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Abstract. It is shown that self-dual solutions of Einstein's equations, with
cosmological constant λ, correspond to certain complex manifolds. This
result generalizes the work of Penrose [1], who dealt with the case λ = 0.

1. Introduction

Recently there has been much interest in four-dimensional spaces which have
self-dual conformal curvature, and which satisfy Einstein's vacuum equations
(with or without cosmological constant) [1-5]. This is despite the fact that such
spaces cannot have Lorentzian signature, and therefore have no direct application
to classical gravity. The work in the papers listed above seems to suggest that
self-dual solutions underlie gravity; that they are (in some sense) its basic
constituents. Be that as it may, there is no doubt that self-dual solutions are a
good deal easier to characterize and construct then more general solutions.
This paper presents a characterization of self-dual solutions in terms of complex
manifolds; it is essentially a generalization of Penrose's 'Nonlinear Gravitons
and Curved Twistor Theory' [1], which deals only with the case of zero cosmologi-
cal constant. Penrose's result has proved to be very useful for constructing and
understanding self-dual solutions of Einstein's equations [6,7]. In addition,
solutions of the wave equation (Π +j;R)φ = 0 and of massless field equations
of higher spin, in a self-dual gravitational background, may be neatly characterized
in terms of certain sheaf cohomology groups [8]. Using this, one can explicitly
construct Green's functions for these equations in a very natural way [9].

The remainder of this section is devoted to setting up some notation and
conventions. Then in Sect. 2 the main theorem is presented, establishing a one-to-
one correspondence between self-dual solutions of Einstein's equations and
deformations of flat twistor space which preserve certain differential forms. Some
details of the construction and proof are relegated to Sect. 3 and an Appendix.
In Sect. 4 the CP2 gravitational instanton [10,11] is discussed by way of example.

The following index conventions are used: α, /?, . . . are 4-dimensional space-
time indices, A, B,..., A\ £',... are 2-dimensional spinor indices, and α, β,... are
4-dimensional twistor indices. The tangent space T at a point of space-time is
isomorphic to the tensor product of the unprimed spin-space S and the primed
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spin-space S' [12] :

T^S®S'. (1.1)

This isomorphism is expressed via the Infeld-van der Waerden symbols σa

AA,
and σa

AA' in other words, a vector va corresponds to a spinor VAA' according to

Occasionally the equations (1.2) are abbreviated to va = VAA' this is in accordance
with the abstract index notation [12]. Symmetrization (or skew-symmetrization)
is indicated by round (or square) brackets enclosing the relevant indices.

The spin-spaces S and S' are equipped with complex 2-forms eAB and eA,B,
respectively. The tensor product of these forms corresponds to the space-time
metric :

The important point to remember is that these forms determine the metric: later
on we shall define a metric by specifying eAB and eA,B, .

Let M be a 4-dimensional complex manifold with a holomorphic (complex-
Riemannian) metric gab we shall call such a space a complex space-time. The
Weyl conformal curvature tensor Cabcd and the Ricci tensor Rab of M have the
familiar decompositions [12, 1]

/- _ ψ o p 4- ψ p p
T ^'B'^C'D' * T A'B'C'D'^AB^CD '

. (1.4)

Here ΨABCD and ΨA.B,C,D. correspond, respectively, to the anti-self-dual and
self-dual parts of Cabcd — 2Φab is the trace-free part of Rab and 24/1 is the scalar
curvature R = Ra

a. (The sign conventions for the curvature tensor are 2V[aVb]v
d =

Rabc

dvc, Rab = Rc

acb ) The spinor Ricci identities are [12]

(1-5)

A B C D - ( A e B } C ,ΨABCDξD-2ΛξAeBC, (1.6)

(1-7)

where DA,B, = ̂ A(AVB/

A and D^B = VA, ( AVB )

X / are, respectively, the self-dual
and anti-self-dual parts of the commutator V f lV& — V&Vα.

We say that M is an anti-self-dual solution if

i.e. if M has anti-self-dual Weyl tensor and satisfies Einstein's equations with
cosmological constant :
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A curved, anti-self-dual space cannot be the complexification of a real, Lorentzian
space-time, because in a Lorentzian space-time ΨABCD and Ψ\,E.C,D, are complex
conjugates of each other, and so one of them cannot vanish without the other
vanishing as well. An anti-self-dual space may, however, be the complexification
of a positive definite Riemannian manifold.

