRzl2 because of the translation from φ
to ψ. Define N0(θ) to be the number of φ-differentiations of e~Q farther than L/2
from Σ plus the number of (^-differentiations of e~v that are farther than L/2 from
any minus spin or that are in R. Each such differentiation introduces a factor
0{l)λί/2. All other derivatives act on factors produced by differentiations of e~Q or
e~v, hence they introduce only 0(1) coefficients. Let the total number of
derivatives be N(θ).

We now bound II Wθl|Lp1(dt/;) using Lemma 9.4 of [15]. Expanding in unit
localizations produces a factor of I2 at each vertex. Applying Lemma 9.2 of [15]
for /-lattice squares introduces some additional factors of \v>qf. These factors are
absorbed into eK2K Note that h(a) cancels the first four convergence factors in
(6.10). Let N(A) be the degree of Wθ in /-lattice square A. Then

< | l w l l p )NΣ(θ) )N0(θ)/2
\\LPi(dψ)= \\W\\LPe A A

e-4rdd(σ)e-cld(j,yσ) ί y e~d\o\\ e~cl\yσπ
σeB

\oeL{y)

The factor λ'dQgRz/2 is absent if Σ= + .

We estimate £ and ^ in (6.7).

Lemma 6.2. For λ small,

oeL(yσ)

(6.14)

{yσ} σeB [ \oeL(yσ)

and

Σ Π Σ e-"Mgeoα)|2|. (6.16)
φ.e&if'i) yeφ, oeL(y)

Proof. The second bound is Proposition 8.2 of [15]. We follow [20] for the first
bound. The left hand side of (6.15) is bounded by

e-cld{j,y)/ y e-cl\o\

\oeL(yσ)

<T]e~cld{σ) Y (e~
cldU'0)e~clW

σeB

ύ Π O(l)e-dd(σ)^exp[Σ (O(l)-cW(σ))
σeB σeB

| (6.17)
σeB \

In the last step ]Γ has been estimated as in (6.5).
σeB
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We combine Lemma 6.2 with (6.14) and (6.9) to bound (6.7) by

Y T(Θ)\\W\\ e

κ2ι(N(θ) + άcgRz) χ~ NΣ(Θ) χN0(θ)/2 χ~ degRzj2 e~ cl\Γs\

υvw
. ΓJ e-3cld{σ) Γ T e ~ 2cld{jy,y)£-d5λ~ U2{\Σ\ + \χ'\)eO{l)\Z\

σeB yεfc

f] nίJ1)!]. (6.18)
A^g A J

Here a supremum over {yσ} and ̂ e^(Γ 2 ) is implicit, and χ~d^Rzi2 i s absent if

Lemma 6.3. Given positive constants d6, c, and K2, there exist K4, K>0 such that

eK2l(N(θ) + degRz)χ~NΣ(θ)χN0(θ)/2 ΓT g-cW(σ) ΓT e-cld(jγ,y)

σeB yeft

me~d6λ- ' H\ϊ\ f |/'|) <g-K 4 i ( |B | + |^|)^(JR^)/2^KidegRz (6.19)

/or 2 sufficiently small. For a bound uniform in deg.Rz, λδ{Rz)/1 is omitted. Here
\B\, l/l are the number of elements in B, / , respectively.

Proof We pin derivatives of e~Q within L/2 of Σ and derivatives of χΣ to the
convergence e~d6λ~1/2^ + ^χ'^\ Let 5^ denote the set of such derivatives which are
localized in /-lattice square A. We shall prove that

i " d 6 A ' 1 / 2 | 2 / L 2 ^ l (6.20)

for fixed deg.Rz. Here d is either d(σ) or d(jy,y). Taking logarithms, we need to
show

X (2lA - cld/2)-d6λ~ί/212/L2 ^0. (6.21)

Throwing out terms of ]Γ with 2/4 — cld/2 < 0 we bound the left-hand side of (6.21)

by

2l\O(l)l12)-d6λ-1/2l2/L2^0 (6.22)

for deg,Rz fixed and λ small. Here we have used the fact that given j 1 there are no
more than O(l)l6 choices for j 2 , α, or y such that d(σ) or d(jy, y) is less than 4l3/c.
For degi^z arbitrarily large (6.20) holds provided the derivatives in Rz are not
included in £fΔ.