We shall use some of the language of vector bundles. For example, let Pn

denote the π-dimensional complex projective space with homogeneous coordi-
nates z°, z 1,..., z" let Lk denote the holomorphic line bundle over Pn with Chern
number /c; and let Γ(Pn, Lk) denote the space of holomorphic sections of lί. The
elements of Γ(Pn, Lk), i.e. the sections, are 'twisted functions' on Pn one may
think of them as functions of the homogeneous coordinates zj which are homo-
geneous of degree k. In fact, they have to be polynomials of degree fe. So, for
example,

Γ(P^L°)^C; (1.10)

this is just Liouville's theorem (namely that a bounded analytic function of one
complex variable has to be a constant). More generally,

Γ(P1,L
k)=Ck+l (1.11)

for k ̂  0, since a homogeneous polynomial of degree k in two complex variables
depends on k + 1 complex parameters.

2. The Space-Time/Twistor Space Correspondence

This section is devoted to a description of the correspondence between anti-
self-dual space-times and certain complex manifolds called deformed twistor
spaces. First, let us take an anti-self-dual space M and construct the corres-
ponding twistor space y. In brief, the points of 2Γ correspond to certain
complex 2-surfaces in M called a-surfaces. An α-surface Z is a 2-surface in
M with the following property: there exists a primed spinor field πA, on Z such
that each vector tangent to Z has the form λAπA\ for some spinor λA. It follows
from this definition that an α-surface is totally null: any two of its tangent vectors
are orthogonal. For if υa = λAnA' and ua = μAπA> are two tangent vectors, then
clearly vau

a = 0, since πA,π
A' = 0.

Proposition [1] A necessary and sufficient condition for the existence of a three-
complex parameter family of a-surfaces in M is that ΨA,B>C,D, should vanish, i.e.
that the Weyl tensor ofM be anti-self-dual.

From now on, let us suppose that M satisfies *PA,B,C,D, = 0, and let &~ denote
the space of α-surfaces in M. In view of the Proposition, 5" will, in some sense,
be three-complex-dimensional. However, it may fail to be a Hausdorff manifold,
owing to the global structure of M. As we are, at the moment, only interested
in the local geometry of M, let us avoid such global problems. To be specific,
let us take M to be sufficiently small and convex to ensure that &~ is a complex
manifold with topology R4 x S2. Every point in an anti-self-dual space possesses
such a 'nice' neighbourhood.
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y is called the twistor space corresponding to M (in the literature, it is usually
referred to as projective twistor space, but we shall omit the word 'projective').
Each twistor Z in y corresponds to an α-surface Z in M. It is possible to choose
the spinor field πA, so that it is covariantly constant over Z,

πB'VBB,πA, = Q9 (2.1)

the integrability conditions for (2.1) being precisely ΦA,B,CD, = Q (to see this,
operate on (2.1) with πc'VB

c, and use the Ricci identities (1.8)). Notice that the
α-surface Z determines πA, up to proportionality this is obvious from its definition.

The complex manifold structure of y depends only on the conformal structure
of M: if one replaces the metric gab on M by Ωgab, with Ω ± 0, then y does not
change. So we need to introduce some additional, local structure on y which
contains information about the metric and not just the conformal metric. This
local structure consists of a pair of differential forms τ and p on y. The idea is
that τ will contain information about eA,B, and p information about eAB, so that
together they will determine the metric gab. To see what τ and p are, we shall
use a generalization of an unpublished argument due to Penrose.

Let Q be a vector at the point Z in y'. If ε is an infinitesimal parameter, then
one may think of εQ as joining the point Z to a neighbouring point Y in y. See
Fig. 1. Let υa be a vector field on the α-surface Z, such that ευa is a connecting
vector joining Z to the neighbouring α-surface Y. The fact that εva is a connecting
vector implies that the Lie bracket of υa and λBπB' vanishes for all λB :

Fig. 1

λWVBB,v
AA> - vBB'VBB,λ

AπA> = 0.

From this it follows that

(2.2)

where βA, = vbVbπA,. By using the spinor Ricci identities (1.7, 1.8), one may easily
show that the field βA,(x) on Z satisfies the transport equation

λWVBB.βA,= -iλBπB'PABA,B,a
A, (2.3)
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where Pab = - ±Rab + ̂ Rgab = Φab - Λgab and xA = ίvAA'πA,. From (2.2) it
follows that the field or4 satisfies

λBπB'VBB,a
A=-ίλAπB'βB/. (2.4)

The pair (of4, βA,) represents the vector Q; this is called the local twistor represen-
tation [13]. The Eqs. (2.3) and (2.4) are the equations of local twίstor transport
and express the requirement that Q be 'constant over α-surfaces'.

The representation has some freedom in it, since κ(<y.A, βA,\ where K is a nonzero
constant, represents the same vector Q. So (of4, βA,) should be thought of as 'homo-
geneous coordinates' for Q. Notice also that the pair (0, πA,) corresponds to the
zero vector Q = 0 (since of4 = 0, βA, = nA, implies that Y = Z, and that the spinor
nA, is unchanged up to proportionality).

We shall now define the forms τ and p on 3~, beginning with τ, which is a
1-form. If Q, represented by (of4, βA,) is any vector in 3~, then by definition

τ(Q) = eA'B'πAfβBl. (2.5)

If τ is to be well-defined, the scalar on the right hand side of (2.5) must be constant
over α-surfaces, in other words must be annihilated by the differential operator
λAπA'VAA, for otherwise τ will not correspond to a differential form on ?Γ. From
(2.3) we see that

λcπc'V (eA'B'π B ) = ίλBπB'ocAπA'ΦA ii vcc\v JLA'"B'' IA Ji ^ ll ABA'B1'

so τ is well-defined if and only if Φab = 0. From now on let us assume, therefore,
that M is an anti-self-dual solution, so that both ΨA,E,C.Ό, = 0 and Φab = 0 hold.

Actually, strictly speaking, τ is not a form on &~9 since it is homogeneous
of degree two (one from the πA, and one from the βB,). A 'pure' form would be
independent of the scaling of πA, and βB,, i.e. would be homogeneous of degree
zero. So τ is really a 'twisted' form. We shall nevertheless continue to call τ a 1-form,
homogeneous of degree two.

Next we must define the form p, which is a 3-form, homogeneous of degree
four. So let QjJ= 1,2,3, be three vectors in &~, represented by (a,A,β.A,). Then

P(6ι' 62' 63) is defined by taking

Pi 23 = -2(^B'^A'β^(eAB<^

and skew-symmetrizing it over 1,2, 3. In other words,

P(Qi , Q2> 63) = β(Pl23 - ^132 + P312 - ^321 + ^231 ~ P2^'

Equations (2.3) and (2.4) imply that p is well-defined, i.e. that λAπA'VAA,p(Qί, Q2,
63)-o.

What has been shown so far may be summarized as follows. Let M be a (suffi-
ciently small) anti-self-dual solution. Then the corresponding projective twistor
space £~ is a three-dimensional complex manifold, equipped with a 1-form τ
homogeneous of degree 2 and a 3-form p homogeneous of degree 4. Furthermore,
τ Λ dτ = 2Λp, where 24Λ is the scalar curvature of M (this is proved in the
Appendix).
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As an example, let us take M to be conformally flat, with metric

ιjα6 = diag(l -1 -1 -1), (2.7)

and construct the corresponding twistor space T. Let the function Ω be given by

then the space-time satisfies Einstein's equations Rab = 6Λgab, as required. Let
XAA' be the standard Minkowski spinor translation of xa [13].

Each α-surface in M is the solution space of an equation of the form

ω

A = iχAA'πA, (2.8)

for some fixed ωA and πA, ^0 [13, 1]. Thus our 'flat' twistor space T is a subset
of the complex projective space P3 :

T={K,πJ|π^O}/~, (2.9)

where ~ is the equivalence relation of proportionality. [In other words, (ωA, πA,)
and (κωA, κτιA\ with K =£ 0, are equivalent.] Thus the space T is P3 with the line
πA, = 0 deleted.

A vector Q in T has the form

in terms of our coordinates on T. We need to relate the representation (WA

9 PA,)
of Q to the local twistor representation (or4, βA,) introduced earlier. In order to
do this, we use eq. (2.8) and the expression

VAA,πB, = dπB,/dxAA' - ΩΛxAB,πA,

(cf. [13], 1.19a) for the covariant derivative of πA/. A simple calculation yields

KA= wA-ixAA'PA,, (2.11)

PA> = ΩPA' + iΩΛxAA' WA- (2 12)

In (2.12), the indices of XAA> have been lowered using the flat-space Levi-Civita
symbols εAB and εA,B, (that is to say, ε01 = — ε10 = 1, ε00 = εn = 0, and similarly
for £A,B,). The curved-space forms e and e' are given by

eAB = ^SAB> eA'B' ~ ΩεA'B' '

Now we can define the forms τ and p, by substituting (2.11) and (2.12) into
(2.5) and (2.6). For example,

nA,β
A' = eA'B'πA,βB,A'^B'

(nr> _L vo/iv
ABiΩΛxAB,W

A)

— π PA
— ιιA,r
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and so

τ - πA,dπA' + AωAdωA. (2.13)

A similar calculation gives

p = \τιA,dτιA' Λ dωA Λ dωA + ^ωAdωA Λ dπA, Λ dπA> '. (2.14)

Remarks, (i) Notice that τ Λ rfτ = 2/L/λ
(ii) A point x in space-time is characterized by the set of all α-surfaces through
it. This set is a compact holomorphic curve x (intrinsically a Riemann sphere)
in FT [1].