Every φ-derivative counted in NΣ is contracted with a d*tCj with d{σ)^L/2l
because the bonds and lines in α are farther than L from any minus spin
(Condition A). Using λ~ ιe~cLl2^λ112, the factor λNo(θ)/2, and (6.20) applied to each
A, we obtain at least a factor λ112 for every derivative applied to χΣ, to e~Q, or to
e~v. Hence the factor Xδ{Rz)t2 in (6.19) for fixed deg.Rz. For arbitrary d e g # z we
must omit this factor.

Since deg Q = deg V— 4, we must have

N(θ) - δ(Rz) - δχ(Rz) - NR(Θ) S4(N0(θ) + ΛL(0) + NΣ(θ) - δ(Rz)). (6.23)
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Hence

\B\ + l/l = |(N(β) - δ(Rz) - δχ{Rz)) ^ idegK 2 + 2(NO(Θ) + Nχψ) + NΣ(Θ) - δ(Rz))

(6.24)
and

N{θ) + dεgRz S2degRz + 4(ΛΓO(0) + Nχ(θ) + NΣ{Θ) - δ(Rz)). (6.25)

Therefore,

χ(N0(θ) + Nx(θ) + NΣ(Θ) -δ(R z))/2 <e-K4H\B\ + \t\)e-K2l(N(θ) + degRz)gKldegRz (§ 26)

Note that derivatives in Rz are always counted in No or Nχ. We have established
an overall factor oϊλ(Noiθ)+N*(θ) + N*θ)-mz))l2, so (6.26) completes the proof of (6.19).

The next two lemmas follow closely the analogous lemmas in [15, 20].

Lemma 6.4. Let M(Δ) denote the number of derivatives not in Rz that are localized
in l-lattice square A. Given K3, pv there exist constants M1(άQgRz), K6 such that

T(θ)Y[\(p1N(A))\ίlPleK

[

mΔ)

^ 6 ( | β | + ^ (Yl M{Δ) !\6. (6.27)

Proof. Let m(Δ) = degK^, m = degKz, and M = ^ M(J) = 2|B| + 2|/|. The number of
A

terms resulting from as many as M(A) + m(Δ) 4 differentiations in A is at most

(6.28)

The first factor comes from expanding Wθ in terms of ψ and the 11 comes from a
possible 4 + 3 + 2 + 1 terms resulting from differentiating QorV plus one term from
differentiating χ. We apply the inequalities

(ab)\^aab(b\)a (6.29)

to bound (6.28) by

2miA)l(2m(A) +10) + 4M(zl)]!

(6.30)

Therefore,

( 6 3 1 )
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Similarly, using N(A)^m(A) + 4(M(A) + m(A)) we have

ΠC(PiiV(^)) ! 1 / p i ^ 3 i V ( z l ) ]ύ Π [ P f A)N{A)\eκ*NiΛ)-]

) (6.32)

Finally,

(6.33)
A Δ1QA A A

This establishes the lemma.
Lemmas 6.3 and 6.4 yield the following bound on (6.18):

JJ 6 34)
σeB yεfe \ J

with λδ{Rz)/2 replaced by λ~ά&gRzl2 if Σ is not identically + or if (6.34) is to be
uniform in degKz. The final lemma proves (6.3) from (6.34) and hence completes
the proof of Lemma 5.2.

Lemma 6.5. The following bound holds independently of ft, B:

| ( 6 3 5 )

Proof The sum over {jγ} is handled as follows:

T T] e~ c l d i J Ύ ' γ ) / 2 < Γf Y e~cld(jy>γ)/2

(6.36)

Fixing A =Aji or AJ2, there are at most 0(1) (a2 + 1) choices of ye/with d(jγ,γ)^a,
or oϊj2,jί9 or α, with d(σ)^α. Altogether there are 0(1) (α4 +1) choices with both
d(jry) and d(σ) less than a. Hence there are less than M(A)/2 choices of σ, γ such
that

d{σ) + d(jr y) g (O(l)M(zl) - I ) 1 / 4 . (6.37)

Thus there are M(A)/2 choices with a convergence factor β-4^(θ(i)M(zi)-i)i/4 n

(6.35). Since

(6.38)

for large M(A), we have

Zd() Π d d O / 2 f Π ή 6 ^ ( | Z | (6.39)

which establishes the lemma.
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