Let us now tackle the converse problem: suppose we are given 3Γ with its
differential forms and asked to construct an anti-self-dual space M. The procedure
for doing so is a generalization of that in references [1, 14].

The basic idea is to use remark (ii) above. Assume that 2Γ has topology jR4 x S2

and look for holomorphic curves in y which are intrinsically Riemann spheres
and which 'wrap once around S"* (i.e. which belong to the generating homology
class of y\ We require that 2Γ satisfy the following condition.

There is precisely a four-complex-parameter family of such curves, and the

normal bundle of each curve is isomorphic to L1 © L1. (2.15)

[The normal bundle Nx of a submanifold x in 2Γ is, roughly speaking, the bundle
of vectors transverse to x. L1 denotes the line bundle over x which has Chern
number 1 (cf. Sect. 1).]

The condition (2.15) is a tricky one to have to impose. Fortunately, results
of Kodaira [15] show that if we begin with flat twistor space (2.9), which satisfies
(2.15), and deform its complex structure, then the property (2.15) is preserved,
provided that the deformation is sufficiently small. This is proved in [16,14];
the proofs there are in the context of the special case where A = 0, but they carry
over unchanged to the present, more general, case. The restriction to sufficiently
small deformations corresponds precisely to the condition imposed previously
that the space-time M be 'sufficiently local'. In the local problem, therefore,
condition (2.15) will automatically be satisfied.

Given that (2.15) is satisfied, it is an easy matter to construct the space M:
let M be the four-complex-dimensional space of holomorphic curves in ?Γ . Each
point x in M corresponds to a holomorphic curve x in &~. Let Nx be the normal
bundle of x in ZΓ . By (2.15), Nx is isomorphic to L1 φ L1 (considered as a bundle
over the Riemann Sphere x). A tangent vector υ at xeM corresponds to a section
v o f Λ Γ :

Γ(x,Λg. (2.16)

[Recall fromEq. (1.11) that Γ(P19L
l)^C2

9 so

Γ(x, Nx) £ Γ(P1 , L1 Θ L1) ̂  C2 Θ C2 ̂  C4,

as one would expect for the tangent space Tx(M)J]
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We now define a conformal structure on M by

v is a null vector o\ vanishes somewhere on x. (2.17)

(It is easy to check that this does indeed define a conformal structure [1,14].)
Through each point ze^~ there passes a 2-parameter family of holomorphic
curves, corresponding to a 2-surface Z in M. From the definition (2.17) it follows
immediately that Z is totally null (in fact, it is an α-surface). Hence we deduce
from the Proposition in Sect. 2 that the conformal structure we have defined
is anti-self-dual (i.e. ^A,WC,D, = 0).

To define a metric on M necessitates the use of the additional structure on
twistor space. We proceed as follows. Let V be the subbundle of the tangent
bundle of 3~ consisting of those vectors which are annihilated by τ. In other
words, ξe V if and only if τ(ξ) = 0. Suppose that x is a holomorphic curve transverse
to V (i.e. the tangent vector of the curve x does not lie in V\ We shall restrict
our attention to space-time points for which this is the case; the metric is not
defined at other points. With this restriction, it follows that Vx (i.e. V restricted
to x, a 2-dimensional vector bundle over x) is naturally isomorphic to the normal
bundle Λfx of x. Thus a vector v in TX(M) corresponds to a section v of Fx.

Let x be a point of M and define two 2-dimensional spin-spaces S and Sf

at xby

S = Γ(x,Kx®L"1), (2.18a)

S' = Γ(x,L1). (2.18b)

Since Fx ® LΓ1 ^ (L1 ® L1)® L~1 ^ L° 0L°, it follows from (1.10) that S ̂  C2

and (1.11) implies that S' = C2 as well. It is easily seen that S®S' is naturally
isomorphic to Γ(x, FJ and hence to Tx(M); and that a vector v in TX(M) is null if
and only if it is the tensor product of a primed and an unprimed spinor, i.e. if
and only if v = aξ, where αeS" and ξeS.

We now have to define the forms eAB and eA/B, on S and S' respectively. Let
ξ and μ be two elements of S. Thus ξ and μ are, in view of (2.18a), vector fields on
x which are homogeneous of degree — 1 (tensoring with L~ 1 has the effect of
reducing the homogeneity from 0 to -1: cf. Sect. 1). Let v be any other vector
field on x, such that τ(v) ̂  0. We define the 2-form eAB on S by saying that the
scalar e(ξ, μ) is given by

e(ξ,μ)τ(v)=-6p(v,ξ,μ). (2.19)

The quantity e(ξ, μ) is independent of v, since τ annihilates both ξ and μ, and so
[τ(v)]~ V(v, £ μ) is invariant under the transformation v h> av + bξ + cμ. Further-
more, e(ζ, μ) is homogeneous of degree zero in ξ and μ, and so by Liouville's
theorem (1.10) it is a constant.

Next let us define eA,B, on S'. Let α and β be two elements of Sf. So, by (2.18b),
α and β are functions on x, homogeneous of degree 1. Consider the 1-form
adβ — βda on x. Since x is a one-dimensional space, this form must be a multiple
of τ|χ, the form 1-form τ restricted to the curve x. We define eA,B, on S' by saying
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that the scalar e'(<x9 β) is given by

(2.20)

Our assumption that the curve x is transverse to V ensures that τ |χ ̂  0, so
e'(a.,β) is well-defined. Since both adβ — βda and τ x are homogeneous of degree
two, e'(α, β) is homogeneous of degree zero, and so, by Liouville's theorem again,
it is a constant.

In Sect. 3 it is shown that the metric gab = eABeA,B, is an an ti -self-dual solution,
and that its scalar curvature R = 24A is given by the formula

τ Λ dτ = 2Λp.

This establishes our main theorem.

Theorem. There is a one-to-one correspondence between
(i) (sufficiently local) anti-self-dual solutions with scalar curvature R = 24Λ; and
(ii) (sufficiently small) deformations of flat projective twistor space which preserve
the 1-form τ (homogeneous of degree 2) and the 3-form p (homogeneous of degree 4);
and where τ Λ dτ = 2Λρ.

Remarks, (i) The bundle V®L~l is a 2-dimensional complex vector bundle
over "̂, and is trivial over every holomorphic curve x. Therefore it corresponds
to an anti-self-dual Yang-Mills field in the space-time M [17]. This means that
that we have a 2-dimensional vector bundle E over M and a connection on E
with anti-self-dual curvature. In fact, E is precisely the unprimed spin-bundle S,
and the connection on it is the natural one induced by the metric g on M. This
observation is due to Singer [4].
(ii) If/1 = 0, then dτ Λ τ = 0, which means that V is an integrable distribution on ZΓ.
In this case, &~ has the structure of a holomorphic bundle over the Riemann sphere
P1 ? each fibre being an integral surface of V [1].
(iii) The manifold <^ and the forms τ and p are not subject to any differential
equations, unlike the space-time metric, which of course satisfies the anti-self-dual
Einstein equations. So these nonlinear differential equations disappear when
one goes from the M-picture of the ^"-picture.
(iv) There are modified versions of the Theorem which describe solutions satis-
fying additional conditions : for example, that M be the complexification of a
compact, positive definite space (cf. [4, 7] ).

3. Details of the Construction

This section is devoted to filling in some of the details of the construction which
takes one from a deformed twistor space 9" to an anti-self-dual metric. The
arguments will involve local homogeneous coordinates Zα = (ωA

9 πA>) on 2Γ
('homogeneous' meaning that Zα and ΛZα, with λ ̂  0, represent the same point
of 9~\ Of course, these coordinates only cover a local coordinate patch U in & ',
unlike the situation in flat twistor space T, where they cover the whole space.
It is always possible to choose the coordinates so that τ and p are given by the
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flat-space expressions (2.13) and (2.14), and we shall suppose that such a choice
has been made.

The holomorphic curves in 3~ are given by an expression of the form

in the patch U. Here the xb are four complex parameters which label the different
curves, and therefore serve as coordinates on M, whereas the two parameters
ζB, serve as homogeneous coordinates on each holomorphic curve (a 'holomorphic
curve', remember, is intrinsically a Riemann sphere). For the sake of consistency,
the functions /ια are required to be homogeneous of degree one in ζB,.

A vector v at xeM corresponds in y to a vector field v on the curve x (think
of v as a connecting vector joining x to a neighbouring curve). Let va be the compo-
nents of v with respect to the coordinate basis da = d/dxa. Then clearly the vector
field v will have the form

where Db is the operator

(3.2)

(3.3)

The d/dζ term in (3.3) corresponds to a vector field tangent to x, so we may add
it in without altering the fact that v is a connecting vector. The functions fbA,
are chosen so that τ(v) = 0; in other words, so that v lies in the vector bundle V
(Fig. 2). The remaining freedom in fbA, is fbA, \-+fbA, +fbζA>, i.e. vh> v + (vbfb)Y,

where T = ζA,B/dζA, is the Euler homogeneity operator. We should think of this
vector Y as being equivalent to zero in <Γ\ this corresponds to the fact that Zα

are homogeneous coordinates on 3~. This remaining ambiguity may be removed
by imposing the condition

v is nullov vanishes somewhere on x. (3.4)

Fig. 2
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Thus if v is null, then v vanishes at (say) ζA, = yA, , and we can facto rize v :

Here γA'ζA,* being a function homogeneous of degree one in ζA,, is an element
of Γ(x, L1) (cf. Sect. 1); in other words, is an element of the primed spin-space S'.
And ξ is a vector field on x, homogeneous of degree zero in other words, ξ is an
element of the unprimed spin-space S = Γ(x, Fx® L"1). Equation (3.5) is simply
the ^-picture version of the statement that a vector v is null if and only if it is
the tensor product of a primed and an unprimed spinor.

We shall now use this local coordinate formalism to prove (as was promised
in Sect. 2) that the metric gab constructed from 2Γ ^ τ and p is indeed an anti-self-dual
solution. The idea of the proof, which follows [1], is to define a connection V on
M, then show that V is the unique connection determined by gab, and finally
demonstrate that V is anti-self-dual.

To determine V, it suffices to specify what is meant by parallel propagation
of spinors along curves in M. In fact, it is sufficient, by linearity, to specify how
to propagate spinors in null directions. Suppose, therefore, that x and y are neigh-
bouring null-separated points in M; let v be the null vector joining x to y (Fig. 2).
In 3" ", the holomorphic curves x and y are joined by the vector field v. Since v
is null, the curves x and y intersect at some point Z. The vector field v defines
a natural map σ from x to y, and induces a natural map σ from the line bundle
L1 over x to the line bundle L1 over y (their fibres coincide at Z). So there is a
natural way of propagating a primed spinor at x, cιxeΓ(\, L1), to y: put αy =
σ α^ σ"1.

Next, suppose that ξχeΓ(x, F^L"1) is an unprimed spinor at x; we want
to define ξ . The value of ξy at Zey determines its value everywhere on y, so
we may specify ξ by saying that ξx and ξy should be equal at Z = x n y (cf. Fig. 2).
This completes the definition of V.

Lemma 1. V is torsion-free.

Proof. It suffices to prove that if u0 and υί are two null vector fields on M which
commute with each other, then the vector field

vanishes (VA denotes the covariant derivative along υA). Let us work in a local
coordinate patch [/, and use the notation introduced earlier in this section. Thus
the connecting vector field v0 = v0

α<3/<3Zα on a holomorphic curve x is given by

v α bi) /j* ε α (37)
V0 ~~ ^0 ubn 'O^O ' *• ''

where y0 = γ0

At(x)ζA, and similarly for vt.
If α and ξ = ξ*d/dZ* are, respectively, a primed and an unprimed spinor field,

their covariant derivatives along VA are given by

V^α - vA

bDba, (3.8)

V(y0), (3.9)
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where 0(y) denotes a term which vanishes at y = 0. The vector field w = wαδ/δZα

on x, corresponding to (3.6), is

wα = [v0

bDb, VDJΛ" + 0(VoVl) (3.10)

this follows from (3.7), (3.8) and (3.9). Expanding the right hand side of (3.10)
reveals that w is tangent to x at the two points y0 = 0 and y1 = 0 on x; it follows
that w is everywhere tangent to x and hence that the vector w vanishes. Π

Having shown that V is torsion-free, we may now considerably simplify matters
by restricting our attention to a single (generic) α-surface Y in M. Let Y be a point
of 2Γ and suppose that the local coordinates Zα = (ωA,πA,) in U are chosen so
that the point Y has coordinates (α/, πA,) = (0, yA,\ where yA, is some fixed spinor.
The two-parameter family of points y on the α-surface Y correspond, in ZΓ ', to
the two-parameter family of holomorphic curves y which pass through Y. Choose
the parameter ζA, on each of the curves y in such a way that
hΛ(y,yB,) = (Q,yA,) for all ye Y; and specify coordinates yA = (yQ,y1) on Y by
saying that for points y on 7, W has the form

ΛV,WMy/,C^ + 0(y2), (3.11)

where y = yA'ζA, .
Let VQ and vi be the two coordinate vectors on 7, i.e. VA = d/dyA. Suppose

that the functions/^, satisfy

(3-12)
then the vector field VA = \A

βd/dZβ corresponding to VA is given by

V = VABDB

hβ = y(*A*> -AyAyB'} + °(r2)- (3.13)
Equation (3.13) follows directly from (3.2), (3.3), (3.11) & (3.12). One may easily
check that τ(\A) = 0, and this justifies the choice (3.12).

A primed spinor field α on Y is represented in the ^"-picture by a linear function
α = ocA'(yA)ζA, of ζ. Simple calculations now reveal that on the α-surface Y we have

^β) = εA,B,^'βB'9 (3.14)

V = (vA

bdb*
A> - ΛyA'yAyB*

B'}πA,. (3.15)

Similarly, an unprimed spinor field ξ on 7 is represented in the ^-picture by a
vector field ξ = ζB(yA)hB , where

(3.16)

And it turns out that

e(ξ9μ)=-eABξ
AμB

9 (3.17)

VAξ = (^AbSbξ
c}hc + gAY + 0(y), (3.18)

where the gA are functions where exact form does not concern us.

Lemma 2. V is a metric connection, i.e. Vg = 0.
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Proof. It suffices (by linearity) to prove that VAe' = 0 and VAe = 0 on Y, and these
two results are immediate consequences of (3.14, 3.15) and (3.17, 3.18) respectively.

Lemma 3. The connection V, acting on the unprimed spin-bundle S, is integrable
over the en-surface Y.

Proof. The result is obvious from the geometric definition of V : as the curve
x varies through the fixed point Z, the vector ξ at Z remains fixed (see Fig. 2).
Of course, the result can also be deduced from (3.18).

Lemma 4. g is an anti-self-dual solution, i.e. it satisfies Ψ \,E,C,Ό, = 0, ΦABA,B, = 0.

Proof. By construction, M contains a 3 -complex-parameter family of α-surfaces
(one for each point of <y\ So the Proposition in Sect. 1 tells us that ^ A,VCΌ, = 0.
Lemmas 1 and 2 imply that V is the unique connection determined by g and Lemma
3 says that the equation

is integrable. Operating on (3.19) with πB'V B, and using the Ricci identities (1.5)
yield

Since (3.20) holds for all πA\ and ΦABA,B, is symmetric in A'B', it follows that
ΦABA'B' = 0> as ^quired.

Lemma 5. The scalar curvature ofgisR = 24 A.

Proof. Let α = aA'πA, be a primed spinor. From (3.15) it follows that

yχ . (3.21)

But we can also compute this commutator by using the Ricci identities (1.7)
and (1.8), the fact that [ι^,ι;J vanishes, and the fact that the spinor version of
VA is VA

BB' = yB'εA

B. We then obtain

.ByyX'. (3.22)

Comparing (3.21) and (3.22) and using (3.17) gives the desired result.

4. Example: P2

In this section we shall see how the 'gravitational instanton' P2, with the Fubini-
Study metric [10,11], may be constructed out of twistor data.

Let 2Γ be the flag manifold of P2. In other words, each point Z of y is a pair
(p, /), where p is a point of P2 and / is a line of P2 containing p. Let us use homo-
geneous coordinates on P2 thus p has coordinates pj, / has coordinates I., and the
incidence relation between / and p is pjl. = 0. A holomorphic curve in £Γ has the
following form: let L be a line in P2 and P a point in P2 not on L then the holomor-
phic curve in <y consists of all pairs (p, /), where / passes through P and where

L. If Pj and L. are the homogeneous coordinates of P and L, then the
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equation of the curve is L.p* ' = ljpj ' = LPJ ' = 0. Let us write Pj = (X, 7,1) and
Lj = (X, y, 1), so that the parameters xa = (X, X, Y, Ϋ) serve as coordinates on the
space M.

To compute the conformal structure of M requires only some simple analytic
geometry. What one finds is the following. If xa = (X, X, 7, Ϋ) and xfa = (X\ X',
y, Ϋ') are two points in M, then x and x' are null-separated if and only if

(1+ Y*Ϋ*)ΔXΔ% + (l + X*X*)ΔYΔΫ-X*Ϋ*ΔYΔX- Y*X*ΔXΔΫ = 0, (4.1)

where ΔX = X'-X, X* = ±(X + X'} etc.

It should be emphasized that (4.1) is the equation of the 'whole' null cone in
M, and not just of the 'infinitesimal' null cones in the tangent bundle of M.

What we have done so far is already well-known [4, p. 438]. We now want to
define a metric on M by introducing forms τ and p on ST. Let us take

(4.2)

p = _ i τ Λ d τ . (4.3)

These forms determine a metric gab compatible with the conformal structure (4.1).
The computation o f g a b is somewhat messy: what follows is a summary of its main
steps.

The first step is to write the holomorphic curve x corresponding to the point
xa = (X, X, 7, y) in parametric form (cf. 3.1):

P\X, o = ( - γχζ0, - (i + y y)Cr , (i + xXK0, + χγζif, - Yζ0, + x ζ j ,
ί*,cH(c0^c r, -*Co<-nr). (4.4)

It is easily checked that p*l. = L.p3 = Pjlj = 0, as required.
Following (3.2, 3.3, 3.4), one now finds the connecting vector field vα on x

corresponding to the coordinate vector va = d/dxa at xeM. It turns out to be

where J = 1 -f XX + Y Ϋ. It is obvious from (4.1) that the vectors va are all null, so
(cf. 3.5) one expects that there should exist objects Σa

BB,(x) and hB(x, ζ) such that

BB'^a =

These Σa

BB, are (up to a conformal factor) the Infeld-van der Waerden symbols
(cf. Sect. 1). In fact, hB and Σa

BB, are given by

00'
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Σ2 - Σ3 - 1^ ir — ̂  oo' ~ A >

with all other components zero. If Σa

BB' is the inverse of Σa

BB,, then the conformal
metric (4.1) is indeed given by

AB A.'B' a b ' \ * /

A primed spinor (i.e. an element of S') is an object of the form ocA'ζA> with
<XA> constant. An unprimed spinor (i.e. an element of S) is an object of the form
ζAhA with ζA constant. The 2-form eA,B, on Sf is found by substituting (4.4) into
(4.2) and using the definition (2.20): this gives

The 2-form eAB on S is computed according to the definition (2.19) and turns
out to be

The metric gab is now obtained by putting together (4.5), (4.6) and (4.7):

= J - 2 [ (1 + Y Ϋ)dXdX + (1+ XX)d YdΫ - XΫd YdX - YXdXd Y] . (4.8)

This is indeed the Fubini- Study metric on P2 , on the 'real slice' X = X, Ϋ = Ϋ.
For example, it is identical to that in [11], (10), where C1 = X, ζ2 = Y and (their
Λ) = 6. The metric (4.8) has scalar curvature R = — ̂ , as expected from (4.3).
(The curvature tensor used in [11] is of opposite sign to ours.)

Appendix

We have to prove that the forms τ and p, defined by (2.5) and (2.6), satisfy

τ Λ dτ = 2Λp.

First it is necessary to compute dτ. To do so, we follow an unpublished argu-
ment due to Penrose. Let W be a 2-surface in 2Γ . Thus W corresponds to a 2-
parameter family of α-surfaces in M. We make the assumption that the α-surfaces
in this family do not intersect one another. In other words, the two-parameter
family of 2-surfaces make up a foliation of M : exactly one α-surface in the family
W passes through each point of M. If we can define dτ on the generic 2-surface W
in y satisfying this assumption, then this will suffice to determine dτ on ZΓ.

The 'foliation' assumption means that the spinor fields πA, on each α-surface
in the family W combine into a spinor field πA, on the whole space M, satisfying

^'V^,πβ, = 0. (Al)
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Let σ be the projection map from M to W in other words,

Let ζ be the 1-form on M defined by ζ = (πB,Vaπ
B')dxa. In fact, ζ is the pull-back

of τ to M: if υ is a vector field on M, then

(σ*τ)(ι;) = τ(σ^v) (definition of σ*)
= πβ'γαVflπβ (definition of τ)

= ζ(v) . (definition of ζ)

So to compute dτ, it suffices to compute dζ (remember that the pull-back operator
σ* commutes with the exterior derivative operator: σ*(dτ) = d(σ*τ) = dζ).

To compute dζ we may proceed as follows. Let vί and v2 be two vector fields
on M which are constant over the α-surfaces in the family W, i.e. nA'VAA'vί

b = 0 =

where βlA, = v^V^π^, α^ = wγ

AAΊιA, etc. and where the Ricci identities (1.7, 1.8)
have been used. Thus we conclude that if β1 <-»(α/, β^,) and β2^(α2^> /W)
are two vectors in "̂, then

, , S2) = j?1A,jS/ + Λα^α/. (A2)

As a check, one may verify, using (2.3) and (2.4), that the right hand side of (A2)
is indeed constant over α-surfaces; and so dτ is well-defined.

Finally, (2.5) and (A1.3) give

τ Λ dτ(Q1 , Q2 , Q3) - π^β^^β^ + Λa2Ba3

B) skewed over 1, 2, 3

= 2/lp,

as is seen from eq. (2.6). The term involving three /Γs vanishes because the /J's
are elements of a two-dimensional vector space, so skewing over more than two
of them produces zero.
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